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Abstract Transfer matrix solutions are presented in this paper to study the axisymmetric and non-
axisymmetric consolidation of a multilayered soil system under an arbitrary loading. Starting with the govern-
ing equations for consolidation problems of saturated soils, the relationship of displacements, stresses, excess
pore water pressure, and flux between the points at the depth z, and on the ground surface (z = 0) is established
in a transformed domain by introducing the displacement functions and using the integral transform technique.
Then the transfer matrix method is used with the boundary conditions to obtain the analytical solutions in the
transformed domain for the multilayered soil system. Numerical inversion of the integral transform of these
analytical solutions results in the solutions for the actual problems. The numerical results for axisymmetric and
non-axisymmetric Biot’s consolidation problems of a single layer and a multi-layered soil system are obtained
and compared with existing results by others.

1 Introduction

Since Biot first developed the theory of three-dimensional consolidation in 1941 [1], the displacement function
method has been regarded as one of the most successful techniques for solving Biot’s consolidation problem.
By combining with the linear transform technique, McNamee and Gibson [2] proposed two displacement
functions to solve the stresses and excess pore pressure in porous elastic media, and later they used these
displacement functions to solve plane strain and axisymmetric consolidation problems of a semi-infinite
clay stratum [3]. Schiffman and Fungaroli [4] extended the displacement function formulation to non-
axisymmetric problems to obtain the analytical solutions for the consolidation of a semi-infinite medium
subjected to tangential surface loading. Gibson et al. [5] studied plane strain and axisymmetric consolidation
problems of a clay layer on a smooth impervious base using two displacement functions proposed by McNamee
and Gibson [2]. Verruijt [6] pointed out that the formulation of these displacement functions was similar to
Biot’s original formulation [7], and he extended these displacement functions to a more general case with a
compressible pore fluid. Vardoulakis and Harnpattanapanich [8] studied the layered-soil consolidation prob-
lems by means of the appropriate displacement functions and Laplace–Fourier transformation. In addition to
the displacement function method mentioned above, the finite layer method [9–13], the finite element method
[14], and the boundary element method [15] have been used to solve consolidation problems of poroelastic
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soils. Furthermore, other analytical techniques have been developed to solve Biot’s consolidation problems, for
example those by Yue and Selvadurai [16], Pan [17], Wang and Fang [18,19], Ai and Han [20], and Ai et al. [21].

The transfer matrix method is one of the most efficient methods to solve elastostatic problems in multi-
layered materials because the size of the final equations does not depend on the number of multi-layered
materials [22,23]. In addition, this method is accurate and convenient for computation. In this study, the
transfer matrix method is used to solve the consolidation problems of the multilayered soils subjected to both
axisymmetric and non-axisymmetric loads, which are prescribed either on the ground surface or within the
multilayered soils. The transfer matrices in this paper are deduced using the displacement functions proposed by
McNamee and Gibson [2] for the axisymmetric consolidation problem and by Schiffman and Fungaroli [4]
for the non-axisymmetric consolidation problem.

2 Governing differential equations

The governing differential equations for the non-axisymmetric consolidation problem are

∇2ur + (2η − 1)
∂e

∂r
− 1

r

(
2

r

∂uθ

∂θ
+ ur

r

)
+ 1

G

∂σ

∂r
= 0, (1a)

∇2uθ + (2η − 1)
∂e

r∂θ
− 1

r2

(
uθ − 2

∂ur

∂θ

)
+ 1

G

∂σ

r∂θ
= 0, (1b)

∇2uz + (2η − 1)
∂e

∂z
+ 1

G

∂σ

∂z
= 0, (1c)

C∇2e = ∂e

∂t
, (1d)

where ur , uθ and uz are the displacements in r, θ and z directions, respectively; σ is the excess pore pressure;
∇2 = ∂2
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∂z is the dilatation; η = 1−ν
1−2ν

, C is the coefficient of consolidation, which can be expressed as

C = k
γw

M; k is the coefficient of permeability, γw is the unit weight of water, and M is the elastic modulus

of the soil, i.e., M = λ + 2G = E(1−ν)
(1+ν)(1−2ν)

, λ = νE
(1+ν)(1−2ν)

; E, G and v are Young’s modulus, the shear
modulus, and Poisson’s ratio of the soil, respectively.

If all variables are independent of the coordinate θ , then the governing differential equations for the non-
axisymmetric consolidation problem can be degenerated to the axisymmetric one as follows:
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in which ∇2 = ∂2

∂r2 + 1
r

∂
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∂z2 and e = ∂ur
∂r + ur

r + ∂uz
∂z .

3 Transfer matrix solutions for consolidation in a single soil layer

3.1 Transfer matrix solution for an axisymmetric problem

For the axisymmetric consolidation problem, two displacement functions E and S proposed by McNamee and
Gibson [2,3] are adopted here. The stresses, displacements, excess pore pressure, and flux in the z direction
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can be expressed as follows by applying these two functions:
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in which σr z is the shear stress, σz is the normal stress acting on the plane normal to the z axes, and Q is the
flux in the z direction.

The differential equations governing E and S are

C∇4 E = ∇2
(

∂ E

∂t

)
, (4a)

∇2S = 0. (4b)

To solve the governing equations, the Laplace–Hankel transforms of E and S [24] can be used:

E(r, z, t) = 1

2π i
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where Ē(ξ, z, s) and S̄(ξ, z, s) are the corresponding variables of E(r, z, t) and S(r, z, t) in the Laplace–Hankel
transformed domain, respectively, and the kernel is K (r, ξ) = ξ J0(rξ).

Using the Laplace–Hankel transform and assuming zero initial dilatation e everywhere, the partial differ-
ential equations (4) can be re-written in the following ordinary differential equations:

(
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where q2 = ξ2 + s
C . The solutions for the Eqs. (6a)–(6b) can be expressed as

Ē = A1shξ z + A2chξ z + A3shqz + A4chqz, (7a)

S̄ = A5shξ z + A6chξ z, (7b)
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where A1. . .A6 are functions of ξ and q . The Laplace–Hankel transform of Eqs. (3a) to (3f) yields
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where ūr is the corresponding variable of ur in the transformed domain. Other variables in the above equation
are expressed in the same manner.

Substitution of Eq. (7) into Eqs. (8a) to (8f) yields

ūr = (A1 − z A5)ξshξ z + (A2 − z A6)ξchξ z + A3ξshqz + A4ξchqz, (9a)

ūz = (A5ξ z − A1ξ − A6)chξ z + (A6ξ z − A2ξ − A5)shξ z − q A3chqz − q A4shqz, (9b)

σ̄ = 2G[−η(q2 − ξ2)A3shqz − η(q2 − ξ2)A4chqz + ξ A5chξ z + ξ A6shξ z], (9c)

σ̄r z = 2G[ξ2(z A5 − A1)chξ z + ξ2(z A6 − A2)shξ z − ξq A3chqz − ξq A4shqz], (9d)

σ̄z = 2Gξ [(ξ A1 + A6 − ξ z A5)shξ z + (ξ A2 + A5 − ξ z A6)chξ z + A3ξshqz + A4ξchqz], (9e)

Q̄ = 2Gk′[ξ2 A5shξ z + ξ2 A6chξ z − ηq(q2 − ξ2)A3chqz − ηq(q2 − ξ2)A4shqz], (9f)

where k′ = k
γw

.

Setting z = 0 in Eqs. (9a) to (9f) results in

ūr (0) = A2ξ + A4ξ, (10a)

ūz(0) = −A1ξ − A3q − A6, (10b)

σ̄ (0) = 2G[A5ξ − ηA4(q
2 − ξ2)], (10c)

σ̄r z(0) = −2G(ξ2 A1 + ξq A3), (10d)

σ̄z(0) = 2G(ξ2 A2 + ξ2 A4 + ξ A5), (10e)

Q̄(0) = 2Gk′[ξ2 A6 − ηq A3(q
2 − ξ2)], (10f)

in which ūr (0) is the value of ūr at z = 0. Other variables in the above equation are expressed in the same man-
ner. Equation (10) is a linear algebraic equation system for the six variables A1. . .A6, which can be obtained
by solving Eq. (10).

Substituting A1. . .A6 into Eq. (8) results in the transfer matrix solution for the axisymmetric consolidation
problem of a single soil layer as follows:

B̄ (ξ, z, s) = 
(ξ, z, s)B̄(ξ, 0, s), (11)

where B̄ (ξ, z, s) = [ūr , ūz, σ̄ , σ̄r z, σ̄z, Q̄]T , 
(ξ, z, s) is the transfer matrix of 6 × 6, which establishes the
relationship of [ūr , ūz, σ̄ , σ̄r z, σ̄z, Q̄]T between the ground surface (z = 0) and the depth z in the transformed
domain, and its elements are provided in Appendix A.
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Equation (11) can also be written as

B̄(ξ, 0, s) = 
(ξ,−z, s)B̄(ξ, z, s). (12)

3.2 Transfer matrix solution for the non-axisymmetric problem

Three displacement functions E , S, and R proposed by Schiffman and Fungaroli [4] are required for the
non-axisymmetric consolidation problem. The stresses, displacements, excess pore pressure, and flux in the z
direction related to these three functions can be expressed as follows:
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The differential equations governing E, S, and R are:

C∇4 E = ∇2
(

∂ E
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)
, (14a)

∇2S = 0, (14b)

∇2 R = 0. (14c)

To solve these governing differential equations, intermediate variables, uv, uh, σvz , and σhz , are introduced
here:
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So Eqs. (13a)–(13h) can be expressed by two sets of equations as follows:
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The displacements, stresses, excess pore pressure, and flux can be expressed in the Fourier expansions
suggested by Muki [25] for elastostatics in the cylindrical coordinate system, i.e.,
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When m = 0, all the variables mentioned in Eq. (17) are independent of the coordinate θ , and the non-axi-
symmetric problem can be degenerated to an axisymmetric one.

Similarly, the three displacement functions can be expressed as follows:

E =
∞∑
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Em cos mθ, S =
∞∑

m=0

Sm cos mθ, R =
∞∑
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From Eq. (15), we have
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Substitution of Eqs. (17), (18) and (19) into Eqs. (16a) and (16b) yields
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where ∇2
m = ( ∂2

∂r2 + 1
r

∂
∂r − m2 1

r2 ) is an operator. To solve the governing equations, the Laplace–Hankel
transform of Em, Sm and Rm can be taken as follows [24]:

Em(r, z, t) = 1

2π i
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Ēm(ξ, z, s)K (r, ξ)est dξds,
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2π i
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0

R̄m(ξ, z, s)K (r, ξ)est dξds,

where Ēm(ξ, z, s), S̄m(ξ, z, s) and R̄m(ξ, z, s) are the corresponding variables of Em(r, z, t), Sm(r, z, t) and
Rm(r, z, t) in the transformed domain, respectively, and the kernel is K (r, ξ) = ξ Jm(rξ).

Using the Laplace–Hankel transform and assuming zero initial dilatation e everywhere, Eq. (14) can be
re-written into the following ordinary differential equations:

(
d2

dz2 − ξ2
)(

d2

dz2 − q2
)

Ēm = 0, (22a)

(
d2

dz2 − ξ2
)

S̄m = 0, (22b)

(
d2

dz2 − ξ2
)

R̄m = 0, (22c)

where q2 = ξ2 + s
C . The solutions for the above equations can be expressed as follows:

Ēm = A1shξ z + A2chξ z + A3shqz + A4chqz, (23a)

S̄m = A5shξ z + A6chξ z, (23b)

R̄m = A7shξ z + A8chξ z, (23c)

where A1. . .A8 are functions of ξ and q .
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Taking the Laplace–Hankel transform of Eqs. (20a) and (20b) yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūvm = −ξ2[(ξ A1 − z A5)chξ z + (ξ A2 − z A6)shξ z + q A3chqz + q A4shqz],
ūzm = (ξ2 A1 − ξ z A6 + A5)shξ z + (ξ2 A2 − ξ z A5 + A6)chξ z + q2 A3shqz + q2 A4chqz,

σ̄m = 2G[ξ A5chξ z + ξ A6shξ z − η(q2 − ξ2)(q A3chqz + q A4shqz)],
σ̄zm = 2Gξ [(A1ξ

2 − A6ξ z + A5)chξ z + (A2ξ
2 − A5ξ z + A6)shξ z + A3ξqchqz + A4ξqshqz],

σ̄vzm = −2Gξ2[(ξ2 A1 − ξ z A6)shξ z + (ξ2 A2 − ξ z A5)chξ z + q2 A3shqz + q2 A4chqz],
Q̄m = 2Gk′[(ξ2 A5shξ z + ξ2 A6chξ z) − η(q2 − ξ2)(q2 A3shqz + q2 A4chqz)],

(24a)

and {
ūhm = 2ξ2(A7shξ z + A8chξ z),
σ̄hzm = 2Gξ3(A7chξ z + A8shξ z).

(24b)

Substitution of z = 0 into Eqs. (24a) to (24b) results in
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ūvm(0) = −ξ3 A1 − ξ2q A3,

ūzm(0) = ξ2 A2 + q2 A4 + A6,

σ̄m(0) = −2Gη(q2 − ξ2)q A3 + 2Gξ A5,

σ̄zm(0) = 2Gξ3 A1 + 2Gξ2q A3 + 2Gξ A5,

σ̄vzm(0) = −2Gξ4 A2 − 2Gξ2q2 A4,

Q̄m(0) = −2Gk′η(q2 − ξ2)q2 A4 + 2Gk′ξ2 A6,

(25a)

and {
ūhm(0) = 2ξ2 A8,

σ̄hzm(0) = 2Gξ3 A7.
(25b)

Solving Eqs. (25a) and (25b) for A1. . .A8 and then substituting A1. . .A8 into Eqs. (24a) and (24b) yields

D̄ (ξ, z, s) = P(ξ, z, s)D̄(ξ, 0, s), (26a)

F̄ (ξ, z, s) = L(ξ, z, s)F̄(ξ, 0, s), (26b)

where D̄ (ξ, z, s) = [ūvm, ūzm, σ̄m, σ̄zm, σ̄vzm, Q̄m]T and F̄ (ξ, z, s) = [ūhm, σ̄hzm]T .P(ξ, z, s) is a transfer
matrix of 6 × 6, which establishes the relationship of [ūvm, ūzm, σ̄m, σ̄zm, σ̄vzm, Q̄m]T between the ground
surface (z = 0) and the depth z in the transformed domain. L(ξ, z, s) is a transfer matrix of 2 × 2, which
establishes the relationship of [ūhm, σ̄hzm]T between on the ground surface (z = 0) and at the depth z in the
transformed domain. The elements of P(ξ, z, s) and L(ξ, z, s) are provided in Appendix B.

Equations (26a) and (26b) can also be re-written as

D̄(ξ, 0, s) = P(ξ, −z, s)D̄(ξ, z, s), (27a)

F̄ (ξ, 0, s) = L(ξ, −z, s)F̄(ξ, z, s). (27b)

4 Transfer matrix solutions for the consolidation of multi-layered soils

4.1 Solutions for the axisymmetric problem

Based on the transfer matrix solutions for a single soil layer, the solutions for the consolidation of multi-
layered soils can also be obtained using the same transfer matrix method. As shown in Fig. 1, an axisymmetric
normal load q(r, Hm1, t) and an axisymmetric tangential load p(r, Hm1, t) in the interior of the mth layer are
considered, in which Hm1 denotes the distance from the loading plane to the surface of the layered soils. It
is assumed that the ground surface of the soil system is permeable; therefore, the boundary conditions of the
surface are

σz(r, 0, t) = 0, σr z(r, 0, t) = 0, σ (r, 0, t) = 0. (28)



Transfer matrix solutions to axisymmetric and non-axisymmetric consolidation of multilayered soils 163

r

x

y
θ

z

∆H1

∆H2

M

∆Hm1

∆Hm2

∆Hn

M

o

Fig. 1 A multilayered soil system in the cylindrical coordinates

Assuming a fixed and permeable bottom of the soil system, the boundary conditions of the bottom are

ur (r, Hn, t) = 0, uz(r, Hn, t) = 0, σ (r, Hn, t) = 0. (29)

However, if a fixed and impermeable bottom of the soil system is assumed, the boundary conditions of the
bottom are

ur (r, Hn, t) = 0, uz(r, Hn, t) = 0, Q(r, Hn, t) = 0. (30)

Considering the continuity of the interface between two adjacent layers and at natural interfaces, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ur (r, H+
i , t) = ur (r, H−

i , t),

uz(r, H+
i , t) = uz(r, H−

i , t),

σ (r, H+
i , t) = σz(r, H−

i , t),

σr z(r, H+
i , t) = σr z(r, H−

i , t),

σz(r, H+
i , t) = σz(r, H−

i , t),

Q(r, H+
i , t) = Q(r, H−

i , t),

(31)

At the interface of loading, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ur (r, H+
m1, t) = ur (r, H−

m1, t),

uz(r, H+
m1, t) = uz(r, H−

m1, t),

σ (r, H+
m1, t) = σ(r, H−

m1, t),

σr z(r, H+
m1, t) = σr z(r, H−

m1, t) − p(r, H−
m1, t),

σz(r, H+
m1, t) = σz(r, H−

m1, t) − q(r, H−
m1, t),

Q(r, H+
m1, t) = Q(r, H−

m1, t),

(32)

where ur (r, H+
i , t) stands for the variable of the (i +1)th layer when z = Hi , while ur (r, H−

i , t) is the variable
of ith layer when z = Hi . Other variables are expressed in the same manner.

Taking the Laplace–Hankel transform of the boundary conditions and the continuity conditions above, then
applying Eq. (11) to the soil system from the last layer to the first layer sequentially, we obtain

B̄(ξ, Hn, s) = � · B̄(ξ, 0, s) − � · , (33)
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where

� = 
(ξ,�Hn, s)
(ξ,�Hn−1, s) · · · 
(ξ,�H1, s),

� = 
(ξ,�Hn, s)
(ξ,�Hn−1, s) · · · 
(ξ,�Hm2, s),

 = [
0 0 0 p̄(ξ, Hm1, s) q̄(ξ, Hm1, s) 0

]T
,

q̄(ξ, Hm1, s) =
∞∫

0

∞∫
0

q(r, Hm1, t)r J0(ξr)e−st dr dt,

p̄(ξ, Hm1, s) =
∞∫

0

∞∫
0

p(r, Hm1, t)r J1(ξr)e−st dr dt,

in which �Hm1 = Hm1 − Hm−1 and �Hm2 = Hm − Hm1. Obviously, m = 1 and �Hm1 = 0 represents a
special case, in which the load acts on the ground surface.

From Eq. (33), B̄(ξ, 0, s) and B̄(ξ, Hn, s) can be obtained. For a given depth z in the i th layer above the
horizontal plane where the load acts, the variables in the transformed domain can be obtained through the
following relationship:

B̄(ξ, z, s) = � · B̄(ξ, 0, s), (34)

where � = 
(ξ, z − Hi−1, s)
(ξ,�Hi−1, s) · · · 
(ξ,�H1, s).
For a given depth z in the i th layer below the horizontal plane where the load acts, the variables in the

transformed domain can be obtained through the following relationship:

B̄(ξ, z, s) = � · B̄(ξ, Hn, s), (35)

where � = 
(ξ, z − Hi , s)
(ξ,−�Hi+1, s) · · · 
(ξ,−�Hn, s).
Equations (34) and (35) are the solutions for the consolidation problem of multi-layered soils in the trans-

formed domain. By taking the inversion of the Laplace–Hankel transform to B̄(ξ, z, s), the solutions for
stresses, displacements, excess pore pressure, and flux in the multi-layered soil subjected to axisymmetric
loads can be obtained.

4.2 Solutions for the non-axisymmetric problem

Similarly, it is assumed that a non-axisymmetric load is applied in the interior of the mth layer of an n-layered
soil. The non-axisymmetric load can be decomposed into three componentsp(r, θ, Hm1, t), f (r, θ, Hm1, t),
and q(r, θ, Hm1, t) along the r, θ and z directions, respectively, and they can be rewritten in the following form
in terms of the Fourier expansion suggested by Muki [25]:

p(r, θ, Hm1, t) =
∞∑

m= 0

pm(r, Hm1, t) cos mθ, (36a)

f (r, θ, Hm1, t) =
∞∑

m= 0

fm(r, Hm1, t) sin mθ, (36b)

q(r, θ, Hm1, t) =
∞∑

m= 0

qm(r, Hm1, t) cos mθ. (36c)

Similarly, the boundary conditions of the ground surface can be obtained by assuming a permeable surface
of the soil system:

σz(r, θ, 0, t) = σr z(r, θ, 0, t) = σθ z(r, θ, 0, t) = σ(r, θ, 0, t) = 0. (37)

For a fixed and permeable bottom of the soil system, the boundary condition is

ur (r, θ, Hn, t) = uθ (r, θ, Hn, t) = uz(r, θ, Hn, t) = σ(r, θ, Hn, t) = 0. (38)
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For a fixed but impermeable bottom, however, the boundary condition is

ur (r, θ, Hn, t) = uθ (r, θ, Hn, t) = uz(r, θ, Hn, t) = Q(r, θ, Hn, t) = 0. (39)

The following equations can be used to describe the fully bonded interface conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ur (r, θ, H+
i , t) = ur (r, θ, H−

i , t),

uθ (r, θ, H+
i , t) = uθ (r, θ, H−

i , t),

uz(r, θ, H+
i , t) = uz(r, θ, H−

i , t),

σz(r, θ, H+
i , t) = σz(r, θ, H−

i , t),

σr z(r, θ, H+
i , t) = σr z(r, θ, H−

i , t),

σθ z(r, θ, H+
i , t) = σθ z(r, θ, H−

i , t),

σ (r, θ, H+
i , t) = σ(r, θ, H−

i , t),

Q(r, θ, H+
i , t) = Q(r, θ, H−

i , t).

(40)

At the interface of loading, the interface conditions are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ur (r, θ, H+
m1, t) = ur (r, θ, H−

m1, t),

uθ (r, θ, H+
m1, t) = uθ (r, θ, H−

m1, t),

uz(r, θ, H+
m1, t) = uz(r, θ, H−

m1, t),

σz(r, θ, H+
m1, t) = σz(r, θ, H−

m1, t) − q(r, θ, H−
m1, t),

σr z(r, θ, H+
m1, t) = σr z(r, θ, H−

m1, t) − p(r, θ, H−
m1, t),

σθ z(r, θ, H+
m1, t) = σθ z(r, θ, H−

m1, t) − f (r, θ, H−
m1, t),

σ (r, θ, H+
m1, t) = σ(r, θ, H−

m1, t),

Q(r, θ, H+
m1, t) = Q(r, θ, H−

m1, t).

(41)

Applying Eq. (26) to all the soil layers and utilizing the Laplace–Hankel transform of Eqs. (40) and (41),
the following equations can be obtained:

D̄(ξ, Hn, s) =
∏

1
·D̄(ξ, 0, s) − �1 · 1, (42a)

F̄(ξ, Hn, s) =
∏

2
·F̄(ξ, 0, s) − �2 · 2, (42b)

where

�1 = P(ξ, �Hn, s)P(ξ, �Hn−1, s) · · · P(ξ, �H1, s),

�1 = P(ξ, �Hn, s)P(ξ, �Hn−1, s) · · · P(ξ, �Hm2, s),

1 = [
0 0 0 q̄m(ξ, Hm1, s) M̄m(ξ, Hm1, s) 0

]T
,

�2 = L(ξ, �Hn, s)L(ξ, �Hn−1, s) · · · L(ξ, �H1, s),

�2 = L(ξ, �Hn, s)L(ξ, �Hn−1, s) · · · L(ξ, �Hm2, s),

2 = [
0 N̄m(ξ, Hm1, s)

]T
,
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M̄m(ξ, Hm1, s) =
∞∫

0

∞∫
0

[
pm(r, Hm1, t)

r
+ ∂pm(r, Hm1, t)

∂r
+ m fm(r, Hm1, t)

r

]
r Jm(ξr)e−st dr dt,

N̄m(ξ, Hm1, s) =
∞∫

0

∞∫
0

[
− fm(r, Hm1, t)

r
− ∂ fm(r, Hm1, t)

∂r
− mpm(r, Hm1, t)

r

]
r Jm(ξr)e−st dr dt,

q̄m(ξ, Hm1, s) =
∞∫

0

∞∫
0

[qm(r, Hm1, t)]r Jm(ξr)e−st dr dt.

From Eqs. (42a) and (42b), D̄(ξ, 0, s), D̄(ξ, Hn, s), F̄(ξ, 0, s), F̄(ξ, Hn, s) can be obtained analytically.
For a given depth z in the i th layer above the horizontal plane where the load is applied, the variables in the
transformed domain can be obtained through the following relationships:

D̄(ξ, z, s) = �1 · D̄(ξ, 0, s), (43a)

F̄(ξ, z, s) = �2 · F̄(ξ, 0, s), (43b)

in which

�1 = P(ξ, z − Hi−1, s)P(ξ, �Hi−1, s) · · · P(ξ, �H1, s),

�2 = L(ξ, z − Hi−1, s)L(ξ, �Hi−1, s) · · · L(ξ, �H1, s).

Similarly, for a given depth z in the i th layer below the horizontal plane where the load is applied, the
variables in the transformed domain can be obtained through the following relationships:

D̄(ξ, z, s) = �1 · D̄(ξ, Hn, s), (44a)

F̄(ξ, z, s) = �2 · F̄(ξ, Hn, s), (44b)

where

�1 = P(ξ, z − Hi , s)P(ξ, −�Hi+1, s) · · · P(ξ, −�Hn, s),

�2 = L(ξ, z − Hi , s)L(ξ, −�Hi+1, s) · · · L(ξ, −�Hn, s).

Equations (43a), (43b), (44a) and (44b) are the solutions for the consolidation problem of multi-layered
soils in the transformed domain. By taking the inversion of the Laplace–Hankel transform to D̄(ξ, z, s) and
F̄(ξ, z, s), the solution for stresses, displacements, excess pore pressure, and flux in the multi-layered soil
subjected to non-axisymmetric loads can be obtained.

5 Numerical results

To obtain the solutions for the actual problems, we can take the inversion of the Laplace–Hankel transform to
the solutions in the transformed domain. As presented in the literature [9–11], the numerical inversion of the
Laplace transform was carried out using the method proposed by Talbot [26]. The Talbot method was also used
for the Laplace inversion in this study. As for the implementation of the inversion of the Hankel transform, the
technique suggested by Ai et al. [23] was adopted.

The solutions in the transformed domain expressed in the Appendices A and B include the exponential
functions, which increase exponentially when the depth z increases. Therefore, they can easily lead to ill-con-
ditioned matrices and overflow of calculations. In this study, this difficulty was overcome by taking the scheme
proposed by Ai et al. [23].

To verify the feasibility and the accuracy of the method proposed in this paper, the calculated results are
compared against the existing results provided by Booker and Small [10] using the finite layer method. The
parameters and results of the single soil layer subjected to a uniform circular vertical surface load are shown
in Fig. 2. It is shown that the results from this study are in good agreement with the existing results obtained
by the finite layer method.
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Fig. 4 Vertical displacement of the five-layered soil system under axisymmetric loading

The results for the consolidation of the semi-infinite soil obtained by Schiffman and Fungaroli [4] are
compared with those obtained using the solution from this study in Fig. 3. The comparison shows that the
results from this study are in good agreement with those by Schiffman and Fungaroli [4]. Therefore, the theory
and the numerical method proposed in this study are proved appropriate and accurate.

In practice, the ground often comprises multi-layered soils with different types and properties. A
five-layered soil profile was chosen in this study and is shown schematically in Figs. 4 and 5. It is assumed
that the ground surface of the soil system is permeable and the bottom of the model is fixed and impermeable.
The soil layers have the following relationships for the shear modulus, the thickness, and the permeability:
G1 : G2 : G3 : G4 : G5 = G0 : 2G0 : 4G0 : 2G0 : G0; h1 : h2 : h3 : h4 : h5 = 1 : 2 : 4 : 1 : 2; k1 : k2 : k3 :
k4 : k5 = k0 : 4k0 : 2k0 : k0 : 2k0. The total thickness of five-layered soils is h = h1 + h2 + h3 + h4 + h5.
Poisson’s ratio of all soil layers is taken as 0.3.

Figure 4 shows the displacement versus the time factor τ in the z direction at the point (r = 0, z = 0) of a
five-layered soil under a surface vertical load. Figure 5 shows that the pore water pressure in the five-layered
soil at the distance to the centerline of r = a under a surface tangential load, changing with the depth z and
the time factor, τ . The calculated vertical displacement and the excess pore water pressure for this five-layered
soil system under axisymmetric and non-axisymmetric loadings are shown in Figs. 4 and 5, respectively.
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Fig. 5 Excess pore water pressure of the five-layered soil system under non-axisymmetric loading. a τ = 0.001, b τ = 0.01

To evaluate the influence of layered soil properties on the consolidation of multilayered soils, the weighted
average shear modulus,G ′ = ∑5

i=1 Gi hi/h and the weighted average permeability, k′ = ∑5
i=1 ki hi/h are

introduced and used to approximately calculate the vertical displacement and the excess pore water pressure
shown in Figs. 4 and 5, respectively. The weighted average shear modulus and permeability for this example
are 2.5G0 and 2.2k0, respectively. The exact result was obtained using the method for multi-layered soils pro-
posed in this study with the actual properties (shear modulus and permeability) for each soil layer. However,
the approximate result was obtained using the method for a single layer soil with the weighted properties
within the entire depth.

Figure 4 shows that the vertical displacement at the center of the loading area on the ground surface
increases with the time factor, τ . The approximation method underestimates the vertical displacement as com-
pared with the exact solution. It is well known that the vertical displacement decreases with an increase of
the shear modulus for a homogeneous soil. For the multi-layered soil system selected as an example in this
study, however, the shear moduli of all the soil layers except the third layer are less than the weighted average
shear modulus. In other words, the third soil layer with a high shear modulus is over-weighted for the average
modulus. As a result, the approximation method underestimates the vertical displacement as compared with
the exact solution.

Figure 5 shows that the excess pore water pressure at the beginning is not uniformly distributed and a peak
value exists at the depth of approximately 0.15a based on the exact result and 0.20a based on the approximate
result. With an increase of time, the excess pore water pressure decreases and the peak value disappears. Fig-
ure 5 also shows that the exact result has higher excess pore water pressure than the approximate result. It is
well known that excess pore water pressure can dissipate faster in a homogeneous soil with higher permeability
than that with lower permeability. For the multi-layered soil system selected as an example in this study, how-
ever, the permeability values of all the soil layers except the second layer are less than the weighted average
permeability. In other words, the second soil layer with a high permeability value is over-weighted for the
average permeability. As a result, the exact result has higher excess pore water pressure than the approximate
result.

The above comparisons show that layered soil properties have a great influence on its consolidation behav-
ior.



Transfer matrix solutions to axisymmetric and non-axisymmetric consolidation of multilayered soils 169

6 Conclusions

Based on the displacement functions, the transfer matrix solutions in the Laplace–Hankel transform domain
for the consolidation problem of a single soil layer subjected to axisymmetric and non-symmetric loads are
obtained. These solutions are extended for a multi-layered soil system by considering the continuity conditions
between adjacent layers and the boundary conditions of the layered soil system. The actual solutions in the
physical domain are acquired by the inversion of the Laplace–Hankel transform. The calculated results for the
consolidation for a single soil layer using the proposed method in this study are compared well and validated
against those by others. The consolidation of a multi-layered soil system (five soil layers were selected as an
example in this study) under axisymmetric and non-axisymmetric loadings is investigated and discussed. The
approximation method using the solution for a single soil layer with the weighted average properties (shear
modulus and permeability) underestimates the vertical displacement on the ground surface and the excess pore
water pressure as compared with the exact method using the solution for multi-layered soils proposed in this
study with actual properties for each soil layer.
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Appendix A: Transfer matrix �(ξ, z) for an axisymmetric problem


11 = 2Gξ2C

Ms
(chξ z − chqz) + (chξ z + ξ zshξ z) = 
44,


12 = 2Gξ2C

Ms
(shξ z − ξ

q
shqz) + ξ zchξ z = −
54,


13 = ξC

Ms
(chξ z − chqz),


14 = ξC

Ms

(
shξ z − ξ

q
shqz

)
+ 1

2Gξ
(shξ z + ξ zchξ z),


15 = ξC

Ms
(chξ z − chqz) + 1

2Gξ
ξ zshξ z = −
24,


16 = 1

s

(
shξ z − ξ

q
shqz

)
,


21 = 2GξC

Ms
(qshqz − ξshξ z) − ξ zchξ z = −
45,


22 = 2Gξ2C

Ms
(chqz − chξ z) + (chξ z − ξ zshξ z) = 
55,


23 = C

Ms
(qshqz − ξshξ z),


25 = C

Ms
(qshqz − ξshξ z) + 1

2Gξ
(shξ z − ξ zchξ z),


26 = 1

s
(chqz − chξ z),


31 = 2Gξ(chqz − chξ z),


32 = 2Gξ

(
ξ

q
shqz − shξ z

)
,


33 = chqz = 
66,


34 = ξ

q
shqz − shξ z,


35 = chqz − chξ z,
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36 = M

qC
shqz,


41 = 2G

[
2Gξ2C

Ms
(ξshξ z − qshqz) + ξ(shξ z + ξ zchξ z)

]
,


42 = 2G

[
2Gξ3C

Ms
(chξ z − chqz) + ξ · ξ zshξ z)

]
,


43 = 2G

[
ξC

Ms
(ξshξ z − qshqz)

]
,


46 = 2G

[
ξ

s
(chξ z − chqz)

]
,


51 = 2G

[
2Gξ3C

Ms
(chqz − chξ z) − ξ · ξ zshξ z)

]
,


52 = 2G

[
2Gξ3C

Ms

(
ξ

q
shqz − shξ z

)
+ ξ(shξ z − ξ zchξ z)

]
,


53 = 2G
ξ2C

Ms
(chqz − chξ z),


56 = 2G
ξ

s

(
ξ

q
shqz − shξ z

)
,


61 = 2GξC

M
(qshqz − ξshξ z),


62 = 2Gξ2C

M
(chqz − chξ z),


63 = qC

M
shqz,


64 = ξC

M
(chqz − chξ z),


65 = C

M
(qshqz − ξshξ z).

Appendix B: Transfer matrix for a non-axisymmetric problem

P11 = chξ z + ξ zchξ z + 2Gk′

s
ξ2(chξ z − chqz),

P12 = ξ2zshξ z + 2Gξ3k′

s
(shξ z − ξ

q
shqz),

P13 = −ξ2k′

s
(chξ z − chqz),

P14 = 1

2G
ξ zchξ z + ξ2k′

s
(chξ z − chqz),

P15 = ξk′

s

(
shξ z − ξ

q
shqz

)
+ 1

2Gξ
shξ z + z

2G
shξ z,

P16 = −ξ

s

(
shξ z − ξ

q
shqz

)
,
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P21 = 2Gk′

s
(qshqz − ξshξ z) − zchξ z,

P22 = chξ z + 2Gξ2k′

s
(chqz − chξ z) − ξ zshξ z,

P23 = k′

s
(ξshξ z − qshqz),

P24 = −k′

s
(ξshξ z − qshqz) + 1

2Gξ
shξ z − z

2G
chξ z,

P25 = k′

s
(chqz − chξ z) − z

2Gξ
shξ z,

P26 = 1

s
(chξ z − chqz),

P31 = 2G(chξ z − chqz),

P32 = 2Gξ

(
shξ z − ξ

q
shqz

)
,

P33 = P66 = chqz,

P34 = chξ z − chqz,

P35 = 1

ξ
shξ z − 1

q
shqz,

P36 = 1

k′q
shqz,

P41 = 4G2ξ2k′

s
(chqz − chξ z) − 2Gξ zshξ z,

P42 = 2Gξshξ z − 2Gξ2zchξ z + 4G2ξ3k′

s

(
ξ

q
shqz − shξ z

)
,

P43 = 2Gk′ξ2

s
(chξ z − chqz),

P44 = chξ z − ξ zshξ z + 2Gk′ξ2

s
(chqz − chξ z),

P45 = −zchξ z + 2Gk′ξ
s

(
ξ

q
shqz − shξ z

)
,

P46 = 2Gξ

(
shξ z − ξ

q
shqz

)
,

P51 = 2Gξ(shξ z + ξ zchξ z) + 4G2ξ2k′

s
(ξshξ z − qshqz),

P52 = 2Gξ3zshξ z + 4G2ξ4k′

s
(chξ z − chqz),

P53 = 2Gξ2k′

s
(qshqz − ξshξ z),

P54 = 2Gξ2k′

s
(ξshξ z − qshqz) + ξ2zchξ z,

P55 = ξ zshξ z + chξ z + 2Gξ2k′

s
(chξ z − chqz),

P56 = 2Gξ2

s
(chqz − chξ z),
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P61 = 2Gk′(ξshξ z − qshqz),

P62 = 2Gk′ξ2(chξ z − chqz),

P63 = k′qshqz,

P64 = k′(ξshξ z − qshqz),

P65 = k′(chξ z − chqz),

L11 = L22 = chξ z,

L12 = 1

Gξ
shξ z,

L21 = Gξshξ z.
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