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Abstract In this paper a thick hollow cylinder with finite length made of two-dimensional functionally graded
material (2D-FGM) and subjected to impact internal pressure is considered. The axisymmetric conditions
are assumed for the 2D-FG cylinder. The finite element method with graded material properties within each
element is used to model the structure, and the Newmark direct integration method is implemented to solve the
time dependent equations. The time histories of displacements, stresses and 2D wave propagation are investi-
gated for various values of volume fraction exponents. Also the effects of mechanical properties distribution in
radial and axial direction on the time responses of the FG cylinder as well as the stress distribution are studied
and compared with a cylinder made of 1D-FGM. The achieved results show that using 2D-FGM leads to a
more flexible design. To verify the presented method and data, the results are compared to published data.

1 Introduction

In recent years, the composition of several different materials is often used in structural components in order to
optimize the responses of structures subjected to thermal and mechanical loads. Functionally graded materials
(FGMs) are suitable to achieve this purpose. The mechanical properties of FGMs vary continuously between
several different materials. This idea was used for the first time by Japanese researchers [1], leads to the concept
of FGMs. Most of researches in this area are concerned with the thermo-elastic and residual stress analysis. In
many applications of these materials the dynamic behavior and wave propagation characteristics are of great
importance in addition to thermal and residual stress considerations. One-dimensional stress wave propaga-
tion was considered by Liu et al. [2], Chui et al. [3] and Bruck [4]. The response of a functionally graded
metal-ceramic plate under impulsive loading was discussed by Li et al. [5]. Also Han et al. [6] studied the
response of FGM plates under impact loads in three dimensions numerically. Berezovski et al. [7] analyzed the
numerical simulation of 2D wave propagation in FGMs by two distinct models as multi layered and randomly
embedded particles with prescribed volume fraction. Barta and Love [8] used FEM to analyze transient plane
strain deformation of an FG elastic body. Zhang and Batra [9] used a meshless method, namely the modified
smoothed particle hydrodynamics, to study an elasto-dynamic problem and propagation of an elastic wave in
FGM. Shakeri et al. [10] presented the vibration and radial wave propagation velocity in a functionally graded

M. Asgari · M. Akhlaghi (B)
Mechanical Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413,
Hafez Avenue, Tehran, Iran
E-mail: makhlagi@aut.ac.ir
Tel.: +98-21-64543409
Fax: +98-21-66419736

S. M. Hosseini
Mechanical Engineering Department, Khorasan Research Institute of Sciences and Food Technology,
P.O. Box 91735-139, Mashhad, Iran



164 M. Asgari et al.

thick hollow cylinder under dynamic loading by dividing the cylinder into many homogeneous sub-cylinders.
Hosseini et al. [11] studied the dynamic responses and natural frequencies of a functionally graded cylinder
under internal pressure. In most of the cases mentioned the variation of volume fraction and properties of the
FGMs are 1D and properties vary continuously from one surface to the other with a prescribed function. But
conventional FGM may also not be so effective in some design problems since all outer or inner surfaces will
have the same composition distribution while in advanced machine elements temperature and load distribution
may change in two or three directions [12]. Therefore, if the FGM has 2D dependent material properties more
effective material resistance can be obtained. Based on this fact, a 2D-FGM whose material properties are
bi-directionally dependent is introduced. Recently a few authors have investigated 2D-FGM. Dhaliwal and
Singh [13] solved the equations of equilibrium for a non-homogeneous elastic solid under shearing forces.
The modulus of rigidity of their considered material varied exponentially in lateral and vertical direction.
Clement et al. [14] considered the solution of anti plane deformation in homogenous elasticity when the shear
modulus varied with two Cartesian coordinates. Aboudi et al. [15] studied thermo-elastic/plastic theory for the
response of materials functionally graded in two directions. Cho and Ha [16] optimized the volume fraction
distributions of 2D-FGM for relaxing the effective thermal stresses. Hedia et al. [17] modeled the backing
shell of the cemented acetabular cup with 2D-FGM and compared its performance in the reduction of stress
against 1-D FGM cup.

There are numerous numerical methods to model the variation of material properties in FGMs. Conven-
tional finite element formulations use a single material property for each element such that the property field
is constant within an individual element. But using this method for wave propagation and dynamic prob-
lems leads to significant discontinuities and inaccuracies [18]. These inaccuracies will be more significant in
2D-FGM cases. Banks et al. [19] investigated the effects of using different FEM approximations on the stress
wave propagation through the graded materials. Scheidler and Gazonas [20] considered wave propagation in
an elastic medium with a quadratic impedance variation through the thickness, subjected to both step and
impact loading. Sentare and Lambros [21] and Kim and Paulino [22] showed that graded finite elements can
improve accuracy without increasing the number of degrees of freedom and decreasing the size of elements.

Analyses of dynamic loading and wave propagation in thick hollow cylinders with finite length made of
2D-FGMs were not seen in the previous literatures. In this paper, a thick hollow cylinder with finite length
made of 2D-FGM is considered. The material properties of this cylinder are varied in the radial and axial
directions with power law functions. The response of the structure under dynamic internal pressure, intro-
duced by an impact function is investigated. The time history of displacements and stresses, 2D distribution of
stresses in the cylinder and 2D stress wave propagation are studied for various kinds of mechanical properties
variations in 2D-FGM cylinders. The cylinder is considered in axisymmetric conditions. The effects of 2D
mechanical properties distribution across the thickness and length of the cylinder on the time responses and
other parameters such as stress distributions and stress wave propagation are obtained, and some of them are
compared to data from a 1D FG cylinder.

2 Problem formulation

In this Section volume fraction distributions in the two radial and axial directions are introduced. The governing
equations of motion in axisymmetric cylindrical coordinates are obtained, and graded finite element is used
for modeling the non-homogeneity of the material.

2.1 Volume fraction and material distribution in 2D-FGM cylinder

In the conventional 1D functionally graded cylinder, the cylinder’s material is graded in the radial direction.
The cylinder is made of a combined metal-ceramic material for which the mixing ratio is varied continuously
in the r -direction from pure ceramic in the inner surface to pure metal in the outer surface or vice versa. In
such cases the volume fraction variation of the metal is proposed as [10]

Vm(r) =
(

r − ri

ro − ri

)n

, (1)

where ri and ro denote the inner and outer radii of the hollow cylinder and n is a non-negative constant.
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Fig. 1 Axisymmetric cylinder with two-dimensional material distribution

Using the rule of mixtures, the distribution of the material properties is given by

P = (Pm − Pc)

(
r − ri

ro − ri

)n

+ Pc, (2)

where P is the material property such as mass density and modulus of elasticity. And m and c subscripts stand
for metal and ceramic.

Two-dimensional FGMs are usually made by continuous gradation of three or four distinct material phases
where one or two of them are ceramics and the others are metal alloy phases, and the volume fractions of
the constituents vary in a predetermined composition profile. Now consider the volume fractions of 2D-FGM
at any arbitrary point in the 2D-FG axisymmetric cylinder shown in Fig. 1. In the present cylinder the inner
surface is made of two distinct ceramics and the outer surface of two metals. c1, c2, m1 and m2 denote first
ceramic, second ceramic, first metal and second metal, respectively. Also ri, ro and L are internal radius,
external radius and length of cylinder, respectively.

The volume fraction of the first ceramic material is changed from 100% at the lower surface to zero at the
upper surface. And also this volume fraction changes continuously from inner surface to the outer surface.
In other words the volume fraction varies in the radial and axial directions with predetermined continuous
functions. Volume fractions of the other materials change similar to the mentioned one in two directions. The
volume fraction distribution function of each material can be explained as

Vc1 =
[

1 −
(

r − ri

ro − ri

)nr
] [

1 −
( z

L

)nz
]
, (3)

Vc2 =
[

1 −
(

r − ri

ro − ri

)nr
] [(

Z

L

)nz
]
, (4)

Vm1 =
(

r − ri

ro − ri

)nr
[

1 −
(

Z

L

)nz
]
, (5)

Vm2 =
(

r − ri

ro − ri

)nr
(

Z

L

)nz

, (6)

where subscripts c1, c2, m1 and m2 denote first ceramic, second ceramic, first metal and second metal, respec-
tively. Also nr and nz are non-zero parameters that represent the basic constituent distributions in r - and
z-directions. From proposed volume fraction functions, the volume fractions of the basic materials on each
boundary surface are

at r = ri, z = 0 ⇒ Vc1 = 1, Vc2 = 0, Vm1 = 0, Vm2 = 0,

at r = ro, z = 0 ⇒ Vc1 = 0, Vc2 = 0, Vm1 = 1, Vm2 = 0,

at r = ri, z = L ⇒ Vc1 = 0, Vc2 = 1, Vm1 = 0, Vm2 = 0,

at r = ro, z = L ⇒ Vc1 = 0, Vc2 = 0, Vm1 = 0, Vm2 = 1.

For instance, the volume fraction distributions of two basic materials for the typical values of nr = 2 and nz = 3
are shown in Figs. 2 and 3. In this case ri = 1 m, ro = 1.5 m, L = 1 m.
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Fig. 2 Volume fraction distribution of m1

Fig. 3 Volume fraction distribution of c2

Table 1 Basic constituents of the 2D-FGM cylinder

Constituents Material E(GPa) ρ (kg/m3)

m1 Ti6Al4V 115 4,515
m2 Al 1,100 69 2,715
c1 SiC 440 3,210
c2 Al2O3 300 3,470

The material properties at each point can be obtained by using the linear rule of mixtures in which a material
property, P , at an arbitrary point, (r, z) in the 2D-FGM cylinder is determined by linear combination of volume
fractions and material properties of basic materials as

P = Pc1Vc1 + Pc2Vc2 + Pm1Vm1 + Pm2Vm2. (7)

The basic constituents of the 2D-FGM cylinder are presented in Table 1.
The distribution of one typical material property, mass density, through the cylinder is shown in Fig. 4.
It should be noted that Poisson’s ratio is assumed to be constant through the body. This assumption is

reasonable because of small differences between the Poisson’s ratios of the basic materials.
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Fig. 4 Distribution of mass density through the cylinder

2.2 Governing equations

Consider a 2D-FG thick hollow cylinder of internal radius ri, external radius ro and finite length L . Because of
the axisymmetric geometry and loading, coordinates r and z are used in the analysis. Neglecting body forces,
the equations of motion in axisymmetric cylindrical coordinates are obtained as

∂σrr

∂r
+ σrr − σθθ

r
+ ∂τr z

∂z
= ρ(r, z)

∂2u

∂t2 , (8)

∂τr z

∂r
+ ∂σzz

∂z
+ τr z

r
= ρ(r, z)

∂2w

∂t2 , (9)

where u and w are radial and axial components of displacement, respectively, and ρ(r, z) is the mass density
that depends on r and z coordinates. The constitutive equations for FGM are written as

{
σi j

} = [
Di j

] {
εi j

}
, (10)

where the stress and strain components and the coefficients of elasticity are
{
σi j

} = [
σrr σθθ σzz τr z

]
, (11){

εi j
} = [

εrr εθθ εzz εr z
]
, (12)

[D] = E(r, z)

(1 + ν)+ (1 − 2ν)

⎡
⎢⎣

1 − ν ν ν 0
ν 1 − ν ν 0
v ν 1 − ν 0
0 0 0 1−2ν

2

⎤
⎥⎦ , (13)

where ν denotes the Poisson’s ratio and E(r, z) is Young’s modulus that depends on r and z coordinates. The
strain-displacement equations are [23]

εr = ∂u

∂r
, (14.1)

εθ = u

r
, (14.2)

εz = ∂w

∂z
, (14.3)

γr z = ∂u

∂z
+ ∂w

∂r
. (14.4)
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The cylinder is clamped on its two end edges. It is subjected to axisymetric internal pressure that varies
with time. Thus, the mechanical boundary conditions on upper and lower surfaces are assumed as

u(r, 0) = u(r, L) = w(r, 0) = w(r, L) = 0 (15)

and also on the inner and outer surfaces are

σrr (ri, z) = Pi(z, t), (16)

σrr (ro, z) = τr z(ri, z) = τr z(ro, z) = 0. (17)

It is notable that the present solution method can be used for any arbitrary function of time as the load
function. The variation of internal pressure with time and its distribution along the axial direction will be
described later.

2.3 Graded finite element modeling

In order to solve the governing equations the finite element method with graded element properties is used.
For this purpose the Ritz’s variational formulation is considered. In conventional finite element formulations
a predetermined set of material properties is used for each element such that the property field is constant
within an individual element. For modeling a continuously non-homogeneous material, the material property
function must be discretized according to the size of element’s mesh. This approximation can provide sig-
nificant discontinuities. These artificial discontinuities especially in dynamic and wave propagation problems
can cause an enormous error in the results [18]. On the other hand, using a graded finite element in which the
material property field is graded continuously through the elements, the accuracy can be improved without
refining the mesh size [21,22]. In addition, the variation of material properties in two directions such as the
present problem makes this effect more considerable. Based on these facts the graded finite element is strongly
preferable for modeling of the present problem.

Hamilton’s principle for the present problem is

t2∫
t1

δ(U − T − W )dt = 0, (18)

where U, T and W are potential energy, kinetic energy and virtual work done by surface tractions, respectively.
These functions and their variations are

T = 1/2
∫
V

ρu̇i u̇i dV, (19.1)

δT =
∫
V

ρüiδV, (19.2)

U =
∫
V

σi jεi j dV , (20.1)

δU =
∫
V

σi jδεi j dV, (20.2)

W =
∫
A

pi ui dA, (21.1)

δW =
∫
A

piδui dA, (21.2)
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where A and V denote the area and volume of the domain under consideration and pi is the component of
surface tractions.

Substituting Eqs. (19)–(21) in Hamilton’s principle and applying side conditions, δui (t1) = δui (t2) = 0,
and by part integration we have∫

V

σi jδεi j dV +
∫
V

ρüiδui dV =
∫
A

piδui dA. (22)

The strain-displacement relations can be written as

{ε} = [L] {u} , (23)

where

{ε} =

⎧⎪⎨
⎪⎩
εrr
εθθ
εθ z
εr z

⎫⎪⎬
⎪⎭, (24.1)

[L] =
⎡
⎢⎣
∂/∂r 0
1/r 0
0 ∂/∂z
1
2 ∂/∂z 1

2∂/∂r

⎤
⎥⎦ , (24.2)

{u} =
{

u
w

}
. (24.3)

An axisymmetric ring element with triangular cross-section is used to discrete the domain. By taking the
nodal values of u and w as the degrees of freedom a linear displacement model can be assumed as [23]

{
u(t)
w(t)

}e

= [N ]
{

Qe(t)
}
, (25)

where [N ] is the matrix of linear interpolation functions and {Qe(t)} is the nodal displacement vector of the
element. Components of them are given in the Appendix.

Using Eqs. (24) and (25) we can write

{ε} = [B]
{

Qe}, (26)

where

[B] = [L] [N ], (27)

where the components of matrix [B] are given in the Appendix.
Applying Hamilton’s principle for each element and substituting Eqs. (10), (25) and (26), it can be achieved

δ
{

Qe}T

⎡
⎣ ∫

V e

[B]T [D] [B] dV

⎤
⎦{

Qe} + δ
{

Qe}T

⎡
⎣ ∫

V e

ρ [N ]T [N ] dV

⎤
⎦{

Q̈e}

= δ
{

Qe}T

⎡
⎣ ∫

Se

ρ [N ]T {P} ds

⎤
⎦ , (28)

where V e, Se and {P} are volume of element, area under pressure and vector of surface tractions, respectively.
In a graded finite element, the interpolation function for the displacements within the elements and

the strain-displacement relations are the same as for standard conventional finite element as for explained
in Eqs. (24) and (25). In this way the constitutive relation is

{σ(r, z)} = [D(r, z)] {ε(r, z)} , (29)
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where the components of [D(r, z)] could be explicit functions describing the actual material property gradient
in which E(r, z) is determined at each point through the element using the distribution function of this property
based on the rule of mixtures as

E(r, z) = Ec1Vc1(r, z)+ Ec2Vc2(r, z)+ Em1Vm1(r, z)+ Em2Vm2(r, z). (30)

And also, the mass density ρ(r, z) is in general a function of position as well as of the mechanical proper-
ties. Therefore in the graded finite element the mass density distribution should be assigned to the element
formulation same as the stiffness property as

ρ(r, z) = ρc1Vc1(r, z)+ ρc2Vc2(r, z)+ ρm1Vm1(r, z)+ ρm2Vm2(r, z). (31)

Using Eqs. (29)–(31) and substituting them to Eq. (28) we have

[M]e { ..Q} + [K ]e {Q} = {F}e , (32)

where the characteristic matrices are given as

[K ]e =
∫
V

[B(r, z)]T [D(r, z)] [B(r, z)] dV , (33)

[M]e =
∫
V

[N (r, z)]T [N (r, z)] ρ(r, z)dV , (34)

{F}e =
∫
sc

[N ]T {P} ds. (35)

For finding the components of characteristic matrices the integral must be taken over the elements’ volume.
Also neglecting body forces and initial strains (caused by temperature) the load vector due to surface tractions
can be evaluated by integration over surfaces under pressure. As [D(r, z)] and ρ(r, z) are not constant, these
matrices are evaluated by numerical integration for each element.

Now by assembling the element matrices, the global matrix equation for the structure can be obtained as

[M] { ..Q} + [K ] {Q} = {F} . (36)

Once the finite element equations are established, the Newmark [23] direct integration method with suitable
time step is used to solve the equations.

3 Implementation and validation

To verify the present work, consider a finite length functionally graded thick hollow cylinder with simply
supported end conditions. The material distribution is assumed to be 1D and it varies in radial direction from
ceramic (alumina) at the inner surface to metal (aluminum) at the outer surface with a power law function with
the exponent n = 2. The load is assumed to be a hydrostatic internal pressure. This problem has a semi-ana-
lytical series solution. The governing equations can be solved using the common multi-layer approach. In this
way the FGM cylinder is divided to m sub-cylinders and each layer is assumed to be homogeneous.

The geometrical parameters are length of L = 1 m, inner radius of ri = 1 m and outer radius of ro = 1.5 m.
The internal pressure is

Pi (z) = 106 sin
(π z

L

)
. (37)

The boundary conditions on the inner and outer surfaces of the cylinder are

σ 1
r (ri, z) = Pi (z), (38.1)

τ 1
r z(ri, z) = 0, (38.2)

σm
r (ro, z) = τm

rz(ro, z) = 0, (38.3)

where the superscripts 1 and m denote the inner and outer layers.
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And on the upper and the lower ends they are assumed as

ui (r, 0) = σ i
z (r, 0) = τ i

r z(r, 0) = 0, i = 1, 2, . . . ,m, (39.1)

ui (r, L) = 0, σ i
z (r, L) = τ i

r z(r, L) = 0, i = 1, 2, . . . ,m, (39.2)

where superscript i denotes the number of layers.
The continuity conditions to be enforced at any interface between two layers are written as

σ i−1
r (ri, z) = σ i (ri, z),

τ i−1
r z (ri, z) = τ i

r z(ri, z), i = 2, 3, . . . ,m − 1. (40)

The solution of the governing equations for each layer can be expressed as the following sinusoidal series
solution that satisfies the boundary conditions [24]:

u(r, z) =
∞∑

n=1

ϕn(r) sin
(nπ z

L

)
, (41.1)

w(r, z) =
∞∑

n=1

ψn(r) sin
(nπ z

L

)
. (41.2)

Substituting the above series in the governing equations and applying boundary conditions and continuity
conditions the unknown coefficients, ϕn(r) and ψn(r), can be found.

On the other hand for solving the mentioned problem by the graded finite element method developed here
we suppose that the material properties vary in the radial direction only and the volume fraction exponents
and property coefficients are taken as

nz = 0, nr = 2, Pc1 = Pc2 = Pc, Pm1 = Pm2 = Pm.

Pc are material properties of the inner surface which is considered ceramic (alumina), and Pm are material
properties of the outer surface which is metal (aluminum).The modulus of elasticity and the mass density at the
inner radius are Ec = 380 Gpa, ρc = 3,800 kg/m3. And those of the outer radius are Em = 70 Gpa, ρm =
2,707 kg/m3.

The internal pressure exerts a transient function as

Pi (z, t) = 106(1 − e−ct ) sin
(π z

L

)
,

where c = 1061/s.
The dynamic responses of the FGM cylinder subjected to internal pressure given by Eq. (41) in a long time

can be considered as the steady state response of a cylinder under static load. The boundary conditions are
assumed to be simply supported. The results for a long time (after t = 1,000 s) are compared with the achieved
data in static analysis of a finite length cylinder which were solved by multi-layer approach. The comparison
of the results in Fig. 5 shows good agreement between them.

The presented method in this paper can be verified using data of 1D FG cylinder under dynamic load which
were previously published. To achieve this purpose, the distribution of mechanical properties is considered 1D
and across the thickness of the FG cylinder. The boundary conditions on the inner and outer radii are assumed
the same as [11] and the top and end of it are simply supported. The cylinder is assumed to be too long and the
displacement response of a middle point across the length of the cylinder is considered. The obtained results
are then compared with the published data. Figure 6 shows good agreement between the results at all points.

4 Numerical results and discussion

A thick hollow cylinder of inner radius ri = 1 m, outer radius ro = 1.5 m and length L = 1 m is considered for
analysis. A functionally graded cylinder with 2D gradation of the distribution profile has been investigated as
well as the case where the axial power law exponent is assumed zero, nz = 0, the results of 1D gradation of the
material distribution can be obtained in the hollow cylinder and the FGM will be 1D. The basic materials are
as explained in the previous Section. Constituent materials are two distinct ceramics and two distinct metals
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Fig. 5 Radial displacement distribution through the cylinder for long time compared with static solution

Fig. 6 Time history of radial displacement at the middle point of the cylinder compared with infinite cylinder

described in Table 1. Volume fractions of the materials are distributed according to Eqs. (3)–(6). Dynamic
responses of the cylinder for some different powers of material composition profile nr and nz are presented
and compared. The internal pressure varies with time as an impact function, and it is distributed sinusoidally
in the z-direction, which is expressed as

Pi (z, t) =
{

P0e−a(t−t0)2 sin
( 3π z

L

)
for z ≤ L/3,

0 for z ≥ L/3,
(42)

where Po is the maximum amplitude of the pressure, a and t0 are constants that determine the occurrence time
and duration of the load. In the present study the internal pressure is distributed sinusoidally in the z-direction
and also it is exerted on a finite portion of the cylinder length as shown in the Fig. 7.

Insertion of pressure in this manner instead of the case where the whole length is under pressure has two rea-
sons. By this way the propagation of the stress wave in two directions is more observable and also in some real
applications such as a combustion engine the load is exerted in a same manner. Variation of the internal pressure
with time as an impact load is shown in Fig. 8 for typical values of P0 = 106 Pa, a = 4×108, t0 = 15×10−5 s.

A cylinder with variation of volume fraction and material properties in two directions is considered. The
basic materials are as explained in the previous Section. If the axial power law exponent is zero, nz = 0, the
material properties will vary in radial direction only and the FGM will be 1D.

Figure 9 shows the time history of radial displacement of a specified point in the 2D FGM cylinder. Power
law exponents of the material distribution profiles in radial and axial directions are the same, nr = nz = n,
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Fig. 7 Variation of internal pressure along the axial direction

Fig. 8 Variation of internal pressure with time

in the 2D cases. It can be seen that the maximum value of the amplitude is increased when the value of “n”
is decreased. It means that the dynamic behavior of the cylinder tends towards the behavior of the cylinder
which is made of full second metal (m2).

Time histories of radial, hoop and axial stresses for different power law exponents in the 2D and 1D FGM
cylinder are denoted in Figs. 10, 11 and 12. It is evident from these figures that both of amplitude and time
delay of the response are strongly affected by the material distribution power n. The hoop stress diagram is in a
periodic form and it is concluded that the frequency of variation in the time domain (period time) is increased
when the value of “n” is decreased. The maximum value of axial stress varies with “n” and the maximum value
of axial stress for small value of “n” is bigger than values for big values of “n” as it is illustrated in Fig. 12.
The maximum magnitude of axial stress is larger than that of radial stress, and smaller than that of hoop stress.

In order to have a more clear observation, the distributions of radial and hoop stresses through the thickness
of the cylinder at a specific time are illustrated in Figs. 13 and 14 for different values of nr and nz . These
figures denote that maximum stress and stress distribution can be controlled by material distribution, and this
is one of the best benefits of the presented method to determine the optimal design of a 2D-FGM cylinder
which can be used by other researchers in the future.

The phenomenon of stress wave front is observed due to 2D-FGM modeling, and the governing equations
are solved by hybrid finite element and finite difference numerical methods. The wave propagation scheme in
a 2D-FGM cylinder can be observed in Fig. 15a–d. In these figures the radial stress distributions through the
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Fig. 9 Time history of radial displacement at r = 1.75, z = 0.5 for nr = nz = n

Fig. 10 Time history of radial stress at r = 1.75, z = 0.5 for different nr and nz

Fig. 11 Time history of hoop stress at r = 1.75, z = 0.5 for different nr and nz
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Fig. 12 Time history of axial stress a at r = 1.75, z = 0.5 for different nr and nz

Fig. 13 Distribution of radial stress through the thickness of cylinder at t = 4 × 10−4 s nr = nz = n

Fig. 14 Distribution of hoop stress through the thickness of cylinder at t = 4 × 10−4 s, nr = nz = n
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Fig. 15 Radial stress distribution through the cylinder for nr = nz = 0.5 at a t = 3×10−5 s,b t = 1.4×10−4 s, c t = 1.9×10−4 s,
d t = 2.9 × 10−4 s

cylinder cross-section at different times are shown. Powers of volume fraction distribution profiles are assumed
as: nr = 0.5 and nz = 0.5.

The same results are plotted for different values of nr and nz in Figs. 16 and 17. The wave front for big
values of “n” propagates faster than for small values of “n”. The presented technique in this paper shows the
acceptable method to calculate and analyze the dynamic behavior and wave propagation in 2D-FG structures.
As it can be seen in Figs. 16 and 17, the radial stress wave propagation in the 2D domain is illustrated, and it
is useful to calculate the peak point of the radial stress which is important in mechanical design.

It is clear from the results that stress wave propagation in two directions is strongly influenced by the
material composition profile. In other words, the time response, the maximum amplitude and the uniformity
of stress distribution through the cylinder can be modified to a required manner by selecting an appropriate
material distribution profile. It is notable that the variation of the material distribution in two directions leads
to a more flexible and desirable design which is very useful in optimization problems.

The manufacturing of multidimensional FGM may seem to be costly or difficult, but it should be noted that
while these technologies are relatively new, processes such as 3D printing (3DPTM) and Laser Engineering
Net Shaping (LENS(R)) can currently produce FGMs with relatively arbitrary tree-dimensional grading [25].
With further refinements FGM manufacturing methods may provide the designers with more control of the
composition profile of functionally graded components with reasonable costs.

5 Conclusion

A 2D functionally graded cylinder with finite length under impact dynamic loading has been studied. For
modeling and simulation of governing equations a graded finite element method is used which has some
advantages to conventional finite element methods. The dynamic responses of a 2D-FGM cylinder are devel-
oped and the variations of different parameters with volume fraction exponents are obtained. The effects of
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Fig. 16 Radial stress distribution through the cylinder for nr = nz = 1 at a t = 3×10−5 s, b t = 1.4×10−4 s, c t = 1.9×10−4 s,
d t = 2.9 × 10−4 s

2D material distribution on the wave propagation, stress distribution and time responses are considered and
compared with conventional 1D-FGM. Based on the achieved results, 2D-FGMs have a powerful potential
for designing and optimizing structures under multi-functional requirements. Time responses of the cylinder,
maximum amplitude of stresses and uniformity of stress distribution can be modified to a required manner by
selecting a suitable material distribution profile in two directions.

Appendix

The matrix of linear interpolation functions is

[N ] =
[

Ni 0 N j 0 Nk 0
0 Ni 0 N j 0 Nk

]
, (A.1)

where its components are

Ni = ai + bir + ci z

2A
, (A.2.1)

N j = a j + b jr + c j z

2A
, (A.2.2)

Nk = ak + bkr + ck z

2A
, (A.2.3)

and

A = 1/2(ri z j + r j zk + ri zk − rk z j ). (A.3)
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Fig. 17 Radial stress distribution through the cylinder for nr = nz = 5 at a t = 3×10−5 s, b t = 1.4×10−4 s, c t = 1.9×10−4 s,
d t = 2.9 × 10−4 s

The constants a, b and c are defined in terms of the nodal coordinates and A is the area of the element,

ai = r j zk − rk z j ,

a j = ri zk − rk zi ,

ak = ri z j − r j zi ,

bi = z j − zk,

b j = zk − zi ,

bk = zi − z j ,

ci = r j − rk,

c j = rk − ri ,

ck = ri − r j . (A.4)

The vector of nodal displacements (degrees of freedom) is

{
Qe} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ui
wi
u j
w j
uk
wk

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (A.5)
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where subscripts i, j, k are related to three nodes of each element. The vector of nodal forces for each element
can be evaluated by the following integration:

{F}e =
∫ ∫

se

[N ]T
{

pr
pz

}
ds =

∫
l

⎡
⎢⎢⎢⎢⎢⎣

Ni 0
0 Ni
N j 0
0 N j
Nk 0
0 Nk

⎤
⎥⎥⎥⎥⎥⎦

{
pr
pz

}
2πrdl, (A.6)

where l, pr , pz denote the length of the edge under pressure, radial and axial components of pressure, respec-
tively. In the present work pz = 0 and pr = Pi (z, t) for each element.

The components of matrix [B] are

B = 1

2A

⎡
⎢⎢⎢⎣

bi 0 b j 0 bk 0
Ni/r 0 N j/r 0 Nk/r 0
0 ci 0 c j 0 ck

ci bi c j b j ck bk

⎤
⎥⎥⎥⎦ . (A.7)
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