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Abstract An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems
under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace
transform. The explicit expressions are given for the radial and circumferential stresses under stress bound-
ary condition and the radial displacement under displacement boundary condition. The results indicate that
the two in-plane stress components and the displacement under corresponding boundary conditions have no
relation with material constants. The general form of solutions for the remaining displacement or stress field
is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep
excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular
hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock
mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate
the displacement and stress response. The method proposed in this paper can be used for analysis of earth
excavation and finite void growth.

1 Introduction

The general static and dynamic problems are restricted to fixed boundaries, which are time-independent. How-
ever, in some practical engineering applications, such as excavation of underground tunnels, it is impossible to
excavate full-section in one time. The excavation is a time-consuming procedure, during which new working
face is formed constantly and variations in time and space will occur periodically. For the effect of long-period
geological action, some kinds of rock (e.g. soft rock) have low strength, open grain, or contain large quantities
of clay minerals. The behavior of soft rock is, in general, time-dependent or rheologic. Since the excavation is
continuous, the deformation of rock material is induced due to the synthetic action of excavation and rheology.
Analysis of the excavation of the soft rock is of great importance for a better understanding of excavation
mechanism. The rock can be considered a viscoelastic material, and such analysis should be conducted by
seeking a solution for a corresponding viscoelastic problem with time-dependent boundary region.

For various viscoelastic materials, e.g., metals and polymers, there have been numerous studies on linear
and non-linear theories and applications [1–15]. Many problems of linear viscoelasticity can be solved using
the principle of correspondence [16–18]. The integral-transform method and finite element method have been
commonly used to solve some simple problems [19,20]. For the case of time-dependent boundary, in general,
the principle is inapplicable. Specifically, for the analysis of tunnel excavation, numerical simulation is gener-
ally adopted to determine stress and displacement states during excavation, in which the continuous excavation
process is divided into several steps. Considering that the corresponding rock block for each step is excavated
at once at its beginning, if the step is small enough, the discrete analysis can be used effectively to simulate
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the continuous excavation in a permissible error. A corresponding finite element model was thus developed
for the analysis of a foundation ditch by Mana [21]. A solution for stresses of a wedge caused by gravity was
presented by Rashba [22]. This is an early analytical study on geometry time-varying problem. Analyses for
stress and strain in culvert with continuous fill have been carried out, e.g. in [23,24]. Stress and strain state of
a rigid inclined plane with continuous snow retention was obtained by Brown [25]. Solutions for some special
problems are also addressed by Namov [26]. Recently, Shamina has simplified time-varying equations for
an axisymmetric problem [27]. The dependence of compatibility equations for time-varying mechanics has
been analyzed by Georgiyevskii [28]. More recently, some efforts have been made to search for solutions for
viscoelastic problems involving time-dependent boundary regions using the principle of correspondence for
some special cases [29–31].

Different from the purely elastic materials with constitutive equations in the form of algebraic equations,
viscoelastic materials have their constitutive relations expressed by a set of operator equations. Generally, it
becomes difficult to find analytical solutions for most viscoelastic problems, especially for the case of time-
dependent boundary. This paper is devoted to analytical determinations on the stress and displacement fields
for axisymmetric plane deformation involving time-dependent boundary regions. As an application to deep
excavation of a circular tunnel or (cylindrical) void growth, explicit solutions for the analysis of a deforming
circular hole in an infinite or finite plane are given taking into account the rheological characteristics of the
rock mass characterized by Boltzmann and/or Maxwell viscoelastic models. Numerical examples for a circular
hole subject to axisymmetric time-dependent stress or displacement are given to illustrate the displacement
and stress for excavation or finite void growth.

2 Mathematical formulation

Consider a homogeneous, isotropic, and linear viscoelastic material occupying an annular region with the
changeable inner and outer radii of R1(t) and R2(t), respectively, with time t , as shown in Fig. 1. For the
case of axisymmetric deformation under the plane strain condition, the equilibrium equation in a cylindrical
coordinate system (r, θ, z) is written

∂σr (r, t)

∂r
+ σr (r, t) − σθ (r, t)

r
= 0. (1)

The geometrical equations are

εr = ∂ur (r, t)

∂r
, εθ = ur (r, t)

r
, εz = 0. (2)

The constitutive equations can be expressed in the form of convolution integrals as

si j (r, t) = 2G(t) ∗ dei j (r, t),
(3)

σmm(r, t) = 3K (t) ∗ dεmm(r, t).

where si j and ei j are the deviatoric components of the stress and strain tensors σi j and εi j , respectively, i.e.,

si j = σi j − 1

3
δi jσmm,

(4)
ei j = εi j − 1

3
δi jεmm .

R1(t)

R2(t)

r

θ

Fig. 1 Axisymmetric plane problem involving time-dependent region
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and G(t) and K (t) are relaxation moduli incorporating viscoelastic effect of materials. The asterisk (∗) in
Eq. (3) indicates a convolution integral defined by

f1(t) ∗ d f2(t) = f1(t) · f2(0) +
t∫

0

f1(t − τ)
d f2(τ )

dτ
dτ. (5)

The time-dependent stress or displacement boundary conditions under consideration are

σr
∣∣r=R1(t) = p1(t),

σr
∣∣r=R2(t) = p2(t),

(6a)

or

ur
∣∣r=R1(t) = u1(t),

ur
∣∣r=R2(t) = u2(t),

(6b)

where p1(t), p2(t) and u1(t), u2(t) are two pairs of prescribed functions of time.

3 Solution for the problem

3.1 The forms of solution in Laplace Space

Inserting Eq. (2) into (3), stress components can be expressed in terms of the radial displacement ur as follows:

σr = 2G(t) ∗ d

[
2

3

∂ur

∂r
− 1

3

ur

r

]
+ K (t) ∗ d

(
∂ur

∂r
+ ur

r

)
,

σθ = 2G(t) ∗ d

[
2

3

ur

r
− 1

3

∂ur

∂r

]
+ K (t) ∗ d

(
∂ur

∂r
+ ur

r

)
, (7)

σz =
[

K (t) − 2

3
G(t)

]
∗ d

(
∂ur

∂r
+ ur

r

)
.

Substituting the above equation into Eq. (1) yields the equation for displacement ur as
[

K (t) + 4

3
G(t)

]
∗ d

(
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)
= 0. (8)

According to the Laplace transform of a function f (t), denoted by f (s), defined by

f (s) =
∞∫

0

e−st f (t)dt,

where s is the transform parameter, and the inverse Laplace transform is expressed by

L−1[ f (s)] = f (t) = 1

2π i

β+i∞∫

β−i∞
f (s)est dt,

the transform for Eq. (8) gives rise to
[

K (t) + 4

3
G(t)

]
·
(

∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)
t=0

+
[

K (t) + 4

3
G(t)

]
· d

(
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)
= 0. (9)

Note that

d

(
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)
= s

(
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

)
−

[
∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2

]
t=0

. (10)
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Equation (9) simplifies to

∂2ur

∂r2 + 1

r

∂ur

∂r
− ur

r2 = 0, (11)

where ur is a function of r and s. The general solution for Eq. (11) is

ur = A(s)

r
+ r B(s), (12)

where A(s) and B(s) are two undetermined functions of the parameter s.
Next, the Laplace transform of Eq. (7) gives

σr = 2G(t) · s

(
2

3

∂ur

∂r
− 1

3

ur

r

)
+ K (t) · s

(
∂ur

∂r
+ ur

r

)
,

σθ = 2G(t) · s

(
2

3

ur

r
− 1

3

∂ur

∂r

)
+ K (t) · s

(
∂ur

∂r
+ ur

r

)
, (13)

σz =
[

K (t) − 2

3
G(t)

]
s

(
∂ur

∂r
+ ur

r

)
.

Using Eq. (12), Eq. (13) is rewritten as

σr = 2G(t) · s

[
− 1

r2 A(s) + 1

3
B(s)

]
+ 2K (t) · s B(s),

σθ = 2G(t) · s

[
1

r2 A(s) + 1

3
B(s)

]
+ 2K (t) · s B(s), (14)

σz = 2

[
K (t) − 2

3
G(t)

]
s B(s).

Equations (12) and (14) are the forms of solution for the stresses and displacement in Laplace space, which
can be constructed by determining A(s) and B(s) based on the condition for time-dependent boundary regions
in Eqs. (6a) or (6b).

3.2 Solution under stress boundary condition

Denote

C(t) = L−1
[
G(t) · s · A(s)

]
, (15)

D(t) = L−1
[(

2

3
G(t) + 2K (t)

)
B(s) · s

]
. (16)

In view of the first two equations in Eq. (14), the expressions for two in-plane stresses can be written by

σr = − 2

r2 C(t) + D(t),
(17)

σθ = 2

r2 C(t) + D(t).

According to the boundary condition (6a), there are

− 2

R2
1(t)

C(t) + D(t) = p1(t),

− 2

R2
2(t)

C(t) + D(t) = p2(t),
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which generates the solutions for C(t) and D(t):

C(t) = R2
1(t)R2

2(t)[p2(t) − p1(t)]
2[R2

2(t) − R2
1(t)] ,

(18)

D(t) = −p1(t)R2
1(t) + p2(t)R2

2(t)

R2
2(t) − R2

1(t)
.

Substituting Eq. (18) into Eq. (17) gives the explicit form for two in-plane stresses in the following:

σr = − 1

r2 · R2
1(t)R2

2(t)[p2(t) − p1(t)]
R2

2(t) − R2
1(t)

+ −p1(t)R2
1(t) + p2(t)R2

2(t)

R2
2(t) − R2

1(t)
,

(19)

σθ = 1

r2 · R2
1(t)R2

2(t)[p2(t) − p1(t)]
R2

2(t) − R2
1(t)

+ −p1(t)R2
1(t) + p2(t)R2

2(t)

R2
2(t) − R2

1(t)
.

Further, the functions A(s) and B(s) are determined from Eqs. (15) and (16) as

A(s) = 1

G(t) · s
L

{
R2

1(t)R2
2(t)[p2(t) − p1(t)]

2[R2
2(t) − R2

1(t)]

}
, (20)

B(s) = 1

s ·
(

2
3 G(t) + 2K (t)

) L

{
−p1(t)R2

1(t) + p2(t)R2
2(t)

R2
2(t) − R2

1(t)

}
. (21)

Using the inverse Laplace transform of Eq. (12) and the last equation in Eq. (14), the radial displacement and
stress in the z-direction in the time domain can be expressed using A(s) and B(s) as

ur = 1

r
L−1[A(s)] + r L−1[B(s)], (22)

σz = 2L−1[K (t)s B(s)] − 4

3
L−1[G(t)s B(s)]. (23)

By now, the solution for the axisymmetric problem with varying boundaries is derived in Eqs. (19), (20) and
(21). In view of Eq. (19), it is clear that the two in-plane normal stress components are related to both time-
dependent shape and external force, but they have no relation with the material parameters. The two stresses
are, in form, similar to the case for time-independent boundary [6].

3.3 Solution under displacement boundary condition

In view of the resulting form of solution for the radial displacement in Eq. (22) or (12), two unknown time
functions L−1[A(s)] and L−1[B(s)] can be determined using the boundary condition (6b) as

L−1[A(s)] = f1 (t) = R1 (t) R2 (t) [u1 (t) R2 (t) − u2 (t) R1 (t)]

R2
2 (t) − R2

1 (t)
,

(24)
L−1[B(s)] = f2 (t) = u2 (t) R2 (t) − u1 (t) R1 (t)

R2
2 (t) − R2

1 (t)
,

then

ur = 1

r
f1 (t) + r f2 (t). (25)

The above equation shows that the radial displacement is related to both time-dependent shape and prescribed
boundary displacements, but it also has no relation with the material parameters. Further, stress components
are derived using Eqs. (14) and (24) in the following:
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σr = − 2

r2

t∫

0

f1(τ )G ′(t − τ)dτ +
t∫

0

f2(τ )

[
2

3
G ′(t − τ) + 2K ′(t − τ)

]
dτ

− 2

r2 f1(t)G(0) + f2(t)

[
2

3
G(0) + 2K (0)

]
,

σθ = 2

r2

t∫

0

f1(τ )G ′(t − τ)dτ +
t∫

0

f2(τ )

[
2

3
G ′(t − τ) + 2K ′(t − τ)

]
dτ (26)

+ 2

r2 f1(t)G(0) + f2(t)

[
2

3
G(0) + 2K (0)

]
,

σz =
t∫

0

f2(τ )

[
2K ′(t − τ) − 4

3
G ′(t − τ)

]
dτ + f2(t)

[
2K (0) − 4

3
G(0)

]
,

where ( )′ = d( )
d(t−τ)

.

4 Analysis of viscoelastic plane with varying circular hole under stress boundary condition

4.1 Case of infinite plane

In this section, explicit expressions for the above general solutions will be derived for an infinite viscoelastic
plane problem involving a circular boundary having a time-dependent radius. This problem is of great impor-
tance in the area of rock mass construction. For the hole excavation in the infinite rock mass, due to the situation
of section construction, the three-dimensional problem can reduce to a two-dimensional one concerning a plane
perpendicular to the axis of the excavation. In some cases, e.g., deep tunnel excavation, there exist equivalent
far-field compressive stresses in two directions, as shown in Fig. 2, where the inner radius R1 = R(t) is a
function of time t , and stress σ∞ at infinity may be constant or time-dependent. Boundary conditions for stress
can be written by

σr
∣∣r=R(t) = 0,

(27)
σr |r=∞ = −σ∞(t).

According to Eq. (18), there are

C(t) = − R2(t)

2
σ∞(t),

(28)
D(t) = −σ∞(t).

∞

R(t)

r

σ

∞σ

Fig. 2 Circular hole in infinite plane
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Substituting the above equation into Eq. 19, the radial and circumferential stresses have the following results:

σr = −σ∞(t)

(
1 − R2(t)

r2

)
,

(29)

σθ = −σ∞(t)

(
1 + R2(t)

r2

)
.

4.1.1 Boltzmann viscoelastic model

It is assumed that the hydrostatic pressure (stress) at infinity is a constant of σ0, i.e., σ∞ = σ0. The shear
behavior of the material is governed using a Boltzmann viscoelastic model, as shown in Fig. 3, while the bulk
behavior of the solid is prescribed to be purely elastic. The viscoelastic solid is thus characterized by two shear
modulus Gve and Ge, one viscosity coefficient η, and one bulk modulus Ke. The relaxation moduli in Eq. (3)
are written

G(t) = G2
e

Ge + Gve
e− Ge+Gve

η
t + GveGe

Ge + Gve
, K (t) = Ke. (30)

According to Eqs. (20) and (21), A(s) and B(s) can be determined as

A(s) = −σ0

2s

R2(t)

G(t)
= − σ0

2Ge
L[R2(t)]

(
1 + Ge

η
· 1

s + Gve
η

)
, (31)

B(s) = − 3σ0

2Ge + 6Ke
· 1

s +
[

Gve
η

+ 3KeGe
η(Ge+3Ke)

] − 3(Ge + Gve)σ0

η(2Ge + 6Ke)
· 1

s
· 1

s +
[

Gve
η

+ 3KeGe
η(Ge+3Ke)

] , (32)

and their inversions into the time domain are derived as

L−1[A(s)] = − σ0

2Ge
R2(t) − σ0

2η
e− Gve

η
t

t∫

0

R2(t)e
Gve
η

t dt, (33)

L−1[B(s)] = − 3σ0

2Ge + 6Ke
· e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t − 3(Ge + Gve)σ0

2(GeGve + 3KeGe + 3KeGve)

×
(

1 − e− Gve
η

t · e− 3KeGe
(Ge+3Ke)η

t
)

. (34)

Further, substitution of Eqs. (33) and (34) into Eqs. (22) and (23) yields

ur = − σ0

2Ger
R2(t) − σ0

2ηr
e− Gve

η
t

t∫

0

R2(t)e
Gve
η

t dt − 3σ0r

2Ge + 6Ke
· e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t

− 3(Ge + Gve)σ0r

2(GeGve + 3KeGe + 3KeGve)

(
1 − e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t
)

, (35)

σz = −σ0 + 3Geσ0

Ge + 3Ke
e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t + 3GeGveσ0

GeGve + 3KeGve + 3KeGe

(
1 − e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t
)

.

(36)

η

Gve

eG

Fig. 3 Boltzmann viscoelastic model
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∞

Fig. 4 Displacement response for different values of the velocity for the case of infinite plane

The varying radius is assumed to have the following form:

R(t) =
{

R0 + vt 0 ≤ t ≤ T,
RT t > T,

(37)

where T and v are ending time and velocity of change in the radius, respectively. R0 and RT represent initial
and ending radii, respectively. The radial displacement in Eq. (35) can be expressed finally in an explicit form
as

ur (r, t) = − σ0

2Ger
(R0 + vt)2 − σ0 R2

0

2Gver

(
1 − e− Gve

η
t
)

− σ0 R0v

Gver
t + σ0 R0v

G2
ver

η ·
(

1 − e− Gve
η

t
)

− σ0v
2

2Gver
t2 + σ0v

2η

G2
ver

t − σ0v
2η2

G3
ver

·
(

1 − e− Gve
η

t
)

− 3σ0r

2Ge + 6Ke
· e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t

− 3(Ge + Gve)σ0r

2(GeGve + 3KeGe + 3KeGve)

(
1 − e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t
)

(38)

for 0 ≤ t ≤ T , and

ur (r, t) = − σ0

2Ger
R2

T − σ0

2Gver
R2

0

[
e

Gve
η

(T −t) − e− Gve
η

t
]

− σ0 R0v

Gver
T · e

Gve
η

(T −t)

+ σ0 R0vη

G2
ver

·
[
e

Gve
η

(T −t) − e− Gve
η

t
]

− σ0v
2

2Gver
T 2e

Gve
η

(T −t) + σ0v
2η

G2
ver

T · e
Gve
η

(T −t)

− σ0v
2η2

G3
ver

·
[
e

Gve
η

(T −t) − e− Gve
η

t
]

− σ0 R2
T

2Gver

[
1 − e

Gve
η

(T −t)
]

− 3σ0r

2Ge + 6Ke
· e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t

− 3(Ge + Gve)σ0r

2(GeGve + 3KeGe + 3KeGve)

(
1 − e− Gve

η
t · e− 3KeGe

(Ge+3Ke)η
t
)

(39)

for t > T .
In computation, the properties of the viscoelastic material are chosen as Ge = 1,500 MPa, Gve =

1,500 MPa, Ke = 1,000 MPa and η = 5,000 MPa · d, where d represents time “day” as a unit of time
used in the excavation process. The stress at infinity and two radii are prescribed as σ0 = 30 MPa and
R0 = 10 m, RT = 20 m, respectively. The displacement response at r = 30 m for different values of the
velocity is illustrated in Fig. 4. The dot points in the figure represent the positions at the ending time of vary-
ing radius. The results show that there is rapid increase in the displacement prior to the ending times T for
different values of v, and a smaller value for the velocity causes a larger value of displacement when t = T .
Furthermore, a smaller value of velocity of change in the radius corresponds to a shorter time during which
the response tends to be stable.
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4.1.2 Maxwell viscoelastic model

Suppose that a viscoealstic plane region containing a circular hole is subject to a time-dependent stress at
infinity having a sinusoidal form as follows:

σ∞(t) = σ0 + σ1 sin ωt, (40)

where σ0 and σ1 are two constants, and ω is the circular frequency. For the Maxwell viscoelastic material, as
shown in Fig. 5, two relaxation moduli are written as

G(t) = Gee− Ge
η

t
, K (t) = Ke, (41)

where Ge and Ke are the shear modulus and bulk modulus, respectively. A(s) and B(s) in Eqs. (20) and (21)
can be thus determined as

A(s) = − σ0

2Ge
L[R2(t)]

(
1 + Ge

η s

)
− σ1

2Ge
L[R2(t) sin ωt]

(
1 + Ge

η s

)
, (42)

B(s) = −3σ0

2(Ge + 3Ke)
· 1

s + d1
− 3σ0Ge

2η(Ge + 3Ke)

1

s(s + d1)
− 3σ1ω

2(Ge + 3Ke)

(
C1s + C2

s2 + ω2 − C1

s + d1

)
,

(43)

where

d1 = 3KeGe

η(Ge + 3Ke)
, d2 = Ge

η
,

(44)

C1 = d1 − d2

d2
1 + ω2

, C2 = ω2 + d1d2

d2
1 + ω2

.

Making the inverse Laplace transform for Eqs. (42) and (43), substituting the resulting L−1[A(s)] and
L−1[B(s)] into Eq. (22) finally yields

ur = − σ0

2Ger
R2(t) − σ0

2ηr

t∫

0

R2(t)dt − σ1

2Ger
R2(t) · sin ωt − σ1

2ηr

t∫

0

R2(t) · sin ωtdt

−σ0 · r

2Ke
+ σ0Ge · r

2Ke(Ge + 3Ke)
· e−d1t − 3σ1ω · r

2(Ge + 3Ke)

(
C1 cos ωt + C2

ω
sin ωt − C1e−d1t

)
. (45)

For the special case of impressive materials under uniform pressure at infinity, Ke → ∞, σ1 = 0, the above
equations for the displacement and stresses determined by Eqs. (45) and (29) reduce to the known results [31].

If the varying radius takes the form of R(t) = R0 + vt , the radial displacement can be evaluated using the
following formula:

ur = − σ0

2Ger
(R0 + vt)2 − σ0

2ηr

(
R2

0 + R0vt + 1

3
v2t2

)
− σ1

2Ger
(R0 + vt)2 · sin ωt − σ1

2ηr
C3

−σ0 · r

2Ke
+ σ0Ge · r

2Ke(Ge + 3Ke)
· e−d1t − 3σ1ω · r

2(Ge + 3Ke)

(
C1 cos ωt + C2

ω
sin ωt − C1e−d1t

)
, (46)

where

C3 = R2
0

ω
(1 − cos ωt) + 2R0v

ω

(
1

ω
sin ωt − t cos ωt

)
+ v2

ω

(
2

ω
t sin ωt + 2

ω2 cos ωt − t2 cos ωt − 2

ω2

)
.

(47)

G e η

Fig. 5 Maxwell viscoelastic model
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Fig. 6 Displacement responses at different locations

Next, let σ1 = σ0 in Eq. (40), and the following values of properties of viscoelastic material and the circular
frequency are used for an example:

Ge

σ0
= 1 × 103,

Ke

σ0
= 2 × 103,

η

σ0
= 5 × 102 (d) , ω = 2π

(
d−1) .

The responses for the radial displacement are displayed in Fig. 6 at locations for three different values of
the radial coordinate r , i.e., Points A (r/R0 = 10) , B (r/R0 = 15) and C (r/R0 = 25) inside the viscoelastic
domain. In computation the time and displacement have been normalized by the relaxation time, γ = η/Ge,
and the initial radius, R0

(×10−3
)
, respectively. It is observed that the displacement increases with time in a

form of fluctuation and tends to infinity, which reflects the property of liquid-like deformation of the material
due to the Maxwell model. The results also show that the increase in the displacement for a farther point is
comparatively slower.

4.2 Case of finite plane

To illustrate the effect of finite outer radius R2 on viscoelastic fields induced by boundary constant stresses p1
and p2, we introduce an aspect ratio characterizing the volume concentration of the cylindrical void:

cv = R2
1

R2
2

, (48)

then Eq. (18) changes to C(t) = R2
1(p2−p1)

2(1−cv)
, D(t) = −p1cv+p2

1−cv
. For the case of the Boltzmann model, Eqs. (20)

and (21) change to

A(s) = 1

2Ge

(
1 + Ge

η
· 1

s + Gve
η

)
L

[
R2

1(p2 − p1)

2(1 − cv)

]
, (49)

B(s) =
⎡
⎣ 3

2Ge + 6Ke
+ 3G2

e

2(Ge + 3Ke)2η
· 1

s + 1
η

(
Gve + 3KeGe

Ge+3Ke

)
⎤
⎦ L

[−p1cv + p2

1 − cv

]
, (50)
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Table 1 Inner and outer radii in computation

No. R2 (m) R1(t) =
{

R0 + vt 0 ≤ t ≤ T
RT t > T

R0 v (m/day) RT (m) T (day)

1 40.0 10.0 1.0 20.0 10
2 60.0
3 90.0
4 120.0

the inversions are

L−1[A(s)] = 1

2Ge
· R2

1(p2 − p1)

2(1 − cv)
+ 1

2η
· e− Gve

η
t

t∫

0

R2
1(p2 − p1)

2(1 − cv)
· e

Gve
η

t dt, (51)

L−1[B(s)] = 3

2Ge + 6Ke
· −p1 · cv + p2

1 − cv

+ 3G2
e

2(Ge + 3Ke)2η
· e−at ·

t∫

0

−p1 · cv + p2

1 − cv

· eat dt, (52)

where a = 1
η
(Gve + 3KeGe

Ge+3Ke
). Using Eq. (22) together with Eqs. (51) and (52), the radial displacement can be

written as

ur = 1

r

⎡
⎣ 1

4Ge
· R2

1(p2 − p1)

1 − cv

+ 1

4η
· e− Gve

η
t

t∫

0

R2
1(p2 − p1)

1 − cv

· e
Gve
η

t dt

⎤
⎦

+ r

⎡
⎣ 3

2Ge + 6Ke
· −p1 · cv + p2

1 − cv

+ 3G2
e

2(Ge + 3Ke)2η
· e−at ·

t∫

0

−p1 · cv + p2

1 − cv

· eat dt

⎤
⎦ . (53)

The above equation can be used to evaluate the effect of the aspect ratio cv . Especially, if p1 = 0, p2 = −σ0
(pressure) for the case of infinite plane (cv → 0), the above equation will reduce to Eq. (35).

For the sake of calculation, the inner radius is assumed to be the form in Eq. (37), the parameters in com-
putation are listed in Table 1 while material parameters are given in Sect. 4.1.1. The values of two boundary
stresses are chosen as p2 = 30 MPa and p1 = 0. For various values of R2, the variation of the aspect ratio cv as
a function of time t is presented in Fig. 7. The changes in the radial displacement at the location r = 20 m with
time and the ratio are displayed in Figs. 8 and 9, respectively. The calculations show that similar to the case of
an infinite plane, there is a rapid increase in the displacement prior to the ending times T , as shown in Fig. 8.
A smaller outer radius R2 (also a larger ratio cv) causes a larger value of displacement. The results reveal that
the response tends to be stable at the same times for different ratio as the velocity of change keeps unchanged
(v = 1). It is observed from Fig. 9 that the displacement increases with an increasing ratio, and there is a wider
scope of change in the ratio inducing the increasing response for a smaller R2. In addition, the segment of
straight lines in the figure presents an increase in the displacement with time although the aspect ratio keeps
unchanged.

5 Analysis of viscoelastic plane with varying circular hole under displacement boundary condition

5.1 Case of infinite plane

Consider the displacement boundary condition for the case of R2 → ∞ and R1 = R (t) below:

ur
∣∣r=R(t) = u1,

(54)
ur |r=∞ = 0,
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where u1 is assumed to be unchanged with time. Using Eq. (54), Eq. (24) reduces to

f1(t) = R(t) · u1, f2(t) = 0. (55)

Employing the Boltzmann model in Eq. (30), the stress components are derived using Eq. (26) as

{
σr
σθ

= ± 2

r2

t∫

0

(R0 + vτ)u1 · G2
e

η
e− Ge+Gve

η
(t−τ)dτ ∓ 2

r2 (R0 + vτ)u1Ge,

(56)
σz = 0

for 0 ≤ t ≤ T , and

{
σr
σθ

= ± 2

r2

T∫

0

(R0 + vτ)u1 · G2
e

η
e− Ge+Gve

η
(t−τ)dτ ± 2

r2

t∫

T

RT u1 · G2
e

η
e− Ge+Gve

η
(t−τ)dτ ∓ 2

r2 RT u1Ge,

(57)
σz = 0

for t > T .
In the above derivation, Eq. (37) for the inner radius is applied. In computation, it is assumed that u1 =

−0.5 m, R0 = 10 m, RT = 20 m, using material parameters as described in Sect. 4.1.1, and the change in the
radial stress at a location r = 20 m with time is displayed for various velocities for excavation in Fig. 10. As
shown in the figure, for smaller values of the velocity, the stress first has a drop in the excavation process, and
then increases to a peak value at a time corresponding to the observation location. However, when the velocity
for excavation is large, the stress increases to its peak value without a clear initial drop. A lower velocity results
in a smaller peak value of the stress, which arrives at a later time.

5.2 Case of finite plane

Consider the boundary condition with finite outer radius R2:

ur
∣∣r=R(t) = u1,

(58)
ur

∣∣r=R2 = 0,
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where u1 is prescribed as a constant value. Eq. (24) thus simplifies into

f1(t) = R(t) · u1

1 − cv

, f2(t) = −cv · u1

(1 − cv)R1
. (59)

Due to the Boltzmann model, the corresponding stress components are expressed using Eqs. (26) and Eq. (58)
in the following:

{
σr
σθ

= ± 2

r2

t∫

0

(R0 + vτ)R2
2u1

R2
2 − (R0 + vτ)2

· G2
e

η
e− Ge+Gve

η
(t−τ)dτ +

t∫

0

(R0 + vτ)u1

R2
2 − (R0 + vτ)2

· 2G2
e

3η
e− Ge+Gve

η
(t−τ)dτ

∓ 2

r2

(R0 + vt)R2
2u1

R2
2 − (R0 + vt)2

· Ge − (R0 + vt)u1

R2
2 − (R0 + vt)2

2

3
Ge, (60)

σz = 0

for 0 ≤ t ≤ T , and

{
σr
σθ

= ± 2
r2

∫ T
0

(R0+vτ)R2
2u1

R2
2−(R0+vτ)2 · G2

e
η

e− Ge+Gve
η

(t−τ)dτ ± 2
r2

∫ t
T

RT R2
2u1

R2
2−R2

T
· G2

e
η

e− Ge+Gve
η

(t−τ)dτ

+ ∫ T
0

(R0+vτ)u1
R2

2−(R0+vτ)2 · 2G2
e

3η
e− Ge+Gve

η
(t−τ)dτ + ∫ t

T
RT ·u1

R2
2−R2

T
· 2G2

e
3η

e− Ge+Gve
η

(t−τ)dτ

∓ 2
r2

RT R2
2u1

R2
2−R2

T
· Ge − RT u1

R2
2−R2

T

2
3 Ge,

(61)

σz = 0

for t > T . Especially, when R2 → ∞ or cv → 0, the above Eqs. (60) and (61) will degenerate into Eqs. (56)
and (57), respectively, for the case of an infinite plane.

As a numerical example, a time history of the radial stress at the location r = 20 m for v = 1 is shown
for various values of R2 in Fig. 11 while the stress changes with the ratio cv in Fig. 12. It is seen from Fig. 11
that, during the early period of the excavation, there is a drop in the stress, which is similar to the case of
an infinite plane. A smaller R2 (also a larger cv) induces a higher stress at the same time. Meanwhile, the
segment of straight lines, as shown in Fig. 12, presents a decrease in stress with time when the aspect ratio
keeps unchanged.
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Fig. 11 Change in the radial stress with time for different outer radius
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6 Conclusions

The analytical solutions for viscoelastic axisymmetric plane problems involving time-dependent boundary
regions are presented using the Laplace transform. The explicit expressions are given for the radial and cir-
cumferential stresses under stress boundary condition and the radial displacement under displacement boundary
condition. The results indicate that the two in-plane stress components and the displacement under correspond-
ing boundary conditions have no relation with material constants, which is similar to the case for time-inde-
pendent boundary. The general form of solutions for remaining displacement or stress field is expressed by
the inverse Laplace transform concerning two relaxation moduli. Numerical examples for a circular hole sub-
ject to axisymmetric time-dependent stress or displacement are given to illustrate the displacement and stress
response in excavation or void growth.

The results show that, using the Boltzmann viscoelastic model, if the radius varies slowly, the displacement
response under stress boundary condition greatly increases with time, but is larger at the end of varying time. So
it is necessary to support the tunnel during the excavation and to excavate as soon as possible. For the Maxwell
model, the displacement increases with time in a form of fluctuation and tends to infinity, which reflects the
liquid-like deformation of the material. In addition, for the case of a finite plane, a smaller outer radius (also
a larger aspect ratio) causes a larger displacement response using the Boltzmann model, and corresponds to a
wider scope of change in the ratio generating the increasing displacement response. In contrast, for the case of
displacement boundary condition, there is a drop in the radial stress during an early period of excavation (or
void growth) based on the Boltzmann model, which then increases to a peak value. A lower velocity results in
a smaller peak value of the stress, which arrives at a later time. A smaller outer radius produces a higher stress
at the same time, and also corresponds to a wider scope of change in the ratio causing the increasing stress
response.

The method proposed in this paper can be suitable for the analysis of earth excavation and finite void
growth.
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