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Abstract The evolution of compression waves propagating in a fluid-saturated granular solid is considered.
The pore fluid is assumed to consist of a liquid with a small amount of free gas. The stiffness of such a
solid increases with increasing pressure. This property leads to the transformation of continuous compression
waves into shock fronts after a finite time of propagation. The aim of the study is to calculate the critical
distance covered by a continuous wave before it loses continuity. Critical distances are calculated for weak
discontinuities (acceleration waves) propagating into a quiescent region. In numerical examples, the pressure
dependence of the stiffness is taken in a form typical of granular solids. Emphasis is placed on the influence
of free gas in the pore fluid and the permeability of the skeleton. Comparison of locally undrained and drained
behaviour reveals that the drained model with low permeability turns out to be misleading for the calculation
of the critical distance of a compression wave.

1 Introduction

The formation of strong discontinuities (shock fronts) from continuous compression waves propagating in
gases has long been known and extensively studied [1]. The steepening of the profile of a compression front
and the eventual transition to a shock front are consequences of the fact that the compressibility of gases
decreases in compression. In comparison with gases, the stiffness of granular solids such as sand, soil or
powders is a more complex tensorial quantity which depends on the stress state, the current and the foregoing
deformation and other factors. However, a general property of granular solids is that their stiffness increases
with increasing pressure. As in the case with gases, this property leads to the transformation of continuous
compression waves into shock fronts and to the nonexistence of a classical (continuous) solution after a finite
time of propagation.

The dependence of the stiffness on the confining pressure in granular materials is brought about by their
granular structure. If a granular material is saturated with a fluid, the compressibility of the fluid may depend on
its pressure and thus, apart from the properties of the solid skeleton, constitute another source of the pressure-
dependent stiffness of the body. In particular, the compressibility of a pore fluid becomes pressure dependent
if the fluid is not a pure liquid but a liquid with a small amount of free gas entrapped in the pore space.

A so-called critical distance which a continuous compression front covers before it loses continuity and
turns into a shock front depends on the constitutive properties of the medium and on the rate of the boundary
loading which induces the front. A higher rate results in a shorter critical distance. In applications, an esti-
mation of the critical distance may be required in order to choose a proper computational technique for the
solution of a dynamic boundary value problem of wave propagation. If the estimated critical distance is not
larger than the size of the spatial domain in the problem under study, the numerical algorithm has to allow for
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solutions with strong discontinuities. For instance, in the context of soil dynamics, the rates of loading caused
by an earthquake and an explosion differ by several orders of magnitude, and the same holds for the critical
distances. Whereas the critical distance due to an earthquake may be large enough to neglect the formation of
a shock front, the critical distance corresponding to a blast loading may be as short as a few centimetres and
thus lie within the computational domain.

For solids with rate-independent constitutive behaviour, a plane compression front propagating into a qui-
escent region is a so-called simple wave [1]. Due to the special structure of such a solution, it is possible to
calculate the evolution of the gradients of the solution in each point of a continuous wave profile and thus to find
the critical distance for a wave profile of arbitrary shape [2]. For fluid-saturated porous solids, a compression
front is a simple-wave solution if the relative motion between the solid and the fluid phases may be neglected
due to the low permeability of the skeleton. If the permeability is not low enough and the dynamic problem
has to be solved with locally drained conditions, the wave becomes dissipative and is no longer a simple wave.
This fact does not allow us to derive a tractable equation for the evolution of the gradients on the wave profile
in the drained case.

Rather than considering smooth wave fronts, the critical distances can alternatively be calculated from the
evolution of weak discontinuities, i.e. jumps in the first partial derivatives of the solution. For a propagating
weak discontinuity (acceleration wave), infinite growth of its amplitude in a finite time signifies the transition
from the continuous solution to a strong discontinuity and the formation of a shock front. If a weak disconti-
nuity propagates into a domain where the solution is known, the evolution equation for the amplitude of the
discontinuity can be solved directly, and thus the critical distance can be found.

The objective of the present study is, using the acceleration-wave approach, to calculate the critical dis-
tances for plane compression fronts in a saturated granular solid and to compare the results for locally drained
and undrained behaviour. To obtain the numerical estimations of the critical distances, the pressure dependence
of the stiffness of the solid skeleton is taken in a particular form typical of granular skeletons. Emphasis is
placed on the influence of the permeability of the skeleton and a small amount of free gas in the pore fluid.

A feature of the comparative analysis of undrained and drained behaviour is that the evolution equation
for the amplitude of an acceleration wave in the drained case with low permeability leads to essentially dif-
ferent results as compared with purely undrained behaviour. This inconsistency stems from the fact that, as
the permeability tends to zero, the dynamic equations in the drained case degenerate rather than reduce to the
equations in the undrained case. In this connection, the question arises as to what model—with drained or
undrained behaviour—should be used in applications at low permeability.

2 Evolution of weak discontinuities

Plane longitudinal waves in both drained and undrained cases considered in this paper are described by a
system of equations in the form

∂ui

∂t
+ Ai j (u1, . . . , uN )

∂u j

∂x
= Bi (u1, . . . , uN ), i = 1, . . . , N , (1)

where u1, . . . , uN are unknown functions, and the variables x and t stand for a spatial coordinate and time,
respectively. The coefficients of the system, Ai j , and the right-hand sides, Bi , are assumed to be functions of
ui with continuous first partial derivatives ∂Ai j/∂uk , ∂Bi/∂u j .

Given continuous initial and boundary data, the quasilinear system (1) may have a continuous solution only
within a finite time [3]. For data with a weak discontinuity, the evolution of the amplitude of the discontinuity
for system (1) is shown to be described by an ordinary differential equation of the Bernoulli type [4–9]. The
coefficients of this equation can be expressed in different ways. We will use the evolution equation in the form
derived in [8,9] (see equation (C.112) in [8] or (9) in [9] and details of the derivation therein).

A curve on which the first derivatives ∂ui/∂x , ∂ui/∂t of a solution to (1) are discontinuous is necessarily
a characteristic curve of system (1). The speed of propagation of the discontinuity front in space, c, is a (real)
eigenvalue of the matrix Ai j . Let [[ ]] = ( )+ − ( )− denote the jump of a quantity across the front, with
( )+ and ( )− being the values ahead of and behind the front, respectively. The vector [[∂ui/∂x]] is shown to
be a right eigenvector of the matrix Ai j associated with the eigenvalue c. If the algebraic multiplicity of the
considered eigenvalue c is equal to one, any discontinuity [[∂ui/∂x]] can be represented as[[

∂ui

∂x

]]
= a Ri , i = 1, . . . , N , (2)
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where Ri are the components of a right eigenvector of Ai j associated with the eigenvalue c, and a is a scalar
factor subsequently referred to as the amplitude of the discontinuity.

The amplitude a as a function of time satisfies the equation

da

dt
+ α1a + α2a2 = 0, (3)

where the coefficients are given by Wilmanski [8,9]

α1 = Li

Rk Lk

[
Rl
∂Ai j

∂ul

(
∂u j

∂x

)+
+ R j

∂Ai j

∂ul

(
∂ul

∂x

)+
− R j

∂Bi

∂u j
+ dRi

dt

]
, (4)

α2 = − Li R j Rl

Rk Lk

∂Ai j

∂ul
. (5)

In (4) and (5), Li are the components of a left eigenvector of Ai j associated with the eigenvalue c, and dRi/dt
is the time derivative of Ri along the characteristic.

Since a, α1, α2 are specified on a characteristic curve, they can be viewed as functions of either t or x . In the
latter case, replacing the temporal derivative along the characteristic with the spatial one, d( )/dt = c d( )/dx ,
we can rewrite the evolution equation (3) in terms of x :

c
da

dx
+ α1a + α2a2 = 0. (6)

If the discontinuity front propagates into a region where the functions ui are known, the coefficients α1, α2
and c in (6) become known functions of x . Equation (6) with known coefficients is the Bernoulli equation
which can be solved for a(x). The solution is

a(x) =
⎛
⎝ 1

a0
+

x∫
x0

α2ψ

c
dξ

⎞
⎠

−1

ψ(x), (7)

where

ψ(x) = exp

⎛
⎝−

x∫
x0

α1

c
dη

⎞
⎠, (8)

and a0 is the initial amplitude at x = x0. It is seen from (7) that, if α2 is not identically zero, (6) may possess
solutions which become infinite at a finite x . The critical distance xc is found from the equation

1

a0
+

x0+xc∫
x0

α2ψ

c
dξ = 0. (9)

The condition that α2 must be nonzero for the critical distance to be finite means that some coefficients Ai j of
system (1) must be functions of ui , see (5), and, hence, the system must be nonlinear.

In what follows we will deal with the special cases where α1 and α2 are constants. In turn, α1 may be zero
or not. If α1 = 0, the solution to (9) is

xc = − c

α2a0
. (10)

If α1 �= 0, the critical distance is given by

xc = − c

α1
ln

(
1 + α1

α2a0

)
. (11)

A solution xc to (9) and, in particular, solutions given by (10) and (11) are physically relevant if their sign
coincides with the sign of c. Besides the critical distance, Eqs. (10) and (11) determine the range of initial
amplitudes a0 for which a finite critical distance with a proper sign exists.
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3 Undrained behaviour

The total stress in a porous solid saturated with a fluid can be decomposed into the effective stress in the
skeleton and an isotropic stress due to the fluid pressure:

σ total = σ − p I, (12)

where σ total and σ are, respectively, the total and the effective stress tensors (compressive stresses are negative),
p is the fluid pressure (positive for compression), and I is the unit tensor. The decomposition (12) is justified
if the compressibility of the skeleton is much higher than that of the solid phase [10]. This holds, in particular,
for soils. According to the effective-stress principle, the constitutive equation for the effective stress tensor in
a saturated solid is independent of the pore pressure and is the same as for the dry skeleton.

Introduce a rectangular Cartesian coordinate system (x1, x2, x3) and consider plane longitudinal waves
propagating along the x1-axis with one nonzero velocity component v1 and three nonzero stress compo-
nents σ11, σ22, σ33. For brevity, in the equations below we will write σ1, σ2, σ3, v, x for σ11, σ22, σ33, v1, x1,
respectively.

In the absence of the relative motion between the solid and the fluid phases and without mass forces, the
equation of motion for longitudinal waves is

∂v

∂t
− 1

�

∂σ1

∂x
+ 1

�

∂p

∂x
= 0, (13)

where � = n�f + (1 − n)�s is the mean density, �f and �s are the densities of the fluid and the solid con-
stituents, and n is the porosity of the skeleton. In the governing equations in this paper, the convective terms
in the material time derivatives are neglected, and the material derivatives are replaced with the partial ones.
The constitutive equations for the effective stresses are written in rate form and are taken to be incrementally
linear:

∂σ1

∂t
− κ1

∂v

∂x
= 0, (14)

∂σ2

∂t
− κ2

∂v

∂x
= 0, (15)

∂σ3

∂t
− κ3

∂v

∂x
= 0, (16)

where the stiffness coefficients κ1, κ2, κ3 are functions of the current principal stresses σ1, σ2, σ3. Under locally
undrained conditions, the evolution of the pore pressure is governed by the equation

∂p

∂t
+ Kf

n

∂v

∂x
= 0, (17)

where the compression modulus of the pore fluid, Kf , may be a function of the fluid pressure p.
System (13)–(17) is of the form (1) with

u1 = v, u2 = σ1, u3 = σ2, u4 = σ3, u5 = p. (18)

The calculation of the eigenvalues of the matrix Ai j for system (13)–(17) gives three zero eigenvalues and two
eigenvalues ±cu with

cu =
√

1

�

(
κ1 + Kf

n

)
, (19)

where the notation cu is used for the positive characteristic wave speed in the undrained case. The components
of the right and the left eigenvectors of the matrix Ai j associated with the eigenvalue cu are

R2 = −κ1

cu
R1, R3 = −κ2

cu
R1, R4 = −κ3

cu
R1, R5 = Kf

ncu
R1, (20)

L2 = − 1

�cu
L1, L3 = 0, L4 = 0, L5 = 1

�cu
L1, (21)
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where R1, L1 are arbitrary. From (20), (21) we obtain the scalar product of the two eigenvectors: Ri Li =
2R1L1.

We will consider the propagation of a weak discontinuity with the positive speed cu into a quiescent region
where v = 0 and σ1, σ2, σ3, p do not depend on x and t . The density and the porosity are assumed to be
homogeneous. In this case the first two terms on the right-hand side of (4) vanish. The third term vanishes as
well because Bi = 0 in (13)–(17). Since all quantities ahead of the wave front are homogeneous and, hence,
the components of the matrix Ai j are constant on the front, we can always take the same right eigenvector and
thus have dRi/dt = 0 in (4). This gives α1 = 0. Calculating the derivatives ∂Ai j/∂ul involved in (5) (with
the density and the porosity treated as constants), we obtain

α2 = R1β

2�c2
u
, (22)

where

β = κ1
∂κ1

∂σ1
+ κ2

∂κ1

∂σ2
+ κ3

∂κ1

∂σ3
− Kf

n2

dKf

d p
. (23)

In order to calculate the critical distance from Eq. (9), it is necessary to specify the initial amplitude of the
discontinuity, a0, at the boundary x = x0 at t = 0. We consider a boundary value problem in which the total
stress σ1 − p is prescribed at the boundary:

σ1(x0, t)− p(x0, t) = f (t), t ≥ 0, (24)

where f (t) is a given function, and f (0) is equal to the initial total stress in the domain x ≥ x0. Let s0 denote
the initial rate of f (t) at t = 0:

s0 = d f

dt

∣∣∣∣
t=0
. (25)

At the beginning of the propagation at an infinitesimally small time 
t , the incipient spatial profile of the
total stress σ1(x)− p(x) is linear. The initial gradient of the total stress behind the front produced by the rate
s0 in the immediate vicinity of x0 is −s0
t/
x , where
x = cu
t is the distance travelled by the wave front.
This gives

(
∂σ1

∂x

)−
−

(
∂p

∂x

)−
= − s0

cu
. (26)

On the other hand, the jumps [[∂σ1/∂x]], [[∂p/∂x]] are proportional to the corresponding components of the
right eigenvector of Ai j , see (2), that is,

[[
∂σ1

∂x

]]
= −

(
∂σ1

∂x

)−
= a0 R2, (27)

[[
∂p

∂x

]]
= −

(
∂p

∂x

)−
= a0 R5. (28)

Substituting (27), (28) into (26) and using (19), (20), we obtain for the initial amplitude:

a0 = − s0

R1�c2
u
. (29)

Equation (10) then gives

xc = 2�2c5
u

s0β
. (30)

Since Eq. (30) is derived for a positive cu, only a positive xc has a physical meaning. This places a constraint
on the sign of the boundary stress rate s0. If the stiffness of the skeleton and the compression modulus of the
pore fluid increase in compression, then β given by (23) is negative, so that s0 must be negative as well. This
is in accordance with the fact that only compression fronts turn into shock fronts.
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4 Drained behaviour

If the relative motion between the fluid and the solid phases is taken into account, the equations of motion are
written separately for each phase [10,11]:

∂vs

∂t
− 1

(1 − n)�s

∂σ1

∂x
+ 1

�s

∂p

∂x
= �f gn2

(1 − n)�sk
(vf − vs), (31)

∂vf

∂t
+ 1

�f

∂p

∂x
= −gn

k
(vf − vs), (32)

where vs, vf are the velocities of the solid and the fluid phases, respectively, k is the permeability of the skeleton
(m/s), and g is the acceleration due to gravity. The constitutive equations for the effective stresses, (14)–(16),
are now written in terms of the velocity of the skeleton:

∂σ1

∂t
− κ1

∂vs

∂x
= 0, (33)

∂σ2

∂t
− κ2

∂vs

∂x
= 0, (34)

∂σ3

∂t
− κ3

∂vs

∂x
= 0. (35)

The generalised form of the constitutive equation (17) for the fluid pressure in the presence of seepage is

∂p

∂t
+ Kf

(
1 − n

n

)
∂vs

∂x
+ Kf

∂vf

∂x
= 0. (36)

System (31)–(36) is of the form (1) with

u1 = vs, u2 = vf , u3 = σ1, u4 = σ2, u5 = σ3, u6 = p. (37)

For subsequent computations it is convenient to introduce the quantities

cs =
√

κ1

(1 − n)�s
, cf =

√
Kf

�f
, (38)

which are the speeds of longitudinal waves in a dry skeleton and in the pore fluid, respectively, considered as
individual continua.

We will use the notation cd for the characteristic wave speeds in the drained case described by system
(31)–(36). The calculation of the eigenvalues of the matrix Ai j for system (31)–(36) gives two zero eigenvalues
and four eigenvalues as the roots of a second-order polynomial in c2

d:

c4
d − c2

d

(
c2

s + c2
f
(1 − n)�f + n�s

n�s

)
+ c2

s c2
f = 0. (39)

Four roots of (39) are ±cd1,±cd2, where the notations cd1, cd2 are introduced for the positive wave speeds
ordered so that cd1 > cd2. It can be shown that cd1, cd2 satisfy the inequalities

cd2 < cs < cd1, cd2 < cf < cd1. (40)

The components of the right and the left eigenvectors of the matrix Ai j associated with a nonzero eigenvalue
cd are

R2 = �s

�f

(
1 − c2

s

c2
d

)
R1, R3 = −κ1

cd
R1, R4 = −κ2

cd
R1, (41)

R5 = −κ3

cd
R1, R6 = �s

(
cd − c2

s

cd

)
R1, (42)

L2 = n(c2
d − c2

s )

(1 − n)c2
d

L1, L3 = − 1

(1 − n)�scd
L1, (43)

L4 = 0, L5 = 0, L6 = cd

�s(c2
d − c2

f )
L1, (44)
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where R1, L1 are arbitrary. From (41) to (44) we obtain

Ri Li = 2(c4
d − c2

s c2
f )

c2
d(c

2
d − c2

f )
R1L1. (45)

In the derivation of (45) and below, the ratio �f/�s is eliminated with the help of the characteristic equation
(39).

Consider a weak discontinuity propagating with the speed cd1 into a quiescent region where the stresses
and the pore pressure are homogeneous. The first two terms on the right-hand side of (4) then vanish. Taking
always the same right eigenvector on the wave front, we have dRi/dt = 0. As distinct from the undrained
case, the right-hand side of system (31)–(36) is nonzero and makes α1 nonzero as well. The calculation of the
required derivatives ∂Bi/∂u j in (4) leads to

α1 = gn(c2
d1 − c2

s )(c
2
f − nc2

d1)
2

2k(1 − n)2c2
f (c

4
d1 − c2

s c2
f )
. (46)

Calculating the derivatives ∂Ai j/∂ul for system (31)–(36) and inserting them into (5), we obtain

α2 = R1(c2
d1 − c2

s )

2(c4
d1 − c2

s c2
f )

[
β1c2

s (c
2
d1 − c2

f )

c2
d1 − c2

s
− dKf

d p

(1 − n)c4
d1

n(c2
d1 − c2

f )

]
, (47)

where

β1 = ∂κ1

∂σ1
+ κ2

κ1

∂κ1

∂σ2
+ κ3

κ1

∂κ1

∂σ3
. (48)

A propagating weak discontinuity is assumed to be induced by a change in the total stress prescribed at
the boundary x = x0 as a function of time, see (24). In addition, the boundary is taken to be impermeable,
which gives vf = vs as a second boundary condition required for the drained problem. These two boundary
conditions are consistent with the undrained case in the sense that, as the permeability tends to zero, the drained
solution tends to the undrained one.

The calculation of the initial amplitude of the discontinuity, a0, from a given boundary stress rate s0 is now
not as straightforward as in the undrained case. As distinguished from the undrained case where there is only
one characteristic with a positive slope, now we have two ingoing characteristics with positive slopes, and the
boundary rate s0 induces simultaneously two weak discontinuities which travel with the speeds cd1 and cd2.
As a consequence, the incipient wave profile at an infinitesimally small time is not linear but piecewise-linear
and consists of two straight segments. The required relation between s0 and a0 is more complicated than in
the undrained case. This relation can be found taking into account the second discontinuity propagating with
the speed cd2 and the additional boundary condition vf = vs.

Numerical calculations performed with the particular constitutive equations adopted below for the solid
skeleton and the pore fluid reveal that the critical distances obtained with the exact relation between s0 and
a0 are very close to those obtained on the assumption that the incipient wave profile is linear. For this reason,
we do not present here the lengthy derivation of the exact relation and perform further computations as if the
incipient wave profile were linear. Similar to (26), we can write

(
∂σ1

∂x

)−
−

(
∂p

∂x

)−
≈ − s0

cd1
. (49)

From the jump conditions, we have
[[
∂σ1

∂x

]]
= −

(
∂σ1

∂x

)−
= a0 R3, (50)

[[
∂p

∂x

]]
= −

(
∂p

∂x

)−
= a0 R6, (51)

where R3, R6 are given by (41), (42). Substituting (50), (51) into (49), we obtain

a0 ≈ − s0

R1�s(c2
d1 − nc2

s )
. (52)
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As follows from inequalities (40), α1 determined by (46) is positive unless c2
f = nc2

d1. These two cases,
α1 > 0 and α1 = 0, have to be considered separately.

Case α1 > 0. For α1 > 0, the critical distance is determined by (11). As the speed cd1 is taken to be positive,
xc must be positive as well. For given α1, α2, the value of xc is determined by the boundary rate s0 which is
involved in (11) through a0. The first condition for the critical distance to be positive is that the logarithm in
(11) must be negative. The second condition is that the quantity under the logarithm must be positive. The two
conditions together place a constraint on s0. Under the assumption that the properties of the skeleton and the
pore fluid in compression are such that β1 < 0 and dKf/d p > 0, it can be found using (46), (47), (52) that the
constraint on s0 is s0 < s∗

0 , where

s∗
0 = n�sg(c2

d1 − nc2
s )(c

2
f − nc2

d1)
2

k(1 − n)2c2
f

[
β1c2

s (c
2
d1 − c2

f )

c2
d1 − c2

s
− dKf

d p

(1 − n)c4
d1

n(c2
d1 − c2

f )

]−1

. (53)

Since s∗
0 < 0, the condition s0 < s∗

0 means that the boundary loading must be compressive, and the
magnitude of its rate must exceed |s∗

0 |. The latter constitutes a qualitative difference with the undrained case
where there is no restriction on the magnitude of the boundary rate for the formation of a shock front at a finite
distance. Moreover, Eq. (53) shows that the minimum required rate tends to infinity as the permeability van-
ishes. This means that, for an arbitrarily high rate, no shock front is formed if the permeability is low enough.
This result is in contradiction with the undrained case where a shock front is formed at any rate s0 < 0. This
inconsistency is explained as follows.

It can be shown that the characteristic wave speed cd1 is always larger than or equal to cu, with the equality
taking place in the exceptional case α1 = 0 discussed below. Since the permeability k appears in the right-hand
side of system (31)–(36), the characteristic speed cd1 does not depend on k. As a consequence, at any finite
permeability, however low, a weak discontinuity propagates with the speed cd1 and, in a time t , covers the
distance cd1t , while the corresponding discontinuity in the undrained case propagates with the speed cu and
covers the distance cut which is shorter than cd1t . The wave profile in the drained case is such that, as k tends
to zero, the leading part of the profile between cut and cd1t becomes vanishingly small in magnitude. Thus,
for low permeability in the drained case, the evolution equation for a weak discontinuity becomes misleading:
this equation describes a weak discontinuity which belongs to the vanishing part of the wave profile rather
than describing the part which propagates with cu and is actually of interest.

Case α1 = 0. This exceptional case corresponds to the so-called dynamic compatibility [12–14] which is
obtained if the parameters of the medium are such that

n�fκ1 = (1 − n)(�s − �f)Kf . (54)

Condition (54) leads to the equalities

c2
u = c2

d1 = 1

n
c2

f . (55)

Note also that the approximate relation (52) becomes exact in this case.
If (55) holds, α1 given by (46) is zero, and the critical distance is determined by (10). It can be shown that

the expression for the critical distance in the case of the dynamic compatibility reduces to (30) and is thus the
same as in the undrained case, with no condition imposed on the magnitude of the boundary rate s0.

5 Critical distances in a granular solid

In this Section we present numerical examples of critical distances in a saturated granular solid with particular
constitutive behaviour of the solid skeleton and the pore fluid.

Assume that the initial stress state is hydrostatic, the constitutive behaviour of the skeleton in the vicinity
of the initial state is isotropic, and the stiffness moduli depend on the mean effective pressure. For an isotro-
pic solid with two independent stiffness moduli, the coefficients κ2, κ3 involved in the constitutive equations
(14)–(16), (33)–(35) can be expressed through the coefficient κ1 and the Poisson ratio ν:

κ2 = κ3 = ν

1 − ν
κ1. (56)
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For granular solids such as sand or soil, the dependence of the stiffness on the confining pressure may be taken
in the form of a power law [15–17]:

κ1(σ ) = κ10

(
σ

σ0

)m

, (57)

where σ = (σ1 + σ2 + σ3)/3 is the mean effective stress, κ10 is a reference value of κ1 at σ = σ0, and m is an
exponent lying typically in the range of 0.5–0.6.

The Poisson ratio ν for granular solids is an indeterminate quantity which depends on many factors, but
fortunately its influence on the critical distance is insignificant. This can be shown by calculating β1 in (48)
with the use of (56) and (57):

β1 = mκ1(1 + ν)

3 σ(1 − ν)
. (58)

The variation of ν, for instance, between 0.1 and 0.4 changes the ratio (1 + ν)/(1 − ν) in (58) at most by a
factor of 2. The same ratio appears in (23) when calculating β.

With the use of (57), the characteristic wave speed in a dry skeleton, cs, given by (38) can be written as

cs(σ ) = cs0

(
σ

σ0

)m/2

, (59)

where cs0 is the value of cs at σ = σ0.
The pore fluid is assumed to consist of water with a small amount of free gas. The compressibility of

such a fluid is strongly pressure dependent and differs substantially from the compressibility of pure water.
Neglecting the surface tension between the liquid and the gaseous phases and taking the pressure in the liquid
phase to be equal to the pressure in the gas, it can be shown (see, e.g. [18] or [17, Section 7.5.1]) that the
compression modulus of a water–gas mixture is

Kf = (
Vw + Vg

) (
Vw

Kw
+ Vg

Kg

)−1

=
(

Sr

Kw
+ 1 − Sr

Kg

)−1

, (60)

where Vw and Vg are the volumes of the water and the gas in the mixture, Kw and Kg are the compression
moduli of pure water and the gas, and Sr = Vw/(Vw + Vg) is the degree of saturation.

For an ideal gas, pgV γ
g = const, where pg is the absolute pressure of the gas (including the atmospheric

pressure), γ = 1 for isothermal processes, and γ = 1.4 for adiabatic processes for air. This gives Kg = γ pg.
As follows from (60), even a very small volume fraction of free gas drastically reduces the compression

modulus of the fluid. For instance, the presence of 0.5 volume percent of gas with Kg = 300 kPa reduces the
compression modulus of the water–gas mixture by a factor of 40 as compared with the modulus of pure water
Kw = 2.2 GPa.

The calculation of the critical distance requires, besides Kf , knowledge of dKf/d p. The quantities Vw, Vg
and Kg in (60) are functions of p. Differentiating (60) with respect to p, we obtain after simple computations

dKf

d p
= K 2

f (1 − Sr )
[
Sr (Kw − Kg)

2 + γ K 2
w

]
K 2

w K 2
g

≈ K 2
f (1 − Sr )(Sr + γ )

K 2
g

, (61)

where the last approximate expression is justified if Kg � Kw.
The parameters of the medium used in the calculations are given in Table 1. The wave speeds for this set

of parameters are shown in Fig. 1 as functions of the gas content.
Figure 2 shows the quantity s∗

0 determined by (53). Recall that |s∗
0 | gives the minimum required magni-

tude of the loading rate for the formation of a shock front. The value of s∗
0 is inversely proportional to the

permeability k and tends to minus infinity as the permeability vanishes, except for the case of the dynamic

Table 1 Parameters used in the calculations

cs0 (m/s) σ0 (kPa) σ (kPa) ν m Kg (kPa) γ Kw (GPa) n �s (kg/m3) �f (kg/m3)

400 −200 −200 0.3 0.5 300 1.4 2.2 0.38 2,650 1,000
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Fig. 1 Characteristic wave speeds as functions of the gas content
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Fig. 2 Quantity s∗
0 calculated with (53) for k = 10−3 m/s

compatibility where s∗
0 is always zero. As seen from Fig. 2, the dynamic compatibility in the present example

occurs at a gas content of 3 × 10−3. As the gas content tends to zero, s∗
0 approaches a certain value. A feature

of the asymptotic behaviour of s∗
0 is that the approach is very slow: s∗

0 continues to change markedly down
to a gas content of 10−8. The asymptotic value of s∗

0 is of the order of −106 MPa/s and is much larger in
magnitude than the values shown in Fig. 2.

Similarly to s∗
0 , the quantities β, β1 given by (23), (48) also exhibit slow asymptotic convergence to their

limiting values as the gas content tends to zero. A consequence of the slow convergence of β, β1 and s∗
0 is

the substantial change in the critical distance in the range of the gas content between 10−8 and 10−4. This
is illustrated in Figs. 3, 4 and 5 which show the critical distances for drained and undrained behaviour. The
results are presented for the rate of boundary loading s0 = −104 MPa/s relevant to blast loading.

Discuss first the undrained case for which the critical distance in Figs. 3, 4 and 5 is shown by the dashed
line. Based on the shape of the curve, two characteristic ranges of the gas content can be distinguished. The
first range covers the gas content between 10−4 and 10−1 and, in the context of soil mechanics, represents all
physically meaningful values of the gas content for saturated soils. The critical distance in this range depends
only slightly on the gas content and changes by a factor of two. This property is favourable for the theoretical
prediction of the critical distance as it does not require exact knowledge of the degree of saturation within
these specific limits. In the second range of the gas content from 10−4 down to 10−8, the critical distance
changes by three orders of magnitude before it reaches the asymptotic value. The extremely low values of the



Transition from acceleration waves to strong discontinuities 191

 0.01

 0.1

 1

 10

 100

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

[m
]

Fig. 3 Critical distances as functions of the gas content for the rate of boundary loading s0 = −104 MPa/s. Solid line drained
behaviour with k = 10−5 m/s; dashed line undrained behaviour
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Fig. 4 The same as in Fig. 3 for k = 10−4 m/s
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Fig. 5 The same as in Figs. 3 and 4 for k = 10−3 m/s
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gas content in the second range raise the questions of the physical feasibility of such small amounts of free
gas in the pore fluid and the validity of Eqs. (60) and (61) in this range. However, even if such a small amount
of gas can exist in a real solid, it cannot be homogeneous to give a definite value of the critical distance. From
a practical point of view, this means the indeterminacy of the critical distance in the second range: if the gas
content in a saturated solid is known to be lower than 10−4, the critical distance will lie in a wide range (in the
present example: between 0.1 and 100 m) and cannot be reliably predicted.

If the relative motion between the solid and the fluid phases is taken into account, both the critical distance
and the minimum loading rate s∗

0 depend on the permeability of the skeleton. The critical distance at low
permeability is finite only in the vicinity of a certain value of the gas content corresponding to the dynamic
compatibility (3 × 10−3 in the present example), see Fig. 3. As the permeability vanishes, the range of gas
content where the critical distance is finite shrinks to zero. The reason why the drained model yields false
results at low permeability has been discussed above: this model describes the discontinuity at the leading
point of the front propagating with the speed cd1. This part of the wave profile becomes vanishingly small
in magnitude at low permeability, while the wave front as such propagates with the speed cu which is less
than cd1.

As the permeability increases, the critical distance in the range of the gas content between 10−4 and 10−1

becomes close to the critical distance in the undrained model, see Figs. 4 and 5. Thus, in this range of the
gas content, the undrained model may be used to calculate critical distances for both undrained and drained
behaviour. The indeterminacy of the critical distance for the gas content below 10−4 remains valid in the
drained case, with the difference that the upper limit of xc may now be infinite if the applied loading rate s0 is
lower in magnitude than s∗

0 .

6 Concluding remarks

The analysis of weak discontinuities in a fluid-saturated granular solid with pressure-dependent stiffness reveals
that the evolution equation in the drained model with low permeability turns out to be misleading from the
viewpoint of applications as it gives the correct critical distances only in the case of the dynamic compatibility.
In general, the correct results are provided only by the undrained model. For high permeability, the critical
distances in the drained model are close to those obtained with the undrained model, so that the latter may be
used to calculate the critical distance for any value of the permeability.

Numerical calculations performed with particular constitutive relations show that, as the gas content varies
between 10−4 and 10−1, the critical distances vary insignificantly and differ by no more than a factor of two.
In contrast, the critical distances for the gas content from 10−4 down to full saturation may differ by three
orders of magnitude or more. In relation to real solids, this means that the critical distance is indeterminate if
the gas content is below 10−4.
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