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Abstract In the present work, we investigate the problem of multiple cracks on the interface between a
piezoelectric layer and an orthotropic substrate. The method of dislocation simulation and singular integral
equation are used to solve the crack problem. The theoretical derivation is verified by the classical result in a
special case. Numerical results of the stress intensity factor are obtained, and thereby the effects of geometrical
parameters and material orthotropy are surveyed. The optimal stiffness ratio of the orthotropic substrate is
suggested for the purpose of interfacial fracture prevention, which is significant for the design and assessment
of such a kind of smart structures.

1 Introduction

Artificial piezoelectric ceramics generally act as the kernel components to transfer energy or signals between
electro-elastic fields in modern smart devices. To gain advanced performance, piezoelectric components are
often made as layered structures. The simplest structure is just composed of a piezoelectric layer and a substrate
[1]. Orthotropic polythene composites are sometimes used as the substrate of layered piezoelectric devices
to enhance its mechanical performance. In these piezoelectric composites, the interface is an important part
that is responsible for the transmission of electro-elastic fields between the layer and the substrate. However,
the interface is simultaneously a region that has high stress concentration and thus is subjected to cracking
especially when the smart device serves under harsh in situ conditions. Therefore, the problems of interfacial
cracks in layered piezoelectric structures have been a focus of the mechanics of piezoelectricity in the past
years.

Ru [2] derived the exact elementary solution for interfacial cracks between the embedded electrode
layer and piezoelectric ceramic and demonstrated that the electro-elastic fields exhibit power singulari-
ties without oscillation. Govorukha and Loboda [3] studied the tensile cracking problem of the interface
between a piezoelectric semi-infinite space and a rigid conductor by the method of contact zone model.
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Fig. 1 Multiple interfacial cracks between an orthotropic substrate and a piezoelectric layer

Gu et al. [4] investigated the problem of an interfacial crack between two dissimilar piezoelectric lay-
ers under mechanical impacts. Guo and Fang [5] developed an effective simulation method for the prob-
lem of interfacial cracking in piezoelectric layers. Huang and Wang [6] surveyed the dynamic behavior of
interacting interfacial cracks between a piezoelectric layer and an elastic substrate. Li and Chen [7] per-
formed numerical analysis of interfacial crack tip singularities and the crack tip energy release rates for
a permeable interfacial crack in elastic dielectric/piezoelectric bimaterials. Tian and Rajapakse [8] ana-
lyzed the fracture parameters of a penny-shaped crack at the interface of a piezoelectric bimaterial sys-
tem and discussed their dependence on the material properties, poling orientation, and electric loading. Li
and Lee [9] performed fracture analysis on the arc-shaped interface in a layered cylindrical piezoelectric
sensor polarized along its axis by the methods of infinite series and singular integral equation. Hausler
et al. [10] examined the fracture behavior of metal–piezoceramic interfaces under mechanical and elec-
trical loading by experiments. Shin and Lee [11] studied the dynamic propagation of an interfacial crack
between two dissimilar functionally graded piezoelectric layers under electromechanical loading. Loboda et
al. [12] investigated the in-plane fracture of a thin isotropic interlayer sandwiched between two identical
piezoelectric semi-infinite spaces by considering the zones of electrical saturation and mechanical yield-
ing. Natroshvili et al. [13] addressed the three-dimensional interfacial crack problems for metallic-piezo-
electric composite bodies and discussed the dependence of the stress singularity exponents on the material
parameters.

Sometimes, the elastic substrates may be reinforced by fibers orthogonally to enhance the performances of
piezoelectric composites. Therefore, investigation on the fracture behavior of piezoelectric composites with
orthotropic substrates has practical significance. However, only few work has been done in this field. Kwon
and Meguid [14] provided the analytical solution for a central crack normal to a piezoelectric–orthotropic
interface. Kwon and Lee [15] studied the dynamic propagation of an eccentric crack in a piezoelectric layer
bonded between two orthotropic elastic layers under the combined anti-plane mechanical shear and in-plane
electrical loadings. To our knowledge, none has considered the interfacial fracture problems of piezoelectric
composites with orthotropic substrates. In the present work, the problem of multiple cracks on the interface
between a piezoelectric layer and an orthotropic substrate is solved by the method of dislocation simulation
and singular integral equation [16–18]. Numerical results of the stress intensity factor are obtained, and the
effects of geometrical parameters and stiffness ratio are revealed, which may provide references for the design
and assessment of this kind of smart structures.

2 Problem formulation

Illustrated in Fig. 1 is a composite composed of a piezoelectric layer and an orthotropic substrate. The thickness
of the former is h1 and that of the latter is h2. The rectangular coordinate system is established with the right-
ward x axis along the interface and the upward y axis along the thickness direction. There are multiple cracks
on the interface, occupying the intervals, x ∈ (ai , bi ), (i = 1, 2, . . . , n), respectively. The piezoelectric
layer is poled along the z axis and isotropic in the xoy plane.

Assume that the upper and lower surfaces of the composite are free of loading and only the surfaces of the
cracks are loaded by equivalent anti-plane shear traction −τ0. The boundary and continuity conditions of the
problem take the form
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τ (1)
yz (x, h1) = 0; τ (2)

yz (x,−h2) = 0, (1)

D(1)
y (x, h1) = 0; D(1)

y (x, 0) = 0, (2)

τ (1)
yz (x, +0) = τ (2)

yz (x, −0), x /∈ (ai , bi ), i = 1, 2, . . . , n, (3)

w1(x, +0) = w2(x, −0), x /∈ (ai , bi ), i = 1, 2, . . . , n, (4)

τ (1)
yz (x, +0) = τ (2)

yz (x, −0) = −τ0, x ∈ (ai , bi ), i = 1, 2, . . . , n, (5)

where w and τ denote the mechanical displacement and stress. D is the electric displacement. The super-
scripts/subscripts 1 and 2 refer to the quantities of the piezoelectric layer and orthotropic substrate, respectively.

3 Fracture analysis

3.1 Fields induced by point dislocation

A convenient way to treat the problem of collinear cracks is to simulate them by continuously distributed
dislocations [17,18], whose density functions are defined by

gi (x) = d

dx

[
w

(i)
1 (x, 0) − w

(i)
2 (x, 0)

]
, (i = 1, 2, . . . , n). (6)

According to Eq. (4) and the dislocation-based theory of fracture mechanics, dislocation density functions
should satisfy the following single-valuedness conditions [19]:

bi∫

ai

gi (t) dt = 0, (i = 1, 2, . . . , n). (7)

The solution of continuously distributed dislocations may be obtained by integrating that of a point dislocation.
A point dislocation placed on the interface is described by

d

dx
[w1(x, 0) − w2(x, 0)] = δ(x − s), (8)

where s is the x coordinate of the point dislocation. δ is the Dirac delta function.
Separate the Dirac delta function δ(x − s) into even and odd parts [17,18]. Then, Eq. (8) becomes

d

dx
[w1(x, 0) − w2(x, 0)] = 1

2
[ω(x) + λ(x)], (9)

where

ω(x) = δ(x + s) + δ(x − s)
λ(x) = δ(x − s) − δ(x + s)

}
(10)

Next, we use the method of Fourier transform to get the electric/elastic field induced by the point dislocation.
The basic equations of the piezoelectric layer read [20]

τ
(1)
kz = c(1)

44
∂w1
∂k + e15

∂φ
∂k

Dk = e15
∂w1
∂k − ε11

∂φ
∂k

}
, k = x, y, (11)

∂τ
(1)
xz

∂x
+ ∂τ

(1)
yz

∂y
= 0; ∂ Dx

∂x
+ ∂ Dy

∂y
= 0, (12)

where φ is the electric potential. c(1)
44 , e15 and ε11 are the elastic constant, piezoelectric coefficient, and dielectric

coefficient.
Generally, it is reasonable to assume that c(1)

44 ε11 + e2
15 �= 0. So, substituting Eq. (11) into Eq. (12) yields

∇2w1(x, y) = 0
∇2φ(x, y) = 0

}
(13)
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where ∇2 is the Laplacian operator.
The basic equations of the orthotropic substrate are

τ (2)
zx = c(2)

55
∂w2

∂x
; τ (2)

zy = c(2)
44

∂w2

∂y
, (14)

∂τ
(2)
zx

∂x
+ ∂τ

(2)
zy

∂y
= 0, (15)

where c(2)
44 and c(2)

55 are two elastic constants.
Substituting Eq. (14) into Eq. (15) gives

α2 ∂2w2

∂x2 + ∂2w2

∂y2 = 0, (16)

where α =
√

c(2)
55 /c(2)

44 .
It deserves noting that ω(x) is an even function but λ(x) is an odd function. Therefore, the electric/elastic

field induced by ω(x)/2 has symmetry with respect to the y axis, but that by λ(x)/2 has anti-symmetry instead.
Applying Fourier transform to Eqs. (13) and (16) with respect to x , one can obtain the electric/elastic field

produced by ω(x)/2:

w
(ω)
1 (x, y) = 2

π

+∞∫
0

[
A1(ξ)e−ξ y + A2(ξ)eξ y

]
cos(ξ x)dξ

φω(x, y) = 2
π

+∞∫
0

[
A5(ξ)e−ξ y + A6(ξ)eξ y

]
cos(ξ x)dξ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17)

w
(ω)
2 (x, y) = 2

π

+∞∫

0

[
A9(ξ)e−αξ y + A10(ξ)eαξ y] cos(ξ x)dξ. (18)

Also by Fourier transform, the electric/elastic field produced by λ(x)/2 may be obtained:

w
(λ)
1 (x, y) = 2

π

+∞∫
0

[
A3(ξ)e−ξ y + A4(ξ)eξ y

]
sin(ξ x)dξ

φλ(x, y) = 2
π

+∞∫
0

[
A7(ξ)e−ξ y + A8(ξ)eξ y

]
sin(ξ x)dξ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19)

w
(λ)
2 (x, y) = 2

π

+∞∫

0

[
A11(ξ)e−αξ y + A12(ξ)eαξ y] sin(ξ x)dξ. (20)

In Eqs. (17)–(20), A j (ξ) ( j = 1, 2, . . . , 12) are undetermined coefficient functions. Referring to Eqs. (8)
and (9), one may obtain the electric/elastic field produced by the point dislocation

w1(x, y) = 2
π

+∞∫
0

(
A1e−ξ y + A2eξ y

)
cos(ξ x)dξ

+ 2
π

+∞∫
0

(
A3e−ξ y + A4eξ y

)
sin(ξ x)dξ

φ(x, y) = 2
π

+∞∫
0

(
A5e−ξ y + A6eξ y

)
cos(ξ x)dξ

+ 2
π

+∞∫
0

(
A7e−ξ y + A8eξ y

)
sin(ξ x)dξ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)
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w2(x, y) = 2

π

+∞∫

0

(
A9e−αξ y + A10eαξ y) cos(ξ x)dξ

+ 2

π

+∞∫

0

(
A11e−αξ y + A12eαξ y) sin(ξ x)dξ. (22)

It follows from Eqs. (21), (22), (11), and (14) that

τ (1)
yz (x, y) = 2

π

+∞∫

0

[
c(1)

44

(
A2eξ y − A1e−ξ y

)
+ e15

(
A6eξ y − A5e−ξ y

)]
ξ cos(ξ x)dξ

+ 2

π

+∞∫

0

[
c(1)

44

(
A4eξ y − A3e−ξ y

)
+ e15

(
A8eξ y − A7e−ξ y

)]
ξ sin(ξ x)dξ, (23)

Dy(x, y) = 2

π

+∞∫

0

[
e15

(
A2eξ y − A1e−ξ y

)
− ε11

(
A6eξ y − A5e−ξ y

)]
ξ cos(ξ x)dξ

+ 2

π

+∞∫

0

[
e15

(
A4eξ y − A3e−ξ y

)
− ε11

(
A8eξ y − A7e−ξ y

)]
ξ sin(ξ x)dξ, (24)

τ (2)
zy (x, y) = c(2)

44
2

π

+∞∫

0

(
A10eαξ y − A9e−αξ y

)
αξ cos(ξ x)dξ

+ c(2)
44

2

π

+∞∫

0

(
A12eαξ y − A11e−αξ y

)
αξ sin(ξ x)dξ. (25)

Using Eqs. (21)–(25), one may transform Eqs. (1)–(3) and (9) into integral equations. Separating their even
and odd parts with respect to x and then applying cosine and sine transforms accordingly yield a system of
algebraic equations. The coefficient matrix M of these algebraic equations is given in the Appendix. Solving
these algebraic equations gives

A j (ξ) = [β j1(ξ) cos(ξs) − β j2(ξ) sin(ξs)]/(2ξ), ( j = 1, 2, . . . , 12), (26)

where β j1(ξ) and β j2(ξ) ( j = 1, 2, . . . , 12) are the first and second columns of elements of M−1. Here, the
superscript −1 represents the inverse matrix.

Substituting Eq. (26) into Eq. (25) leads to

τyz(x, 0) =
√

c(2)
44 c(2)

55
1

π

+∞∫

0

[Q1(ξ) sin(ξs) + Q3(ξ) cos(ξs)] cos(ξ x)dξ

+
√

c(2)
44 c(2)

55
1

π

+∞∫

0

[Q2(ξ) cos(ξs) + Q4(ξ) sin(ξs)] sin(ξ x)dξ, (27)

where Q1, Q2, Q3 and Q4 are four dimensionless functions defined by

Q1(ξ) = β92(ξ) − β(10)2(ξ); Q3(ξ) = β(10)1(ξ) − β91(ξ) ≡ 0
Q2(ξ) = β(12)1(ξ) − β(11)1(ξ); Q4(ξ) = β(11)2(ξ) − β(12)2(ξ) ≡ 0

}
(28)

When ξ → ∞, the asymptotic values of Q1 and Q2 are

lim
ξ→∞ Q1(ξ) = − lim

ξ→∞ Q2(ξ) = q �= 0, (29)
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where q is a dimensionless constant given by

q = c(1)
44 ε11 + e2

15

c(1)
44 ε11 + e2

15 + αc(2)
44 ε11

. (30)

Considering Eqs. (28) and (29), one can reformulate Eq. (27) into

τyz(x, 0) =
√

c(2)
44 c(2)

55
1

π

[
q

s − x
+ R(s, x)

]
, (31)

where R(s, x) is a function defined by

R(s, x) =
+∞∫

0

[Q1(ξ) − q] sin(ξs) cos(ξ x)dξ

+
+∞∫

0

[Q2(ξ) + q] cos(ξs) sin(ξ x)dξ. (32)

In the derivation of Eq. (32), the following integral formula is used [21]:

∞∫

0

sin(ξs) cos(ξ x)dξ = 1

2

(
1

s + x
+ 1

s − x

)
. (33)

Equation (31) gives the stress τyz(x, 0) on the interface induced by a point dislocation placed at x = s on the
x axis.

As indicated by Eq. (6), the multiple cracks on the interface in Fig. 1 can be simulated by dislocations
continuously distributed in the intervals, x ∈ (ai , bi ), (i = 1, 2, . . . , n), respectively. According to the
theory of Green’s function and the principle of superposition, the stress τyz(x, 0) induced by these continuously
distributed dislocations can be formulated as

τyz(x, 0) =
√

c(2)
44 c(2)

55
1

π

n∑
j=1

b j∫

a j

g j (s)

[
q

s − x
+ R(s, x)

]
ds. (34)

3.2 Singular integral equation

Substituting Eq. (34) into Eq. (5) gives

1

π

n∑
j=1

b j∫

a j

g j (s j )

[
1

s j − xk
+ q−1 R(s j , xk)

]
ds j = −τ0

q
√

c(2)
44 c(2)

55

, xk ∈ (ak, bk), (35)

where k = 1, 2, . . . , n. Obviously, only when s j = xk would the integral associated with (s j − xk)
−1 have

the Cauchy type singularity.
For the convenience of numerical computation, let’s introduce the following dimensionless quantities

s̃ j = (s j − c0 j )/a0 j ∈ (−1, 1)
x̃ j = (x j − c0 j )/a0 j ∈ (−1, 1)

}
, ( j = 1, 2, . . . , n), (36)

where a0 j = (b j − a j )/2 is the half-length of the j th crack and c0 j = (b j + a j )/2 is the x coordinate of its
center.
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Using Eq. (36), one can recast Eq. (35) into standard form:

n∑
j=1

1

π

1∫

−1

g̃ j (s̃ j )

[
a0 j

a0 j s̃ j + c0 j − a0k x̃k − c0k
+ R̃(s̃ j , x̃k)

]
ds̃ j = −τ0

q
√

c(2)
44 c(2)

55

, (37)

where k = 1, 2, . . . , n and

R̃(s̃ j , x̃k) = a0 j q−1 R(a0 j s̃ j + c0 j , a0k x̃k + c0k)
g̃ j (s̃ j ) = g j (a0 j s̃ j + c0 j )

}
(38)

According to the theory of Cauchy singular integral equation [22], the dislocation density functions g̃ j (s̃ j )
( j = 1, 2, . . . , n) in Eq. (37) have the square-root type singularity. Therefore, by introducing undeter-
mined dimensionless non-singular functions f j (s̃ j ) ( j = 1, 2, . . . , n) and separating the singular part, the
dislocation density functions may be expressed as

g̃ j (s̃ j ) = τ0

q
√

c(2)
44 c(2)

55

f j (s̃ j )√
1 − s̃2

j

, ( j = 1, 2, . . . , n). (39)

Then, using the method of Lobatto-Chebyshev quadrature, one can transform Eqs. (37) and (7) into algebraic
equations:

m∑
r=0

χr

n∑
j=1

f j (s̃ jr )

[
a0 j

a0 j s̃ jr + c0 j − a0k x̃kt − c0k
+ R̃(s̃ jr , x̃kt )

]
= −m, (40)

m∑
r=0

χr fk(s̃kr ) = 0, (41)

where k = 1, 2, . . . , n; t = 1, 2, . . . , m. m is the node number of the numerical quadrature. χi
(i = 1, 2, . . . , m) are the weighting coefficients given by χ0 = χm = 1/2 and χ1 = · · · = χm−1 = 1.
The discrete values of s̃ j and x̃k are the roots of the Chebyshev polynomials of the first and second kind,
respectively:

s̃ jr = cos(rπ/m) , (r = 0, 1, . . . , m)
x̃kt = cos [(2t − 1)π/(2m)], (t = 1, 2, . . . , m)

}
(42)

One may solve Eqs. (40) and (41) numerically to get the solutions of f j (s̃ j ) ( j = 1, 2, . . . , n), which can
be further used to determine the stress intensity factor (SIF).

3.3 Stress intensity factor

The SIFs of the two tips of every crack is defined by

Kak = lim
x→a−

k

τyz(x, 0)
√

2π(ak − x)

Kbk = lim
x→b+

k

τyz(x, 0)
√

2π(x − bk)

⎫
⎪⎬
⎪⎭

, (k = 1, 2, . . . , n). (43)

According to Eq. (34), the singular part of τyz(x, 0) is

lim
xk→a−

k

τyz(x, 0) = q
√

c(2)
44 c(2)

55
1
π

lim
x̃k→−1−

∫ 1
−1

g̃k (s̃k)
s̃k−x̃k

ds̃k

lim
xk→b+

k

τyz(x, 0) = q
√

c(2)
44 c(2)

55
1
π

lim
x̃k→1+

∫ 1
−1

g̃k (s̃k )
s̃k−x̃k

ds̃k

⎫⎪⎪⎬
⎪⎪⎭

(44)

where k = 1, 2, . . . , n.
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Substituting Eq. (39) into Eq. (44), one may rewrite the singular part of τyz(x, 0) as [23]

lim
xk→a−

k

τyz(x, 0) = τ0 lim
x̃k→−1−

fk (−1)√
x̃2

k −1

lim
xk→b+

k

τyz(x, 0) = τ0 lim
x̃k→1+

− fk (1)√
x̃2

k −1

⎫
⎪⎬
⎪⎭

, (k = 1, 2, . . . , n). (45)

In the derivation of Eq. (45), the following integral formula is used [24]:

1

π

1∫

−1

1

(s̃ − x̃)
√

1 − s̃2
ds̃ =

⎧⎪⎨
⎪⎩

−1√
x̃2−1

, x̃ > 1,

0, |x̃ | < 1
1√

x̃2−1
, x̃ < −1.

(46)

Substituting Eq. (45) into Eq. (43) yields

Kak = τ0 fk(−1)
√

πa0k
Kbk = −τ0 fk(1)

√
πa0k

}
, (k = 1, 2, . . . , n). (47)

Because τ0
√

πa0k has the dimension of SIF, we can use it to normalize the SIFs in Eq. (47). So, in the numerical
computation, we only calculate the following dimensionless SIFs:

Kak = fk(−1)
Kbk = − fk(1)

}
, (k = 1, 2, . . . , n). (48)

3.4 Verification

One can use a special case to verify the foregoing derivation. Assume that e15 = 0, c(2)
55 = c(2)

44 = c(1)
44 = c44

and h1 = h2 → ∞; then, the problem in Fig. 1 becomes that of collinear cracks in an elastic isotropic plane.
In this special case, we have α = 1, q = 1/2 and lim

h1=h2→∞ R(s, x) = 0. What is more, because the problem

is antisymmetric with respect to the x axis, it is sufficient to study only the upper half-plane. Therefore, the
dislocation density function can be defined as

G j (x) = d

dx
w j (x, 0+) = 1

2
g j (x), ( j = 1, 2, . . . , n). (49)

Then, Eq. (35) reduces to

n∑
j=1

1

π

b j∫

a j

G j (s j )

s j − xk
ds j = − τ0

c44
, xk ∈ (ak, bk). (50)

If there is only one crack lying in the interval x ∈ (−a, a), Eq. (50) further reduces to

1

π

a∫

−a

G(s)

s − x
ds = − τ0

c44
, x ∈ (−a, a). (51)

Equation (51) is the classical singular integral equation for a mode III crack in an elastic isotropic plane. The
degradation from Eq. (35) to Eq. (51) validates the foregoing theoretical derivation.

4 Numerical results and discussion

Assume that the piezoelectric layer is PZT-5H ceramic. Its material constants are c(1)
44 = 3.53 ×

1010 N/m2, ε11 = 151.0 × 10−10 C/(Vm) and e15 = 17.0 C/m2. The substrate is orthotropic polythene
composite, and its elastic constants are c(2)

44 = 1.765 × 1010 N/m2 and c(2)
55 = α2c(2)

44 . For the convenience of
computation, we only consider the special case of two interfacial cracks in this section.
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Fig. 2 The asymptotic behaviors of the dimensionless kernel function (h1 = h2 = 10 mm; a02 = 2a01 = 5 mm; d0 = 1 mm;
c(2)

44 = 17.65 GPa; α = 1.5)

4.1 Computational accuracy

At the beginning of computation, it is necessary to survey the convergence behavior of the dimensionless
non-singular kernel function R̃(s̃ j , x̃k), ( j = 1, 2; k = 1, 2). As indicated by Eq. (32), this kernel function
involves infinite integral. A practical method to quadrature this infinite integral is to truncate it into a finite
integral on the interval (0, N ), where the value of the upper limit N depends on the convergence speed of
the integration [23]. Illustrated in Fig. 2 is the variation of the kernel function versus the upper limit N . It is
indicated that the kernel function converges very well. N = 500 is quite enough to guarantee a precision of
1.0 ×10−6, which is sufficient for most engineering applications. Therefore, N is fixed at 500 in the following
computation.

In addition, the quadrature node number m is another parameter affecting the accuracy of the numerical
results. Calculation reveals that m = 20 is well enough to ensure a precision of 1.0 × 10−6 with satisfactory
computational efficiency.

4.2 Parametric studies

4.2.1 Effect of geometrical parameters

Figure 3 shows the effects of crack space and structure thickness on the SIFs. If the crack space d0 ≥ 10a0,
the variation of d0 nearly does not affect the SIF. As d0 decreases from 10a0 to 5a0, the SIF only increases
slightly. If d0 continues to decrease from 5a0, the SIF begins to increase notably. When d0 → 0, the SIFs of
the two inner tips even experience a singular increase, which would gives rise to a sudden interlinkage between
the two cracks.

It deserves noting that in Fig. 3, the SIFs of the two outer tips also increase as the crack space decreases,
although their increase is smaller than that of the two inner tips. This is because the two cracks in Fig. 3 are so
short than their outer tips also fall into the affected region of the crack space. Further computation indicates
that if the cracks are long enough the variation of the crack space would have a vanishing effect on the SIFs
of the outer tips.

Figure 3 also reveals that the interfacial cracks in a structure with smaller thickness would have larger SIFs.
This is because the surfaces of a thinner structure affect the interfacial cracks more notably, which leads to the
increase in their SIFs. As the half thickness h becomes larger than 10a0, the effect of the structure surfaces
becomes negligible and the SIFs then get insensitive to the variation of the structure thickness.

4.2.2 Crack opening mouth

It follows from Eq. (6) that we can calculate the dislocation between the crack surfaces by numerical integration
after the numerical solution of the dislocation density function is obtained. Figure 4 presents the dislocations
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Fig. 4 The dislocations of the cracks (h1 = h2 = 10 mm; a02 = 2a01 = 2 mm; τ0 = 5 MPa; c(2)
44 = 17.65 GPa; α = 1.5)

of two interfacial cracks when the crack-surface traction is prescribed as τ0 = 5 MPa. In this figure, s̃ = −1.0
corresponds to the inner-side tip of crack 2 and the outer-side tip of crack 1, while s̃ = 1.0 to the inner-side
tip of crack 1 and the outer-side tip of crack 2. It is revealed that the dislocation curves of both cracks become
oblique to the inner side as the crack space d0 decreases. This is in consistence with the common sense of
fracture mechanics.

4.2.3 Effect of orthotropy

Anti-plane deformation of the orthotropic substrate involves two stiffness coefficients, c(2)
55 and c(2)

44 , and their

ratio c(2)
55 /c(2)

44 reflects the degree of material orthotropy. In all the foregoing computation, this ratio is fixed

(see Figs. 2, 3, 4: α = 1.5). This subsection continues to examine the effect of the stiffness ratio c(2)
55 /c(2)

44 on

the interfacial cracks. Figure 5 shows that as c(2)
55 /c(2)

44 decreases from 1.0 to 0.1, the SIFs increase remarkably.

However, the SIFs nearly keep unchanged when c(2)
55 /c(2)

44 increases from 1.0 to 10.0. This is consistent with
the results of some related previous studies. For example, see Figs. 3 and 4 of Matbuly and Nassar [25], and
Figs. 7 and 8 of Li and Duan [26]. Therefore, in order to prevent the interfacial fracture, it is better to choose
an orthotropic substrate with its stiffness ratio lager than 1.0. If the stiffness ratio of the orthotropic substrate
is less than 1.0, the risk of interface fracture would be enhanced.
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Fig. 5 The effects of c(2)
55 /c(2)
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5 Conclusions

Interfacial fracture is a typical failure of layered piezoelectric composites. Fracture analysis is an important
way to assess the safety of the interface and to find some feasible approaches to prevent interfacial fracture. In
the present work, Fracture analysis is performed on a smart composite consisting of a piezoelectric layer and
an orthotropic substrate with multiple cracks lying on the interface. The cracks are simulated as continuously
distributed dislocations, and then the method of singular integral equation is used to solve the problem. The
derivation is verified by the classical result in a special case. Numerical results of the stress intensity factor are
used to survey the effects of geometrical and physical parameters. The optimal stiffness ratio of the orthotropic
substrate is suggested for the purpose of interfacial fracture prevention.
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Appendix

The nonvanishing elements of the coefficient matrix M are

M13 = 1; M14 = 1; M1(11) = −1; M1(12) = −1;
M21 = 1; M22 = 1; M29 = −1; M2(10) = −1;
M31 = −c(1)

44 e−ξh1; M32 = c(1)
44 eξh1; M35 = −e15e−ξh1; M36 = e15eξh1;

M43 = −c(1)
44 e−ξh1; M44 = c(1)

44 eξh1; M47 = −e15e−ξh1; M48 = e15eξh1;
M59 = eαξh2; M5(10) = −e−αξh2;

M6(11) = eαξh2; M6(12) = −e−αξh2;
M71 = −e15e−ξh1; M72 = e15eξh1; M75 = ε11e−ξh1; M76 = −ε11eξh1;
M83 = −e15e−ξh1; M84 = e15eξh1; M87 = ε11e−ξh1; M88 = −ε11eξh1;
M91 = −e15; M92 = e15; M95 = ε11; M96 = −ε11;

M(10)3 = −e15; M(10)4 = e15; M(10)7 = ε11; M(10)8 = −ε11;
M(11)1 = −c(1)

44 ; M(11)2 = c(1)
44 ; M(11)5 = −e15; M(11)6 = e15; M(11)9 = αc(2)

44 ; M(11)10 = −αc(2)
44 ;

M(12)3 = −c(1)
44 ; M(12)4 = c(1)

44 ; M(12)7 = −e15; M(12)8 = e15; M(12)11 = αc(2)
44 ; M(12)12 = −αc(2)

44 .
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