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Abstract The three-dimensional attitude stabilization of a satellite using fluid rings is proposed in the present
paper. The general formulation of the system that comprises a satellite and three fluid rings, one on each axis,
is obtained through Euler’s moment equations. The linearized system model is derived and the stability condi-
tions are obtained. Linear control laws and nonlinear control laws based on sliding mode control techniques are
developed for fluid control torques. The numerical simulation of the governing nonlinear equations of motion
of the system along with stability analysis establishes the feasibility of achieving desired attitude stabilization
of the satellite. The fluid controllers are successful in stabilizing the attitude of the satellite in presence of
high attitude disturbance torques and intermittent actuators’ failures. In the case of sudden attitude disturbance
torques, the nonlinear fluid controllers outperform the linear fluid controllers with virtually no effect on the
satellite attitude response. The proposed attitude stabilization method may find applications in future satellite
missions.

List of symbols

A cross-sectional area of the fluid ring, π D2/4 (m2)
C1 ρπr5/Ix , a nondimensional fluid parameter
C2 µ/(ρr D�), a nondimensional fluid parameter
C3, C4 C1 D̂2/4, 8C1C2 D̂
D cross-sectional diameter of the fluid ring (m)
D̂ D/r , dimensionless diameter of the fluid ring
f Darcy–Wiesbach resistance coefficient
G universal gravitational constant (m3 kg−1 s−2)
Ik principal centroidal moment of inertia of satellite about k-axis, k = x, y, z (kg-m2)

I f
k j principal centroidal moment of inertia of fluid ring- j about k-axis, k = x, y, z (kg-m2)

K1, K2 (Ix − Iy)/Iz, (Ix − Iz)/Iy; satellite mass distribution parameter
K3, K4 Iy/Ix = (1 − K1)/(1 − K1 K2), Iz/Ix = (1 − K2)/(1 − K1K2)

K f
t j

I f
t j
Ix

, (t = x, y, z)

K f
t

∑3
j=1 K f

t j , (t = x, y, z)

K s
3, K s

4 K3 + K f
y , K4 + K f

z
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ME Earth’s mass (kg)
Uβ external torque vector acting on the fluid motion (N m)
uβ Uβ/(Ix�

2)
r mean radius of the fluid ring (m)
R orbital radius (m)
RE Earth radius (m)
Rn Reynolds number, ρDrβ̇/µ for circular fluid ring
S system mass center
S − X0Y0Z0 coordinate axes in the local vertical frame
S − XYZ satellite body coordinate frame
U j fluid frictional torque about the j th fluid ring axis of symmetry (N m)
Ucj fluid control torque applied by pump in the j th fluid ring (N m)
u j , ucj U j/(Ix�

2), Ucj/(Ix�
2)

α, φ, γ satellite pitch, roll and yaw angles, respectively (deg)
αd , φd , γd desired or commanded satellite pitch, roll and yaw angles (deg)
α0, φ0, γ0 α, φ, γ at θ = 0 (deg)

α′
0, φ

′
0, γ

′
0 α′, φ′, γ ′ at θ = 0

β j , η j angular position and span of the fluid slug in the j th fluid ring, respectively (Fig. 2) (deg)
β je β j at equilibrium (deg)

β ′
j angular speed of the fluid slug with respect to the fluid ring j (rad/s)

β ′
j0 β ′

j at θ = 0

β j0 β j at θ = 0 (deg)

β ′
0 β ′

j when β ′
1 = β ′

2 = β ′
3 at θ = 0

ηt η j when η1 = η2 = η3 (deg)

ρ fluid density (kg-m−3)
τ j shear stress for the fluid ring j (N m−2)
µ viscosity of the fluid (kg m−1s−1)
θ angle from the reference line (deg)
ωi angular rate of the satellite about the body fixed i-axis (rad/s)
� orbit rate; (GME/R3)1/2 (rad/s)
(.) j (.) for the j th fluid ring, j = 1, 2, 3
(.)0, (.)e (.) at θ = 0, (.) at equilibrium
(.)′, (.)′′ d(.)/dθ and d2(.)/dθ2, respectively
(.)× skew-symmetric 3 × 3 matrix associated with (.) of 3 × 1 column matrix
|(.)|max absolute maximum amplitudes of (.)

1 Introduction

The attitude stability of satellites is of considerable importance for successful completion of a space mission.
Several methods of attitude stabilization [1–6] have been developed over the last four decades. The present
paper considers fluid rings for three-dimensional attitude stabilization of a non-spinning satellite. In the past,
viscous ring dampers [2,4,5] were applied for nutation damping of spin-stabilized satellites. The application of
fluid loops has been discussed in some patents and papers [7–17]. An idea of using fluid moving in an enclosed
circuit as a momentum storage device or gyroscope is mentioned in Ref. 7. Herman [8] described rotation of
electrically conductive liquids in a closed circuit path by electromagnetic means for its application as a gyro-
scope. Wyatt and Swet [9] explained satellite yaw stabilization and propulsion using rotating toroidal tanks
filled with fluid in liquid and vapor phases. The application of a rotator apparatus for spacecraft attitude control
was considered by Rasmusson [10]. Marynard [11] presented a fluid momentum controller for neutralization
and damping of external or internal periodic, non-accumulating torques acting on a spacecraft. An improved
fluid actuating system for the control of spacecraft attitude was considered by Lurie et al. [12,13] The fluid
loops might be located on the interior or exterior of the spacecraft. Iskenderian [14] presented a fluid-loop
reaction ring that can control the attitude of a spacecraft by reacting against liquid contained in the loop.
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One or several pumps, provided impetus to both the spacecraft and fluid, whereas hydraulic accumulators and
valves were added to control flow. A method based on fluid loops was described by Laughlin et al. [15] for an
attitude control of a spacecraft about a single axis. The fluid was driven by magnetohydro pumps. Gilbertson
and Busch [16] presented a survey of micro-actuator technologies including electrohydrodynamics applicable
to spacecraft. Recently, Kelly et al. [17] confirmed the feasibility of a fluidic momentum controller for space-
craft attitude control by conducting experiments aboard the NASA’s KC-135A. Researchers at the department
of aerospace engineering and engineering mechanics, University of Texas, Austin have been involved in testing
of the fluidic momentum controller since 1987 [17]. Thus, the fluid loops/rings based attitude control systems
can be utilized to stabilize librational dynamics of a satellite with a desired degree of accuracy and in com-
parison to the conventional reaction/momentum wheels or control moment gyros (CMGs), they have several
advantages including large damping torque, light weight, and low cost. In addition, without adding significant
weight to the system, the fluid loop radius can be varied according to the requirements of the satellite and
mission; a large fluid loop with low fluid velocity and mass results in a highly energy efficient system with
minimal vibration to the satellite structure. However, along with these advantages, there are several challenges
associated with this system including modeling of fluid, fluid leakage, and thermal protection.

In the present investigation, we consider a satellite under gravity gradient torque along with the torque
provided by fluid motion. The fluid motion without pump is just a passive damper to the gravity gradient
satellite and therefore, it is pertinent here to review literature on the gravity gradient satellites with passive
librational dampers. Several types of passive dampers have been applied to damp the libration of gravity gra-
dient satellites [5,18–20]. Some of these are point-mass damper, damper mounted on external spring’s boom,
magnetic hysteresis rod damper, spherical tip damper, damping by boom articulation, and wheel damper. These
dampers are in principle based on viscous fluids, mass-spring systems, eddy currents, or magnetic hysteresis or
a combination of these. The details about these dampers are given in [5,18–20]. Without dampers, the attitude
of a rigid satellite under gravity-gradient torque in a circular orbit remains infinitesimally stable in the Lagrange
and Debra-Delp regions. However, in the presence of energy dissipation, the Debra-Delp region disappears
and the attitude of the satellite remains infinitesimally as well as asymptotically stable in the Lagrange region
only. The case of a point-mass linear damper positioned along the pitch axis of a satellite is illustrated in
[5]. Recently, viscous ring dampers with commercial hydraulic oils (e.g., Tellus C5) have been considered
for passive three-axis attitude control for a low-Earth orbit satellite in conjunction with a boom facilitating
gravity-gradient torque for pitch and roll control, and a sail using aerodynamic torque for yaw control [21].
However, the suggested method takes a rather long time (on the order of 100s of orbital periods) to damp the
attitude of the satellite.

In the past papers and patents [7–17,21] concerning fluid loop dampers, only conceptual descriptions and
simple analyses based on angular momentum conservation are presented. The effect of gravity gradient torque
on fluid loop controlled satellites, stability analysis, as well as the effectiveness of fluid loops/rings in control-
ling the satellite attitude in presence of attitude disturbances and actuators’ failures have not been examined.
In addition, the design of control laws including linear and nonlinear controllers has not been presented. These
aspects are discussed in the present paper along with the detailed analyses of the system including stabil-
ity analyses and numerical simulations. The system parameters are presented in dimensionless form so that
the scope of application of the results no longer depends upon the particular satellite size, mass and inertia
properties or fluid properties.

The system under study comprises of three fluid rings attached to a satellite at its three principal pitch,
roll, and yaw axes, respectively (Fig. 1). The fluid inside the ring provides inherent damping to the satellite
attitude motion. But as the damping torque is found to be low, it may take longer for the attitude motion of the
satellite to reach desired attitude angles. With a view to stabilize the satellite attitude motion effectively, each
fluid ring is equipped with a pump. A simple controller inside the pump is designed to regulate the fluid flow
in each ring. The liquid propellant present in the satellite can be used in the fluid rings if feasible; otherwise a
different fluid could be supplied.

The body of this paper consists of six main sections followed by a conclusion. Section 2 presents a
general formulation of the system. The Euler’s moment equations are used to obtain the governing ordi-
nary differential equations of motion for the proposed system. In Sect. 3, the linearized system model is
derived and the stability analysis is presented. The control laws are derived in Sect. 4. Finally, for a detailed
assessment of the proposed attitude stabilization strategy, the set of governing equations of motion is numer-
ically integrated and the effects of various system parameters on the system response are examined in
Sect. 5.
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Fig. 1 Orbiting satellite with fluid rings

2 Proposed system model and equations of motion

The system model comprises a satellite and three fluid rings (Fig. 1). Each fluid ring is fitted with a pump to
regulate the flow of the fluid. The system center of mass ‘S’ lies on the center of mass of the satellite. As the
focus is on studying the effects of fluid motion on the satellite attitude, the distance of the fluid ring from the
center of mass is assumed negligible. The coordinate frame XoYoZo passing through the system center of mass
S represents the orbital reference frame. Here the Xo-axis is taken along the normal to the orbital plane, the
Yo-axis points along the local vertical and the Zo-axis represents the third axis of this right handed frame taken.
The orientation of the satellite is specified by a set of three successive rotations: α (pitch) about the X0-axis,
φ about the new roll axis (Z -axis, if α = 0), and finally γ about the resulting yaw axis. The corresponding
principal body-fixed coordinate frame for the satellite is denoted by S-XYZ. For the fluid ring j , the angle β j
denotes rotation of the fluid slug about the j-axis ( j = 1, 2, 3 corresponds to the X -axis, Y -axis, and Z -axis,
respectively) with respect to the body-fixed Y -axis (Fig. 2). The resulting coordinate frame associated with
this vector is denoted by SL j − X L j YL j ZL j . The system under consideration has six generalized coordinates:
three for the satellite rotations: pitch(α), roll(φ) and yaw(γ ), and three for the fluid rings: β j , j = 1, 2, 3. As
the fluid ring is very small compared to the satellite, its product of inertia and center of mass movement effects
are ignored. We assume fully filled fluid rings (i.e., η j = 2π) as shown in Fig. 2. The moments of inertia of
the fluid ring are obtained as

I f
x1 = 2πρ Ar3, I f

y1 = I f
z1 = πρ Ar3, I f

x2 = πρ Ar3, I f
y2 = 2πρ Ar3,

I f
z2 = πρ Ar3, I f

x3 = I f
y3 = πρ Ar3, I f

z3 = 2πρ Ar3.
(1)

The motion of the fluid relative to the annular ring causes energy dissipation through shear stress acting on the
wall of the ring. The shear stress τ j for the fluid ring j is given as



Satellite attitude stabilization using fluid rings 121

Fig. 2 a This part illustrates the angular position β j and span η j of the fluid slug in the j th fluid ring. b This part illustrates a
filled fluid ring with η j = 2π

τ j = 1

8
fρV 2 = 1

8
fρr2β̇2

j , (2)

where laminar flow inside the fluid ring is assumed (Rn < 2000) [22],

f = 64

Rn
. (3)

We neglect end effects as they do not have much significance in the present analysis; further, to simplify
integration of shear stress over the wetted area of the ring, we assume D � r. The resulting fluid torque U f j
about the ring axis of symmetry is

U f j = −sign(β̇ j )πτ j r
2 Dη j , j = 1, 2, 3. (4)

Applying Euler’s momentum equations, the governing nonlinear coupled ordinary differential equations of
motion of the system are obtained as

Isω̇s + ω×
s Isωs + ḣ f + ω×

s h f , = 3
( µ

R3

)
Cs

×(Is + If )Cs, (5)

ḣ f + ω×
s h f = Uβ, (6)

where

Is =
⎛

⎜
⎝

Ix 0 0

0 Iy 0

0 0 Iz

⎞

⎟
⎠ , hf =

⎡

⎢
⎣

hx

hy

hz

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

∑3
j=1 I f

x j ωx + I f
x1β̇1

∑3
j=1 I f

y j ωy + I f
y2β̇2

∑3
j=1 I f

z j ωz + I f
z3β̇3

⎤

⎥
⎥
⎥
⎥
⎦

, If =

⎛

⎜
⎜
⎜
⎝

∑3
j=1 Ix j 0 0

0
∑3

j=1 Iy j 0

0 0
∑3

j=1 Iz j

⎞

⎟
⎟
⎟
⎠

, (7)

ωs =
⎡

⎣
ωx

ωy

ωz

⎤

⎦ =
⎡

⎢
⎣

(θ̇ + α̇) cos φ cos γ − φ̇ sin γ

−(θ̇ + α̇) sin φ + γ̇

(θ̇ + α̇) cos φ sin γ + φ̇ cos γ

⎤

⎥
⎦ , ωs

× =
⎛

⎜
⎝

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞

⎟
⎠ , (8)

Cs =
⎡

⎣
Cx

Cy

Cz

⎤

⎦ =
⎡

⎣
cos α sin φ cos γ + sin α sin γ

cos α cos φ

cos α sin φ sin γ − sin α cos γ

⎤

⎦ . (9)
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The Uβ in Eq. (6) is an external torque vector acting on the fluid motion given as

Uβ =
⎡

⎣
U f 1 + Uc1

U f 2 + Uc2

U f 3 + Uc3

⎤

⎦ , (10)

where U f j , j = 1, 2, 3, denotes fluid frictional torque and Ucj , j = 1, 2, 3, is the fluid control torque applied
by the pump.

It is convenient to replace t by θ as the independent variable and to denote derivatives with respect to θ by
primes using the following relations:

q̇ = θ̇ q′ =
√

G ME

R3 q′, q̈ = G ME

R3 q′′, (11)

where q is an independent system coordinate vector given as q = [α γ φ β1 β2 β3
]T

.
For convenience of system representation and response simulation, we consider the following dimension-

less system parameters:

D̂ = D

r
, C1 = ρπr5

Ix
, C2 = µ

ρr D�
, (12)

besides K1 and K2 describing satellite mass moment of inertia properties. The other parameters in the equations
of motion are expressed in terms of these parameters as

u f j = −sign(β ′
j )

f C1 D̂

8
β ′2

j η j , (13)

ρπr3

Ix
= C1 D̂2

4
, (14)

Rn = ρDr β̇ j

µ
= β ′

j

C2
. (15)

Uβ in Eq. (6) is replaced by

uβ =
⎡

⎣
uβ1

uβ2

uβ3

⎤

⎦ =
(

Uβ

Ix�2

)

=
⎡

⎣
uf 1 + uc1

uf 2 + uc2

uf 3 + uc3

⎤

⎦ . (16)

The governing equations of motion after carrying out considerable algebraic manipulation and nondimension-
alization are written in matrix notation as

M(q, θ, K1, K2)q′′ + F(q, q′, θ, K1, K2) = uq , (17)

where M(q, θ, K1, K2) is the mass matrix and F(q, q′, θ, K1, K2) is the vector containing all the linear and
nonlinear terms including the Coriolis and centrifugal contributions.

3 Linear system model and stability analysis

With a view to understand the system dynamics, we first obtain the equilibrium state of the system, and then
linearize the equations of motion of the system about this equilibrium state. By substitution of the equilibrium
conditions defined by

q′′ = q′ = 0 (18)

into Eqs. (17) and assuming a fully filled fluid situation (i.e., η1 = η2 = η3 = ηt = 2π), we find the
equilibrium state of the system as

αe = φe = γe = α′
e = φ′

e = γ ′
e = 0, β ′

je = 0, j = 1, 2, 3. (19)
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Next we linearize Eqs. (17) about the equilibrium state given by Eq. (19). The resulting equations of motion
of the system are obtained as follows:

Mpq′′
p + Kpqp =up, (20)

Mr q′′
r + Grq′

r + Krqr = ur , (21)

where

qp = [α β1]T , Mp =
[

1 0
0 1

]

, Kp =
[−3(K3 − K4) 0

6(K3 − K4) 0

]

, up =
[−uβ1
(

2 + 1
C3ηt

)
uβ1

]

,

qr = [
γ φ β2 β3

]T
, Mr =

⎡

⎢
⎢
⎢
⎣

K3 0 0 0

0 K4 0 0

0 0 K3 0

0 0 0 K4

⎤

⎥
⎥
⎥
⎦

, Gr =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 − K3 − K4 0 0

−1+ K3 + K4 0 0 0

0 2(−1+ K4) 0 −K3

2(1 − K3) 0 K4 0

⎤

⎥
⎥
⎥
⎥
⎦

,

Kr =

⎡

⎢
⎢
⎢
⎣

1 − K4 0 0 0

0 4(1 − K3) 0 0

−2(1 − K4) 0 0 0

0 −8(1 − K3) 0 0

⎤

⎥
⎥
⎥
⎦

, ur =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−uβ2

−uβ3
(

2 + K3
C3ηt

)
uβ2

(
2 + K4

C3ηt

)
uβ3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

uβ = u f + uc, u f = [u f 1 u f 2 u f 3
]T

, uc = [uc1 uc2 uc3]T .

Using Eqs. (3), (13) and (15), we rewrite u f as

u f j = −C4β
′
j , j = 1, 2, 3, (22)

where C4 = 8C1C2 D̂ηt .
As per the preceding linear equations of motion (Eqs. (20) and (21)), the pitch motion of the system is

decoupled from the system roll and yaw motion. So, we first analyze the stability of the pitch motion of the
system. The characteristic equation of the system pitch motion is obtained as

s3 +
[(

2 + 1

C3ηt

)

C4ηt

]

s2 +
[

3(K1 − K2)

1 − K1 K2

]

s + 3(K1 − K2)C4

C3(1 − K1 K2)
= 0, (23)

where ηt = 2π.
Applying the Routh–Hurwitz criterion, the conditions for system pitch stability can be stated as follows:

K1 > K2. (24)

For the system roll and yaw motion, the characteristic equation can be obtained as

s6 + p1s5 + p2s4 + p3s3 + p4s2 + p5s + p6 = 0, (25)

where

p1 = 2

K3 K4C3
[(K3 + K4)C3 + K3 K4]C4,

p2 = 1

K3 K4C3

{
(1 + 2K3 − K4 + 3K3K4 − 3K 2

3 )C3 + C4[4C3C4 + 2(K3 + K4)C4] + C2
4 K4 K3

}
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p3 = 1

K3 K4C3
[4K3K4 + 2 + 10C3 + 4K3 − 6K3C3 − 6K 2

3 − 2K4]C4,

p4 = 1

K3 K4C2
3

{[4C2
4 − 3K 2

3 + 6K3K4 + 5 − 5K4 − 2K3]C2
3

+(2K4 K3 − K4 + 1 + 2C3K4 − 4C3K3 + 6C3 + 2K3 − 3K 2
3 )C2

4 },

p5 = 1

K3 K4C3
[8K4 K3 + 8 − 8K3 − 8K4 + (10 − 8K3 − 2K4)C3]C4,

p6 = − 4

K3 K4C2
3

[−1 + K3 + K4 − K3K4](C2
3 + C2

4 ).

Applying the Routh-Hurwitz criterion, the conditions for the system roll and yaw stability can be obtained as

p j > 0, j = 1, 2, ..., 6,

p2 − p3

p1
> 0,

p2 − p3

p1
>

p1

p3

[

p4 − p5

p1

]

,
[

p3

(

p2 − p3

p1

)(

p4 − p5

p1

)

− p1

(

p4 − p5

p1

)2
]

>

[

p5

(

p2 − p3

p1

)

− p1 p6

]

,

[

p5

(

p2 − p3

p1

)

− p1 p6

]{(

p2 − p3

p1

)[

p1 p6 + p3

(

p4 − p5

p1

)]

− p1

(

p4 − p5

p1

)2

− p5

(

p2 − p3

p1

)2
}

> p6

(

p2 − p3

p1

)[

p3

(

p2 − p3

p1

)

− p1

(

p4 − p5

p1

)]

.

(26)

The condition of stability reduces to

K1 K2 > 0. (27)

The conditions (24) and (27) clearly state that the proposed system with natural damping is only stable in the
region specified by K1 > K2, K1 > 0, K2 > 0, also called Lagrange region. In fact, this result coincides with
the result we know about the stability of gravity-gradient satellite in the presence of energy dissipation [5].

4 Control laws

In order to apply a suitable variation of fluid torque uc to achieve desired satellite attitude response, we develop
linear and nonlinear control laws. These laws are derived based on the linear system (Eqs. (20) and (21)). Linear
control laws are designed first followed by the development of nonlinear control laws based on sliding mode
control techniques [23].

4.1 Linear control laws

We assume the Lyapunov function for the system as

V (x) = 1

2
ST S, (28)

where

S = [S1 S2 S3]T = q′
s + λqs (29)

with λ = diag (λ1, λ2, λ3) > 0, qs = [α γ φ
]T

.
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Differentiating Eq. (28) with respect to θ and using Eq. (29) yields

V ′(x) = STS′ = ST (q′′
s + λq′

s
)
. (30)

Taking

S′ = q′′
s + λq′

s = −κ S (31)

into Eq. (30) proves

V ′ = −κS2 ≤ 0, (32)

where κ = diag (κ1, κ2, κ3) .
Equation (31) can be rewritten as

q′′
s + (λ + κ)qs + κλqs = 0. (33)

Comparing the preceding Eq. (33) with the desired performance specified by the second order linear system with
the given closed-loop damping ratios, ξ c = diag (ξc1, ξc2, ξc3) and frequencies, ωc = diag (ωc1, ωc2, ωc3):

q′′
s + 2ξ cωcq′

s + ω2
cqs = 0 (34)

and assuming critical damping ξcj = 1, j=1,2,3, yields

λ j = κ j = ω jc, j = 1, 2, 3. (35)

Referring to Eq. (31) and substituting for q′′
s using Eqs. (20) and (21), the control laws are obtained as

uc = (2Ktωc + Gs)q′
s + (Ktω

2
c + Ks)qs − u f , (36)

where

Gs =
⎡

⎣
0 0 0

0 0 −1 + K3 + K4

0 1 − K3 − K4 0

⎤

⎦ , Ks =
⎡

⎣
3(K3 − K4) 0 0

0 −(1 − K4) 0

0 0 −4(1 − K3)

⎤

⎦ ,

Kt =
⎡

⎣
1 0 0

0 K3 0

0 0 K4

⎤

⎦ .

Note that the desired attitude angles and their corresponding rates are assumed null.

4.2 Nonlinear control laws

Assuming the Lyapunov function given by Eq. (28) and differentiating it with respect to θ yields (see Eq. (30))

V ′(x) = STS′ = ST (q′′
s + λq′

s
)
. (37)

Taking

S′ = q′′
s + λq′

s = −ηsgn(S) (38)

into Eq. (37) proves

V ′ = −η|S| ≤ 0, (39)

where η = diag (η1, η2, η3) .
Taking λ j = λs j , j = 1, 2, 3, and referring to Eq. (38) and substituting for q′′

s using Eqs. (20) and (21),
the control laws are obtained as

uc = (Ktλs + Gs)q′
s + Ksqs + Ktηsgn(S) − u f . (40)
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Table 1 System parameters and initial conditions for numerical simulation

Satellite orbit 6,878 km

Satellite mass moments of inertia Ix = 0.027, Iy = 0.022, Iz = 0.016(kg-m2)

Fluid ring r = 8.8 cm, D = 3.52 cm, η1 = η2 = η3 = ηt = 2π

Working fluid Freon 11 (ρ = 1, 459 kg m−3; µ = 5 × 10−4 kg m−1s−1 at 20◦C)

Maximum fluid discharge rate 5 × 10−4 m3s−1

Control parameters ξcj = 1, ωcj = 1.5, λ j = κ j = ωcj , λs j = 1, η j = 0.4, δ j = 0.01, j = 1, 2, 3

Initial conditions α0 = 20 deg, φ0 = −15 deg, γ0 = 25 deg, α′
0 = φ′

0 = γ ′
0 = 0.1;

β j0 = 0, β ′
j0 = 10−30, j = 1, 2, 3

In order to avoid chattering [4], the signum function used in Eq. (40) is replaced by a saturation function as
follows:

sgn(S j ) ≈ sat

(
S j

δ j

)

=
{

sgn(S j ) for |S j | > δ j , j = 1, 2, 3,

S j
δ j

for |S j | ≤ δ j , j = 1, 2, 3,
(41)

where δ j > 0, j = 1, 2, 3, represents the boundary layer. Thus, the resulting nonlinear control laws can be
expressed as

uc = (Ktλs + Gs)q′
s + Ksqs + Ktηsat

(
S
δ

)

− u (42)

or in terms of components

u1c = η1sat

(
S1

δ1

)

+ λs1α
′ + 3(K3 − K4)α − u1, (43)

u2c = K3

[

λs2γ
′ + η2sat

(
S2

δ2

)]

− (1 − K3 − K4)φ
′ − (1 − K4)γ − u2, (44)

u3c = K4

[

λs3φ
′ + η3sat

(
S3

δ3

)]

− (−1 + K3 + K4)γ
′ − 4(1 − K3)φ − u3. (45)

5 Results and discussion

In order to study the performance of the proposed system, the detailed system response is simulated numeri-
cally using Eqs. (17) with the initial conditions given in Table 1. The dimensionless system parameters (12)
referring to Table 1 are K1 = 0.5, K2 = 0.3125, D̂ = 0.4, C1 = 0.8959 and C2 = 0.1. In each of the fluid
rings, 0.1076 liter of working fluid (Freon 11) with a mass of 0.157 kg is used (Table 1). The desired satellite
attitude angles (αd , φd , γd) and corresponding rates are null. The attitude control response settling time (1% of
steady-state value) is assumed to be 0.5 orbit period; this corresponds to controller parameters (Eq. 35) using
the relation t js = 4.6/(2πξ jcω jc) = 0.5 as ξ jc = 1, ω jc = 1.5, λ j = κ j = ω jc, j = 1, 2, 3. The integration
is carried out using the International Mathematical and Statistical Library (IMSL) routine DDASPG based on
the Petzold-Gear BDF method [24].

We first consider the system moving in a circular orbit (i.e., e=0) and study the dynamics of the system
with natural damping (i.e., u j �= 0, ucj = 0, j = 1, 2, 3). The attitude angles of the satellite are found to
be asymptotically stable (Fig. 3). Note that the satellite without fluid rings has undamped attitude oscillations
of pitch frequency ω = √

3(K1 − K2)/(1 − K1K2) = 0.8165 rad/s and coupled roll and yaw frequencies

ω1,2 =
√

(1 + 3K1 + K1 K2)
[
1 ±√1 − 16K1K2/(1 + 3K1 + K1 K2)2

]
/2 = 0.5108 rad/s (first harmonic),

1.5477 rad/s (second harmonic). In the case of the system with fluid rings, the maximum value of Reynold’s
number (referring to Eq. (15)) is found to be below 1 and thus, it justifies the assumption of laminar flow in
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Fig. 4 Comparison between responses of linear and nonlinear system models without fluid controller torques (uc = 0)

the fully filled rings. The nonlinear system response is compared to the response of the linear system (20–21)
as shown in Fig. 4. The linear response matches well with the nonlinear response and all the eigenvalues
of the linear system have negative real parts (pitch motion: −11.58,−0.01 ± 0.68 j; roll and yaw motion:
−13.38,−13.04,−0.01 ± 1.38 j,−0.03 ± 0.35 j), proving asymptotically stable system response. Further
numerical simulations show that the system is stable only in the Lagrange region (i.e., K1 > K2, K1 >
0, K2 > 0), which confirms the stability conditions as per Eqs. (24) and (27).

In fact, the system with natural damping (see Figs. 3, 4) takes a rather long time in the order of tens of
orbits to reach steady-state, and, therefore, we consider a fluid controller ucj as per control laws given by
Eqs. (23). Figure 5 shows the satellite attitude response with linear fluid controllers. The linear controllers (as
per Eq. (36)) are successful in stabilizing the satellite attitude within half an orbit. The fluid flow remains lam-
inar with Rn < 22 and the maximum fluid discharge rate is only 2.1 × 10−7 m3/s. In the case when nonlinear
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Fig. 6 Satellite attitude performance as affected by nonlinear fluid controllers

controllers (as per Eq. (37)) are applied, similar satellite attitude performance is obtained (Fig. 6) except that
there are slight variations in fluid torques and flow rates. Thus, the linear and nonlinear fluid controllers are
successful in achieving desired satellite attitude performance.

Next the effect of external disturbance torques on the controller performance response is examined (Fig. 7).
Both linear and nonlinear controllers are successful in stabilizing the satellite attitude within half an orbit; in
other words, the satellite attitude remains virtually unaffected by the presence of external disturbance torques.
However, in the case of sudden external disturbances as might be encountered in real space missions (Fig. 8), the
satellite attitude response using the nonlinear controllers remains virtually unaffected, while applying the lin-
ear controllers the satellite attitude response deteriorates during external disturbances, reaching the maximum
attitude angles of |α|max = 2.45 deg, |φ|max = 3.27 deg, and |γ |max = 4.36 deg.

The effect of actuators’ failures on the controller performance is studied next (Fig. 9). Even though pitch,
roll and yaw controllers are switched off from 1 to 2 orbits, both the linear and nonlinear controllers are able
to stabilize the satellite attitude within half an orbit after the controllers are switched on at the 2nd orbit. The
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Fig. 8 Satellite attitude response as affected by sudden external disturbances from 0.5 to 2 orbits: a linear controllers and
b nonlinear controllers

maximum attitude errors are |α|max = 6.421 deg, |φ|max = 9.845 deg, and |γ |max = 23.91 deg using the linear
controllers, while the nonlinear controllers result in attitude errors of |α|max = 11.78 deg, |φ|max = 7.761 deg,
and |γ |max = 13.64 deg.

6 Conclusions

The attitude stabilization of a satellite using fluid rings is presented in this paper. Results of the numerical
integration of the governing nonlinear equations of motion along with their verification through stability anal-
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Fig. 9 Satellite attitude response as affected by actuators’ failures from 1 to 2 orbits: a Linear controllers and b Nonlinear
controllers

ysis of the system indicate that the proposed concept is feasible. Reynold’s number on the order of hundreds
found by numerical simulation justifies the assumption of laminar flow in the fully filled rings. The fluid rings
with natural damping are successful in stabilizing three-dimensional satellite attitude in the Lagrange region.
However, the system takes rather long time in the order of tens of orbits to reach steady-state and therefore,
it is considered to apply low-powered pumps to regulate the fluid flow inside fluid rings. The proposed linear
and nonlinear fluid controllers provide the desired attitude performance in the presence of large attitude dis-
turbances and intermittent actuators’ failures. Both the controllers result in the similar attitude performance
except for slight variations in fluid torques and flow rates. In the situation of sudden external disturbance
torques, the linear fluid controllers are unable to mitigate the disturbance torques resulting in deterioration of
attitude performance. On the other hand, the nonlinear controllers are highly successful in maintaining the
desired performance with virtually no effect on the satellite attitude response. Thus, the present analysis may
serve as a foundation for the implementation of the proposed attitude control method in future satellites.
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