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Abstract The paper deals with the internal structure of hydraulic jumps in near-critical single-layer flows
which replaces the discontinuities predicted by hydraulic theory if viscous effects acting inside a thin laminar
boundary layer are properly accounted for. In the limit of large Reynolds number this leads to a structure prob-
lem formed by the classical triple-deck equations supplemented with a novel nonlinear interaction relationship
which allows for the passage through the critical state. Hydraulic jumps are shown to represent eigensolutions
of the structure problem where this passage is achieved by the local thickening of the boundary layer which
acts as a viscous hump. The effects of detuning and dispersion due to streamline curvature and surface tension
on the internal structure of hydraulic jumps are studied in detail. In addition, the interaction of hydraulic jumps
with surface mounted obstacles is investigated.

1 Introduction

If the flow in a liquid layer is forced to adjust to a new downstream state a hydraulic jump or bore may form. In
many cases of practical importance, including applications in civil, mechanical as well as chemical engineer-
ing, the streamwise extent of the adjustment region is small compared to a characteristic length of the global
flow field. As a result the phenomenon can be treated as a jump discontinuity similar to gasdynamic shocks
(e.g. [18,21,30]). In contrast to gasdynamic shocks, however, where the resulting jump conditions represent an
exact solution of the governing equations if dissipative effects are neglected, the corresponding relationships
for hydraulic jumps require the acceleration of the fluid in the direction normal to the solid boundary to be small
and, therefore, are only approximate in this limit. Also, while the internal dissipative structure of gasdynamic
shocks is well understood, progress to include viscous effects into hydraulic theory has been slow. This is of
course not surprising if the flow in the liquid layer is turbulent. However, even in the case of laminar flow the
phenomena associated with dissipation and surface tension are found to be surprisingly rich. Possible effects
include the flow separation, the formation of a roller on top of the fluid layer, the presence of a downstream
wavetrain or combinations of these (e.g. [6,19,26,28,29,41]. A complete theoretical picture does not seem to
be available at present.

A first important step towards the development of such a picture was taken by Gajjar and Smith [8]. They
demonstrated that the jump can be interpreted as the result of a viscous–inviscid interaction where the flow
in a thin viscous layer at the wall reacts to the pressure gradient which in turn is induced by the displacement
of this viscous layer. The adverse pressure gradient leads to boundary layer separation (which immediately
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excludes the use of classical boundary layer theory) with the inviscid flow domain displaced upwards. This
flow scenario is interpreted as a branching of the flow from the upstream unperturbed supercritical state as the
flow starts to adjust to downstream conditions. The asymptotic theory developed is similar to that of triple deck
theory [16,34,36] where the free stream flow is modified by boundary layer interaction. In [2] the analysis
of the hydraulic jump structure is extended to a fully developed viscous upstream profile. Their analysis also
includes the effect of surface tension and streamline curvature. In [11] the flow of a thin viscous layer over a
finite plate extends the work of [2] who considered only the properties of the interaction region at the leading
edge of the jump to include a description of the flow in the whole of a planar hydraulic jump. In all these
studies the Froude number characterising the oncoming flow is taken to be sufficiently large so that the flow
conditions inside the triple deck region stay supercritical.

The inclusion of viscous fluid effects has a long history (see the pioneering paper of [12] and also [13] for
extensive references and discussion). If one considers the modeling of viscous boundary layer effects for free
surface flows then there are also extensive results when the unperturbed flow is in a state of rest in contrast to
the supercritical case considered here. The bottom shear stress is then included through a convolution integral
of the free stream velocity and results in model equations (essentially of KdV type with an integral viscous
term) obtained in a variety of contexts including fluid sloshing, solitary waves, undular bores and internal
waves in shallow channels (see for example [1,5,14,25]). The effects of dissipation are extended to resonant
flows with topography and compared with experiments in [37]. More recently a perturbation approach has been
used to incorporate linear boundary layer damping into Boussinesq-type equations [7,22]. In [23] the analysis
is extended to include a comparison between numerical solutions for a nonlinear boundary layer model with
experimental results. The basis of all these models is a pressure, vertical velocity interaction that ultimately
generates a mechanism for energy transfer from an essentially inviscid fluid to a viscous boundary layer on
the channel bottom [22,24]. The modelling is also similar to the inclusion of dispersive wall friction effects in
acoustic waves (see [15] and references therein).

Here, we use the framework of triple deck theory which includes strong coupling between the boundary
layer and the inviscid flow region. In contrast to the classical boundary layer concept it, therefore, is able to
account for the effect of upstream influence necessary to resolve the jump discontinuity predicted by hydraulic
theory into a smooth profile. Also, boundary layer separation can now be handled and is a feature of the
resulting flow generated. However, in contrast to the existing analysis of triple deck flows for large Froude
numbers, the present study assumes that the approaching flow is just slightly supercritical with then weak
hydraulic jumps. As a consequence, even small disturbances may take the flow into the subcritical regime
enabling an asymptotic theory to be formulated to cover the whole flow development from initial upstream
state to final downstream states. It is found possible to account for the interaction of weak hydraulic jumps,
surface-mounted obstacles and unsteady effects.

2 Problem formulation

We investigate (see Fig. 1) the two-dimensional horizontal channel flow of an incompressible fluid with a free
surface at ỹ = h̃(x̃, t̃). Incoming upstream flow consists of uniform flow (horizontal velocity Ũ0) with a thin
boundary layer (thickness θ̃ ) satisfying the no-slip condition on a rigid bottom surface. We are concerned with
an analysis of the perturbed flows generated where this incoming flow adjusts now to a new downstream state
leading to hydraulic jumps in the fluid. Of primary interest is an investigation of the internal structure of these
jumps, which emerges if internal friction is taken into account in the thin bottom boundary layer.

It will be assumed that the upstream flow is marginally supercritical with the Froude number Fr =
Ũ0/

√
g̃ H̃ (the ratio of the flow speed to the shallow water wave speed) satisfying

0 < Fr − 1 � 1, (1)

where g̃ is the acceleration due to gravity and H̃ is the uniform upstream depth. The change in fluid layer
thickness will be small compared to the depth H̃ and this will enable us to construct a weakly nonlinear analysis
not only locally, i.e. in the region where the fluid starts to thicken as in [8], but also globally. Our analysis will
also be extended to include the additional effect of a varying bottom surface topography (ỹ = s̃(x̃, t̃)) due to
a localized obstacle.
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Fig. 1 Problem and notation used for single layer fluid flow over an isolated obstacle

Anticipating that the horizontal length scale L̃ over which the fluid adjustment occurs is large compared
to H̃ , appropriate non-dimensional quantities are introduced in the usual way:

x = x̃

L̃
, y = ỹ

H̃
, s = s̃

H̃
, h = h̃

H̃
, t =

√
g̃ H̃

L̃
t̃, (2)

u = ũ√
g̃ H̃

, v = ṽ√
g̃ H̃

L̃

H̃
, p = p̃ − p̃a

ρ̃ g̃ H̃
, (3)

where x̃ , ỹ, ũ, ṽ, t̃ , p̃, ρ̃ and p̃a denote Cartesian coordinates, corresponding velocity components, time,
pressure, fluid density and the constant pressure imposed just above the free surface.

The governing equations then assume the form

∂u

∂x
+ ∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ 1

Re

(
H̃2

L̃2

∂2u

∂x2 + ∂2u

∂y2

)
, (4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − L̃2

H̃2

(
∂p

∂y
+ 1

)
+ 1

Re

(
H̃2

L̃2

∂2v

∂x2 + ∂2v

∂y2

)
.

Here, the Reynolds number Re is defined as

Re = L̃
√

g̃ H̃

ν̃

H̃2

L̃2
. (5)

where the kinematic viscosity ν̃ is assumed constant.
In the large Reynolds number limit Re � 1 considered here, viscous effects are weak globally and of

importance primarily in a thin boundary layer adjacent to the wall where the no-slip condition

y = s(x, t) : u = 0, v = ∂s

∂t
(6)

has to be satisfied.
As a consequence, the boundary conditions at the free surface are simply those of inviscid flow:

y = h(x, t) : ∂h

∂t
+ u

∂h

∂x
− v = 0,

p = −T
∂2h

∂x2

(
1 + H̃2

L̃2

(
∂h

∂x

)2
)−3/2

,

(7)
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where the non-dimensional parameter T = σ̃ /g̃ρ̃ L̃2 characterizes the effect of the constant surface tension
σ̃ . Viscous effects in the flow near the free surface can be shown to be O(Re−11/9) and will be neglected in
comparison to O(Re−4/9) terms retained.

3 Derivation of the interaction equations

3.1 Order of magnitude estimates

We consider an induced perturbation of the upstream flow where, as in the case Fr −1 = O(1) of [8], the flow
adjusting to an imposed downstream state results in a triple-deck structure (see Fig. 2). Defining features of this
asymptotic structure include viscous perturbations confined to a thin sublayer (lower deck) of the incoming
boundary layer with the remaining part of the incoming boundary layer (main deck) modified only passively
through an additional inviscid displacement. Adjustment of the incoming inviscid flow region (upper deck)
involves an inviscid free-surface flow response to this imposed displacement. The inclusion of this free-surface
distortion will modify the viscous–inviscid interactions which otherwise are typical of triple-deck problems
(see [16,34,36]).

Estimates for the magnitude of the flow quantities in the lower deck follow from the assumption that the
wall shear upstream of the bore is finite, the mass balance and the requirement that inertia, pressure gradient
and viscous terms are of equal importance in the streamwise momentum equation. One obtains

u ∼ δ

�
, v ∼ δ2

�
,

∂p

∂x
∼ δ2

�2 , δ3 = �

Re
, (8)

where � and δ, respectively, denote the vertical extent of the boundary layer and the lower deck non-
dimensionalized with respect to the unperturbed depth H̃ of the liquid.

Guided by other triple-deck problems the flow in the main deck is expected to be inviscid and passive,
i.e. not affected by the pressure gradient, in leading order. Furthermore, the deviations from the unperturbed
velocity profile U (y) are taken to be of the same order of magnitude as the streamwise velocity component in
the lower deck:

U (y) − u ∼ δ

�
, v ∼ δ. (9)

The flow in the upper deck incorporates the distortion of the free-surface y = h(x, t) under the near-
critical flow conditions given by 0 < Fr − 1 � 1. For critical flows, disturbances induced in the upper
deck by the imposed boundary layer displacement cannot propagate away from the interaction region. This
resonance results then in the generation of strong nonlinear responses. We anticipate that a boundary layer
displacement of O(δ) will achieve a balance with leading order quadratic nonlinear terms. Hence we expect

Fig. 2 Triple deck structure of interaction region
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the nonlinear response to scale with δ1/2. Evaluation of the mass balance, the streamwise momentum equation
and the boundary conditions at the free surface then yields

1 − h ∼ U (y) − u ∼ v ∼ ∂p

∂x
∼ T ∼ δ1/2, (10)

where we have also scaled the parameter T to incorporate surface tension effects.
We also consider the small amplitude, shallow-water limit where nonlinear amplitude disturbances,

O(δ1/2), and streamline curvature effects identified with the nondimensional depth H̃2/L̃2 in Eqs. (4) are
scaled by

H̃2

L̃2
= δ1/2. (11)

Vertical scales for surface bottom topography consistent with the proposed flow structure give a maximum
obstacle height

smax ∼ O(δ) . (12)

The assumption that the main deck is passive (suggested by previous triple deck studies and confirmed
in Sect. 3.2 to yield a fully self-consistent flow description) gives equivalent estimates in (8) and (10) for the
pressure gradient ∂p/∂x which determines the boundary layer thickness relations

δ = �4/3. (13)

In terms of the expansion parameter

ε = Re−1/9 (14)

Eq. (8) then provides the boundary layer thickness estimates

� = O(ε3), δ = O(ε4) (15)

and leads to estimates of the flow quantities in (8)–(10) which form the basis of the asymptotic expansions.

3.2 Asymptotic analysis

3.2.1 Upper Deck Expansions

Based on the results obtained in Sect. 3.1 the field quantities in the upper deck are expanded in the form

u = 1 + ε2(u02 + u2(x, τ )) + ε3u3(x, τ ) + ε4u4(x, y, τ ) + · · · ,

v = ε2v2(x, y, τ ) + ε3v3(x, y, τ ) + ε4v4(x, y, τ ) + · · · ,

p = p0(y) + ε2 p2(x, τ ) + ε3 p3(x, τ ) + ε4 p4(x, y, τ ) + · · · ,

h = 1 + ε2h2(x, τ ) + ε3h3(x, τ ) + ε4h4(x, τ ) + · · · ,

(16)

where ε is given by (14) and p0(y) = 1 − y is simply the hydrostatic pressure.
The detuning parameter u02 accounts for the (small) deviation of the Froude number from the critical value 1:

u02 = Fr − 1

ε2 . (17)

Furthermore, we look for solutions that evolve on the slow time scale τ = ε2t .
That the condition Fr − 1 = O(ε2) expressed by Eq. (17) can be met is indeed a nontrivial matter and

requires a careful investigation of the displacement effect exerted by the boundary layer upstream of the inter-
action region on the outer inviscid flow. In brief, an upstream boundary layer of thickness O(ε3) will eventually
lead to a perturbed velocity of O(ε3/2). This is larger than the O(ε2) assumed and a singularity will occur in
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the flow upstream of the interaction region described in this paper. A slight lowering of the bottom topography
or suction in the development region can ensure that the velocity perturbation is of the right order.

Flows are perturbed by boundary layer displacements generated in the lower deck and transmitted by the
main deck. This is accounted for by requiring that

lim
y→0

v(x, y, τ ) = ε4vbl(x, τ ), (18)

with vbl determined by matching with the main deck solutions.
Asymptotic solutions to (4) are obtained on substituting in expansions (16) assuming the scalings developed

in Sect. 3.1 and imposing the free surface boundary conditions (7).
One obtains at O(ε2) and O(ε3)

v2 = −y
∂u2

∂x
, p2 = h2 = −u2, (19)

v3 = −y
∂u3

∂x
, p3 = h3 = −u3, (20)

where the velocity disturbances u2, u3 remain arbitrary at this stage of the analysis. In order to determine
u2(x, τ ) it is necessary to consider the terms of O(ε4) in (16). To this end it is convenient to write

u4 = U4(x, y, τ ) + u4(x, τ ),

v4 = V4(x, y, τ ) + v4(x, y, τ ), (21)

p4 = P4(x, y, τ ) + p4(x, y, τ ),

where U4, V4 and P4 are required to satisfy

∂U4

∂x
+ ∂V4

∂y
= 0,

∂U4

∂x
+ ∂ P4

∂x
= 0, (22)

∂v2

∂x
+ ∂ P4

∂y
= 0,

so that

∂u4

∂x
+ ∂v4

∂y
= 0,

∂u4

∂x
+ ∂ p4

∂x
= −∂u2

∂τ
− u2

∂u2

∂x
− u02

∂u2

∂x
, (23)

∂ p4

∂y
= 0.

The solution of Eq. (22) is given by

U4 = −P4 = y2

2

∂2h2

∂x2 , V4 = − y3

6

∂3h2

∂x3 . (24)

Using the first of Eqs. (23) the fourth order contributions to v and p can be written as

v4 = − y3

6

∂3h2

∂x3 − y
∂u4

∂x
+ vb
(x, τ ), p4 = − y2

2

∂2h2

∂x2 + p4, (25)

where vb
(x, τ ) yet unknown accounts for the displacement effect of the inner layers. Evaluation of the bound-
ary conditions (7) at O(ε4) yields

∂h4

∂x
+ ∂u4

∂x
= −∂h2

∂τ
− u02

∂h2

∂x
− u2

∂h2

∂x
− h2

∂u2

∂x
− 1

6

∂3h2

∂x3 + vb
 (26)
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and

p4 = h4 − T̂
∂2h2

∂x2 + 1

2

∂2h2

∂x2 , (27)

where

T̂ = T

ε2 (28)

denotes the properly scaled Weber number.
Using Eq. (27) to eliminate p4 from the second of Eqs. (23) generates a second relationship for the expres-

sion on the left hand side of Eq. (26):

∂h4

∂x
+ ∂u4

∂x
= −∂u2

∂τ
− u02

∂u2

∂x
− u2

∂u2

∂x
+ T̂

∂3h2

∂x3 − 1

2

∂3h2

∂x3 (29)

and, therefore, shows that the second order quantities u2, h2 have to satisfy a solvability condition which can
be cast into the form

∂p2

∂τ
+ u02

∂p2

∂x
− 3

2
p2

∂p2

∂x
+ 3T̂ − 1

6

∂3 p2

∂x3 = 1

2
vb
 (30)

by taking into account the results summarized in Eqs. (19), (20).
With p2 = h2 Eq. (30) also describes the evolution of the free surface profile. The term vbl represents

the boundary layer displacement effect which is not know a priori but involves solutions of the lower deck
equation which in turn are dependent on p2(x, τ ). When, in contrast, vbl is a prescribed function, then (30)
arises in transcritical flows over bottom topography [10].

3.2.2 Main Deck Expansions

Appropriate expansions of the field quantities in the main deck region are

u = U0(y) + εu1(x, y, τ ) + · · · ,

v = ε4v4(x, y, τ ) + · · · , (31)

p = 1 + ε2 p2(x, τ ) + · · · ,

where

y = y

ε3 = O(1). (32)

As in other triple deck problems, the leading order solution describes the passive shift of the unperturbed
velocity profile U0(y) in the lateral direction characterized by the displacement function A1(x, τ ):

u1 = A1(x, τ )U ′
0(y), v4 = −U0(y)

∂ A1

∂x
(x, τ ). (33)

Matching with the results holding in the upper deck yields

vb
 = −∂ A1

∂x
(34)

and

p2 = p2. (35)
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3.2.3 Lower Deck Expansions

Finally, in the lower deck region u, v and p are expanded as

u = εu∗
1(x, y∗, τ ) + · · · ,

v = ε5v∗
5(x, y∗, τ ) + · · · , (36)

p = 1 + ε2 p∗
2(x, τ ) + · · · ,

with

y∗ = y

ε4 = O(1). (37)

From Eqs. (12) and (15) the surface-mounted obstacle is described by y = ε4s4(x). Owing to the slow
variations of the field quantities in the upper deck the flow close to the solid wall is quasi-steady:

∂u∗
1

∂x
+ ∂v∗

5

∂y∗ = 0 ,

u∗
1
∂u∗

1

∂x
+ v∗

5
∂u∗

1

∂y∗ = −∂p∗
2

∂x∗ + ∂2u∗
1

∂y∗2 .

(38)

The boundary conditions include the no-slip condition at the surface-mounted obstacle

y∗ = s4(x, t̂ ) : u∗
1 = v∗

5 = 0 (39)

as well as the requirement that the disturbances caused by the obstacle and/or bore decay upstream

x → −∞ : u∗
1 = λy∗. (40)

Here, the constant λ characterizes the wall shear in the unperturbed boundary layer. Matching of (36) taking
into account (37) with the main deck solution requires

u∗
1 = λ

(
y∗ + A1(x, τ )

)
as y∗ → ∞ (41)

and

p∗
2(x, τ ) = p2(x, τ ). (42)

Consequently, the pressure acting in the lower deck is determined by Eq. (30) where vb
 is replaced with
−∂ A1/∂x , which closes the problem.

As usual it is convenient to reduce the number of parameters entering the lower deck problem by introducing
transformed quantities. A suitable choice is

x = λ−2a3/2 X, y∗ = λ−1a1/2(Y + F), τ = λ−2a3/2|u02|−1 t̂,

u∗
1 = a1/2U, v∗

5 = λa−1/2
(

V − U
∂ F

∂ X

)
, p∗

2 = a P,

A1 = λ−1a1/2 A, s∗
4 = λ−1a1/2 F, a = 2

3
|u02|. (43)

In summary then, the combined triple-deck problem incorporating free surface distortion is given by the
coupled system of equations and boundary conditions

∂U

∂ X
+ ∂V

∂Y
= 0 , (44)

U
∂U

∂ X
+ V

∂U

∂Y
= −∂ P

∂ X
+ ∂2U

∂Y 2 , (45)

Y = 0 : U = V = 0, (46)

X → −∞ : U = Y, (47)

Y → ∞ : U = Y + A, (48)
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∂ P

∂ t̂
+ ∂ P

∂ X
− P

∂ P

∂ X
− W

2

∂3 P

∂ X3 = −�

2

∂(A − F)

∂ X
, (49)

where

W = (1 − 3T̂ )
9

8

λ4

u4
02

, � =
√

3

2

1

λu3/2
02

. (50)

The parameter W characterizes the relative importance of detuning and surface tension and � provides for
streamline curvature and boundary layer displacement effects in the interaction equation (49).

In the limiting case of large Froude number with small non-resonant pressure disturbances equation (49)
with F and W = 0 reduces in the stationary state to

P = −�

2
A(x) (51)

which corresponds to the Fr → 1 limit of the interaction law in [8]. Their analysis involves the non-resonant
triple-deck problem (44)–(49) with interaction law (51).

4 Results

4.1 Linear flow response

Although the main thrust of the present investigation is directed towards the internal structure of hydraulic
jumps it is nevertheless useful to study first the behavior of disturbances that are too weak to generate this
fully nonlinear phenomenon as it is expected to provide insight into the initial departure from the unperturbed
state as X → −∞ and to shed light on the question whether unsteady perturbations caused, for example, by a
suddenly formed surface-mounted obstacle settle down to a steady response in the limit t̂ → ∞. To this end
we introduce the small perturbation parameter α � 1 and expansions

U = Y + αU1 + · · · , V = αV1 + · · · , P = αP1 + · · · ,

A = αA1 + · · · , F = αF1 + . . .
(52)

In leading order one then obtains the linearized boundary layer equations

∂U1

∂ X
+ ∂V1

∂Y
= 0, (53)

Y
∂U1

∂ X
+ V1 = −dP1

dX
+ ∂2U1

∂Y 2 , (54)

subject to the boundary and matching conditions

U1 = V1 = 0 on Y = 0, (55)

U1 = A1 for Y → ∞, (56)

U1 = 0 for X → ∞, (57)

and the interaction law

∂ P1

∂ t̂
+ ∂ P1

∂ X
− W

2

∂3 P1

∂ X3 = −�

2

∂

∂ X
(A1 − F1). (58)

Following [36] the linearized momentum equation (54) is differentiated with respect to Y yielding a single
equation for the perturbation of the shear stress τ1 = ∂U1/∂Y :

Y
∂τ1

∂ X
= ∂2τ1

∂Y 2 , (59)

which can be solved using Fourier transformation. Introducing the Fourier transform

f (ω, Y, t̂ ) = 1√
2π

∫ ∞

−∞
f (X, Y t̂ )e−iωX dX (60)
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of the field quantity f (X, Y, t̂ ), one finds

τ 1 = B(ω, t̂ ) Ai
(
(iω)1/3Y

)
. (61)

Here Ai(s) denotes the Airy function. The yet arbitrary function B(ω, t̂ ) is determined by the matching
and boundary conditions (55)–(57) and the interaction law (58). It can, in general, not be expressed in closed
form. However, if we consider wall-mounted obstacles which are generated suddenly at t̂ = 0, i.e.

F1(X, t̂ ) = C(t̂ )S1(X),

C(t̂ ) =
{

0, t̂ < 0
1, t̂ ≥ 0

(62)

one obtains the analytic expression

B(ω, t̂ ) = 3(iω)5/3

φa(ω)

(
1 − e−a(ω)t̂

)
S1(ω) , (63)

a(ω) = −1

2

ω4/3

φ
+ i

(
ϑ

φ
ω −

√
3

2

ω4/3

φ

)
(64)

with the constants

φ = 6Ai′(0)

�
, (65)

ϑ = φ

(
1 + W

2
ω2

)
. (66)

Back transformation into the X, Y -space then leads to

τw1(X, t̂ ) = τ1(X, 0, t̂ ) = 3
√

2Ai(0)√
π

∞∫

0

S̄1(ω)
ω cos (ωX + π

6 ) + ϑω
2
3 cos (ωX + π

3 )

ω
2
3 + √

3ϑω
1
3 + ϑ2

dω

−3
√

2Ai(0)√
π

∞∫

0

S̄1(ω) exp

(
ω

4
3

2φ
t̂

)
ω cos(ωX + π

6 − ζ ) + ϑω
2
3 cos(ωX + π

3 − ζ )

ω
2
3 + √

3ϑω
1
3 + ϑ2

dω, (67)

ζ = ζ(ω, t̂ ) = ω

φ

(
ϑ +

√
3

2
ω1/3

)
t̂ (68)

as well as the results
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for the leading order perturbations of P(X, t̂ ) and A(X, t̂ ). Taking into account that � ≥ 0 and Ai′(0) =
−(31/3 �(1/3))−1 < 0 it follows immediately that the time-dependent terms in Eqs. (67), (69) and (70) decay
with increasing time t̂ for all values X so that a steady flow response

τw1(X) = 3Ai(0)√
π

∞∫
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ω cos (ωX + π

6 ) + ϑω
2
3 cos (ωX + π

3 )

ω
2
3 + √

3ϑω
1
3 + ϑ2

dω,
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A1(X) = 1√
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3ϑω
1
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is approached asymptotically as t̂ tends to infinity.
As a specific example we consider a Gaussian hump centred at X = X0:

S1(X) = e−a(X−X0)
2
, (72)

where a > 0. Figure 3 displays the temporal evolution of the pressure disturbances P1(X, t̂ ) for W = � = 1.
It is seen that the sudden emergence of the hump at t̂ = 0 causes the formation of a wavetrain on its lee
side which—as the flow stays supercritical throughout—propagates downstream and decays due to viscous
dissipation. As a consequence, a steady state is approached in the limit t̂ → ∞. The distributions of P1, A1, τw1
characterizing this final steady state are depicted in Fig. 4. Similar to the predictions of purely hydraulic theory
the positive displacement of the fluid exerted by the obstacle causes the pressure to rise initially before it drops
and returns to the unperturbed level. Also, as to be expected from classical boundary layer theory, the initial
pressure increase leads to a reduction of the wall shear while the acceleration of the fluid resulting from the
subsequent pressure drop results in a local maximum of τw1. In contrast to purely hydraulic theory, however,
the obstacle exhibits an upstream influence which can be determined from Eqs. (67), (69), (70) by taking the
limit X → −∞ using the residue theorem or more directly by following Lighthill’s [20] and Stewartson’s
[36] analysis of upstream influence in supersonic boundary layers, considering disturbances of the incoming
uniform flow of the form

U ∼ Y − a1eκ X f ′(Y ) + · · · , V ∼ a1κeκ X f (Y ) + · · · , P ∼ a1eκ X + · · · . (73)

The solution of the boundary layer equations (44), (45) satisfying the no-slip conditions (46) is then given
by

f ′(Y ) = − κ2/3

Ai′(0)

Y∫

0

Ai(zκ1/3)dz. (74)

Evaluation of the matching condition (48) leads to the well-known result for the displacement function

A ∼ −Ca1κ
1/3eκ X , C = − 1

3Ai′(0)
. (75)

Finally, substitution of the expressions for P and A into the linearized form of the interaction law (49)
yields the dispersion relation

1 − C�

2
κ1/3 − W

2
κ2 = 0, (76)

which determines κ(W, �) in (73). Real solutions exist for

W ≥ Wc = −C6�6

32

55

66 . (77)
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Fig. 3 Temporal evolution of the leading order pressure disturbances P1 generated by a Gaussian hump centred at X = 0 for
W = � = 1

The parameter κ describes the initial exponential growth of the disturbance and for positive W is uniquely
given by (76). A graph of the dispersion relationship is depicted in Fig. 5. Here use has been made of the fact
that the solutions of Eq. (76) reduce to a single curve when expressed in terms of the transformed variables
κ = C3�3κ/8, W = 32W/(C6�6).

The physically important result that unsteady disturbances generated all of a sudden settle down to a steady
state has been inferred so far from the structure of the closed form solution (67)–(70). However, this formal
deduction does not apply if one considers more complex body shapes and associated time histories. Also, it
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Fig. 4 Steady flow: leading order perturbations of the wall pressure P1, the wall shear τw1 and the displacement function A1

Fig. 5 Graph of dispersion relation (76)

does not shed light on the mechanism by which the unsteady part of the flow motion is damped out in the
limit t̂ → ∞. Obviously, this mechanism will be related to the occurrence of the perturbation displacement
thickness in the interaction relationship (49), but how? Here the key observation is that the Fourier transform
S1(ω) can easily be eliminated from the results for A1(ω, t̂ ) and P1(ω, t̂ ) to yield the relationship

A(ω, t̂ ) = (iω)1/3

3Ai′(0)
P1(ω, t̂ ), (78)

whose steady counterpart has been derived much earlier in the different context of transonic shock boundary
layer interactions [4]. Application of the convolution theorem then yields

A1(X, t̂ ) = 1

3Ai′(0)�( 2
3 )

X∫

−∞

1

(X − X ′)1/3

∂ P1(X ′, t̂ )

∂ X ′ dX ′. (79)

Using the definition of the fractional derivative of order p (e.g. [27])

∂ p f

∂ X p
= 1

�(1 − p)

X∫

−∞

1

(X − X ′)p

∂ f

∂ X ′ dX ′, (80)
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where �(p) is the Gamma function and f is a physical quantity dependent on a space variable X and time t̂ ,
Eq. (79) can also be written in the form

A1 = 1

3Ai′(0)

∂1/3 P1

∂ X1/3 . (81)

Finally, by substituting Eq. (81) into the linearized form (58) of the interaction equation one obtains the
single transport equation

∂ P1

∂ t̂
+ ∂ P1

∂ X
− W

2

∂3 P1

∂ X3 = − �

6Ai′(0)

∂4/3 P

∂ X4/3 + �

2

∂ F1

∂ X
, (82)

which governs the spatial and temporal evolution of the induced pressure disturbances P1(X, t̂ ). According
to [40] the first term on the right-hand side acts as a diffusive term if—as in the present case—the order p of
the fractional derivative satisfies the condition 0 < p − 1 < 1 which provides a rigorous explanation why
flow perturbations caused by a surface-mounted obstacle whose shape does not change in the limit t̂ → ∞
approach a steady state as observed first for the specific case (62). Interestingly, Eq. (81) can be shown to hold
also in cases where weakly nonlinear effects come into play provided that the characteristic wavelength is
sufficiently large. This is especially important for two layer flows where it may lead to the formation of non-
classical hydraulic jumps as will be shown in a separate study presenting numerical solutions of appropriately
generalized forms of Eq. (82).

4.2 Nonlinear eigensolutions—bores

The lower deck problem (44)–(49) has to be solved numerically in general even in the case of steady flow to
which the following considerations will be restricted. In this connection, it is useful to investigate the interac-
tion law (49) in more detail. Specifically, we assume that the dispersive term is negligibly small as W → 0
and that P and A are independent of t̂ . As a consequence, Eq. (49) with F = 0 can immediately be integrated
to yield the algebraic relation

P(X) = 1 ± √
1 + �A(X). (83)

An interaction law of this form arises in transonic flows in slender channels (see [17]). When A is a given
prescribed function then (83) also occurs in shallow-water near-critical flows over bottom topography in the
hydraulic limit with P from (19) identified with the free surface displacement. In this case the bottom topog-
raphy is described by −�A. In Fig. 6 the plot of P (=3h2/(2u02)) versus �A identifies critical conditions at
P = 1, A = −1/� and, as �A increases, a supercritical branch where P increases and a subcritical branch
where P decreases. Also it should be noted that a pressure jump between the subcritical and supercritical
branches agrees with pressure jumps across weak bores when hydraulic theory is applied to (49). Indicated
in Fig. 6 is a jump from an undisturbed upstream supercritical state (P = 0) to a downstream subcritical
state (P = 2). This raises the possibility that the lower deck problem admits eigensolutions, i.e. nontrivial
solutions which, in turn, through the coupling (48) generates displacements −�A enabling the downstream
and upstream states of such jumps to be connected along the portion of the curve (83) which passes through
the critical point, thereby generating an internal viscous structure. The above considerations will be confirmed
by numerical calculations.

For the stationary problem, the full coupling equation (49) with F ≡ 0 can also be integrated to yield

−P + 1

2
P2 + W

2

d2 P

dX2 = �

2
A, (84)

where P vanishes in the unperturbed state.
The system of equations (44)–(48) and (84) has been solved with a finite difference method using a Crank–

Nicholson scheme and a marching procedure in the main stream (i.e. positive X ) direction. The pressure gra-
dient dP/dX has been introduced as a new dependent variable so that only first derivatives with respect to X
appear in (84) as required by the Crank–Nicholson scheme. The matching condition (48) has been replaced by

∂U

∂Y
(X, Ymax) = 1 (85)

and a value Ymax has been determined such that (85) is fulfilled to an accuracy of 10−10.
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Fig. 6 Pressure-displacement relationship (83) for supercritical upstream conditions. Supercritical and subcritical branches can
be connected by a jump discontinuity satisfying hydraulic theory

Fig. 7 Structure of hydraulic jump for W = 0, � = 1

To initiate the solution, a small pressure disturbance is prescribed at X = Xi . An initial profile for U , valid
for large negative X is provided by the asymptotic analysis summarized in Sect. 4.1.

Where separated flow is encountered the FLARE approximation, Reyhner and Flügge-Lotz [31] has been
adopted which yields reasonably good results for the displayed quantities, in particular for the pressure dis-
turbance and for the displacement thickness, as long as the region of reversed flow remains small, as it is the
case for the results presented below.

Two representative examples of eigensolutions in non-dispersive flows W = 0 are considered in Figs. 7
and 8 which display the distributions of A, P and the wall shear τw = ∂U/∂Y (X, 0) for � = 1 and � = 0.47.
To initiate the solution, a small positive pressure kick P = 10−4 was imposed at X = 0. With increasing
distance X the pressure is found to rise monotonically which in turn leads to an increase of the perturbation
displacement thickness −A and a reduction of the wall shear τw. Eventually, the critical state P = 1 is reached.
Further downstream the perturbation displacement thickness decreases, thus generating a ‘viscous’ hump with
profile −A(X) which triggers the transition from supercritical to subcritical flow conditions. Consequently P
continues to rise and approaches the correct downstream value P = 2 associated with the prescribed upstream
value P = 0 asymptotically in the limit X → ∞, see Fig. 6. Owing to the very slow pressure increase for X
large, the wall shear increases also and returns to its unperturbed level τw = 1.

We also note that the pressure distribution P(X) characterizes the shape of the free surface, and Fig. 7 then
describes a structured hydraulic jump from a supercritical flow upstream to subcritical flow downstream.

Inspection of Fig. 8 shows that the flow properties remain unchanged qualitatively if the forcing parameter
� is reduced to a value of 0.47. According to the definition (50) of � and the relationship (17) this reduction
of the forcing parameter corresponds to an increase of the Froude number upstream of the bore if the Reynolds
number is kept fixed. Consequently, a substantially larger pressure increase is required to achieve the transition
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Fig. 8 Structure of hydraulic jumps for W = 0, � = 0.47 with the formation of a separated flow region

through the critical state. This phenomenon is not visible in the graph of the (transformed) pressure P which, as
before, rises from P = 0 to P = 2 but has a substantial effect on the distributions of −A and τw. Owing to the
much larger unfavourable pressure gradient, the viscous wall layer exhibits a significantly larger displacement
effect than before, which in turn causes the formation of a separated flow region. Similar to Fig. 7 the minimum
of the wall shear occurs well ahead of the maximum of −A. The solution of (76) for W = 0,

κ = κ0 =
(

2

C�

)3

, (86)

shows that a reduction of � results in a faster pressure rise initially. This is in agreement with the numerical
results depicted in Figs. 7 and 8.

Before turning to a discussion of numerical solutions for dispersive flows it is useful to investigate the
properties of eigensolutions far downstream (X → ∞). These have been investigated in [9], extending the
work of [33,35].

To study the flow behavior far downstream X → ∞ of a bore it is convenient to introduce the streamfunction
�(X, Y ) : U = ∂�/∂Y , V = −∂�/∂ X . The expansion of � for Y → ∞ is of the form

�(X, Y → ∞) ∼ 1

2
(Y + A(X))2 + P(X) + o(Y −r ), ∀ r. (87)

Since the pressure downstream of a bore is known to approach the value P = 2 as X → ∞, one obtains
the asymptotic behavior

�(X → ∞, Y → ∞) ∼ 1

2
Y 2 + A(X)Y + 2, (88)

which has to be compared with the similarity form of the streamfunction, see [9],

�(X → ∞, Y ) ∼ 1

2
Y 2 + C Xλ R(η) + · · · , η = Y

X1/3 , (89)

where the eigensolution with eigenvalue λ has the asymptotic behavior

R(η → ∞) ∼ K1η + K2η
3λ + K3e−3λ−4e−η3/9, λ �= 1

3
. (90)

Here K1 and K3 are arbitrary constants, while

K2 = �( 2
3 )3−2λ+1/3

(3λ − 1)�(λ + 1)
. (91)

� then in the limit X → ∞, Y → ∞ is given by

�(X → ∞, Y → ∞) ∼ 1

2
Y 2 + C K1 Xλ−1/3Y + CK2Y 3λ · · · (92)
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Fig. 9 Effect of the parameter W on the structure of hydraulic jumps for � = 1

From a comparison of Eqs. (88) and (92) one infers that λ = 0 and

A(X → ∞) ∼ C̄ X−1/3, C̄ = C K1. (93)

Finally, substituting Eq. (93) into the linearized non-dispersive interaction equation yields for the asymp-
totic behavior of the pressure distribution

P(X → ∞) ∼ 2 + �C̄

2
X−1/3. (94)
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Fig. 10 Effect of the detuning parameter � on the structure of hydraulic jumps for W = 5 with � = (0.674, 0.8, 0.9, 1, 1.1)

We now turn to a discussion of numerical results for dispersive flows W > 0 where the effects caused by
streamline curvature dominate the effect of surface tension. In Fig. 9 solutions are presented for � fixed and
varying W . For W � 1 an approximate solution of the dispersion relation (76) gives

κ ∼ κ0 − Wκ1, κ1 = 3

2
κ3

0 . (95)
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Fig. 11 Comparison of the numerical results for W = 10, � = 1 with the asymptotic results (93), (94) for X → ∞

With the upstream behavior given by P ∼ a1eκx , the increasing values of W will delay the initial pressure
rise associated with the bore formation. This delay is evident in Fig. 9.

Further downstream, however, the pressure is found to rise faster than in the case of non-dispersive flow
which is associated with a reduction of the minimum wall shear. Finally, as to be expected, the pressure rise
ceases to be monotonic if the magnitude of the dispersion coefficient is sufficiently large. The resulting pressure
oscillations cause the wall shear to oscillate also.

Variations of � with W = 5 kept fixed are investigated in Fig. 10. As predicted by the dispersion
relation (76) decreasing values of � result in a faster pressure rise initially but the pressure distribution remains
qualitatively unchanged. The associated increase of the pressure gradient, however, is seen to cause a severe
thickening of the viscous wall layer. This process is accompanied by the emergence of an increasingly pro-
nounced local maximum of the perturbation displacement thickness −A(X) which eventually is transformed
into a kink at Xc ≈ 15.6 as � approaches a critical value � ≈ 0.674. Also the wall shear distribution changes
drastically in the limit � → �c where τw(X) exhibits a kink at X = Xc too and τw(Xc) = 0. Numerical
computations for � < �c point to the occurrence of a singularity upstream of Xc beyond which the solution
cannot be continued. The reasons for this breakdown of the interaction equations are not fully understood at
present. It should be noted, however, that results similar to those for � ≈ �c shown in Fig. 10 have been
obtained in the different context of marginally separating laminar boundary layers with imposed rather than
induced pressure gradient by [32] and [39]. This suggests that the interaction mechanism envisaged here may
be too weak as X → Xc and has to be modified at least locally, but this has to be investigated yet.

A comparison between numerical results and the asymptotic expressions (93), (94) for X → ∞ is shown
in Fig. 11. It is observed that these expressions are well capable of predicting both the rather fast approach of
P towards the limiting value 2 and the slow return of A to its upstream value 0.

The flow behavior changes drastically if the effects of surface tension are larger than those caused by
streamline curvature, i.e. if W < 0, Fig. 12. Even very small negative values of W destroy the exponential
pressure rise for X → −∞ observed if W > 0 and result in an oscillatory upstream behavior, again in
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Fig. 12 Numerical results for three cases of negative dispersion and � = 1

agreement with the conclusions based on the structure (84). More importantly, however, there is no tendency
towards a pressure plateau as the distance X increases and the numerical scheme eventually ceases to converge
due to the occurrence of very large pressure gradients. A similar behavior has been reported in the study by
[8] dealing with fully developed flows and it may be related to the formation of a region of reversed flow near
the free surface [11]. However, no definite conclusion can be drawn yet.
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Fig. 13 Interaction of a hydraulic jump with an isolated obstacle of the form (96) for W = 5, � = 1 and three values of the
parameter H characterizing the height of the obstacle. The observed downstream branching represents the bracketing of the
solutions by applying two slightly different upstream initial conditions in the numerical shooting technique

4.3 Interaction of a bore with a surface-mounted obstacle

In the preceding section we have considered (nonlinear) eigensolutions of the lower deck problem (44) to (49)
which represent the dissipative-dispersive internal structure of bores. As an example of a nonlinear forced
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solution of this problem, Fig. 13 shows numerical results for steady flow past a single hump

F(X) = He−4(X−X0)2
. (96)

As before, the unperturbed flow is taken to be supercritical. Upstream of the hump where F = 0
(essentially) the pressure distribution is given by the eigensolution discussed before. The effect of increasing
height H of the obstacle is to push the initial pressure rise associated with this eigensolution further upstream.
This is taken into account in Fig. 13 by shifting the obstacle downstream so that the upstream pressure distri-
butions coincide. For small H the flow remains supercritical throughout: P < 1 for −∞ < X < ∞ and the
numerical results are found to agree very well with the predictions (93) and (94) resulting from the linearized
version of the fundamental problem. However, if H is sufficiently large, a fully developed bore forms before
the hump as can be seen from the result for H = 5. This means that the hump now is exposed to a subcritical
flow P > 1 and, therefore, triggers a transition to supercritical conditions P < 1 and, eventually, a return to the
unperturbed upstream state P = 0. It is interesting to note that this process is associated with an over-expansion
of the flow, i.e. the pressure drops too low and slowly recovers.

5 Conclusions

Weakly nonlinear gravity waves in single layer fluids have been studied in the limit of large Reynolds number
assuming that viscous effects are confined to a thin boundary layer adjacent to the solid boundary. Asymptotic
analysis for Fr − 1 → 0 and Re → ∞ shows that the wave motion in this limit is governed by the classical
triple-deck equations. These equations are supplemented, however, with a novel nonlinear interaction law that
resembles the evolution equation for small amplitude disturbances in inviscid hydraulic flows and, therefore,
allows for the passage through the critical state. Most importantly, it is found that the resulting lower deck
problem possesses eigensolutions which describe the viscous dissipative structure of bores.

Numerical solutions of the lower deck problem have been obtained for situations where the (dispersive)
effects of streamline curvature dominate over those due to surface tension and vice versa. In the first case
eigensolutions are seen to exist for all values of the relevant parameter W > 0. For moderately large values
of W such solutions can be obtained in a wide range of the detuning parameter � being proportional to the
inverse of the difference between the unperturbed Froude number and its critical value 1. With increasing
detuning, i.e. by decreasing �, the minimum of the wall shear stress drops and a separated flow region is
formed eventually. Solutions for larger values of W show a different behavior. As before, decreasing values
of � lead to a reduction of the minimum of the wall shear stress distribution which, however, now is found to
exhibit a kink at the point of incipient separation similar to the case of marginally separating boundary layers.
Solutions of the interaction problem for smaller values of � do not seem to exist, possibly indicating that the
interaction mechanism considered here then is too weak and has to be modified at least locally.

While the disturbances of the flow decay exponentially far upstream if W > 0 or W < 0 and |W |
sufficiently small, oscillatory flow behavior is observed for larger values of |W |, W < 0. As in [2] disturbances
of this latter type cannot be marched forward to arbitrary large downstream distances and physically sensible
eigensolutions, therefore, cannot be constructed in this case. A somewhat similar difficulty was encountered
also by [11] who speculated that it may be associated with the formation of a roller at the free surface.
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