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Abstract A micromechanical analytical framework is presented to predict effective elastic moduli of three-
phase composites containing many randomly dispersed and pairwisely interacting spherical particles. Specif-
ically, the two inhomogeneity phases feature distinct elastic properties. A higher-order structure is proposed
based on the probabilistic spatial distribution of spherical particles, the pairwise particle interactions, and the
ensemble-volume homogenization method. Two non-equivalent formulations are considered in detail to derive
effective elastic moduli with heterogeneous inclusions. As a special case, the effective shear modulus for an
incompressible matrix containing randomly dispersed and identical rigid spheres is derived. It is demonstrated
that a significant improvement in the singular problem and accuracy is achieved by employing the proposed
methodology. Comparisons among our theoretical predictions, available experimental data, and other analyti-
cal predictions are rendered. Moreover, numerical examples are implemented to illustrate the potential of the
present method.

1 Introduction

Composite materials have developed rapidly over the last several decades to meet the diverse needs for improved
material performance with enhanced thermo-mechanical properties, reduced unit weights, versatile direction-
ality, optimal anisotropy, as well as improvements in mechanical strengths, elastic moduli, delamination resis-
tance, fracture toughness and fatigue resistance, etc. Reinforcements could be continuous in the form of fibers,
or discontinuous in the form of particles or whiskers. In particular, the prediction and estimation of overall
mechanical properties of random heterogeneous multiphase composites are of considerable interest to engi-
neers in many science and engineering disciplines. In general, mechanical properties of composites are related
to properties of constituent phases and microstructures of inhomogeneities (e.g., the shapes, orientations, aspect
ratios, volume fractions, and random locations).

Many studies have been published in the literature for predicting effective elastic moduli of particle rein-
forced composites. For example, we refer to Hashin and Shtrikman [1–3], Torquato and Lado [4], Mori and
Tanaka [5], Sen et al. [6], Nemat-Nasser and Hori [7], Eshelby [8], and Batchelor and Green [9] for select
literature reviews. Specifically, Hashin and Shtrikman [1–3] proposed the upper and lower bounds for effec-
tive elastic moduli of multiphase materials. Their method was based on the variational principles within the
linear elasticity theory. Their method renders generally better bounds than the Voigt and Reuss bounds. The
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“improved” higher-order mathematical bounds (which depend on the statistical microstructural information
of random heterogeneous composites) were also investigated by Silnutzer [10], Milton and Phan-Thien [11],
Torquato and Lado [4], Sen et al. [6], etc. Further, effective elastic moduli of composites were studied by using
the “effective medium methods” such as the self-consistent method, the differential scheme, the generalized
self-consistent method, and the Mori–Tanaka method [5]. However, the effective medium methods as a group
depend only on geometries of particles (inclusions) and volume fractions; they do not consider the spatial
locations or probabilistic distributions of particles (inclusions). The effective medium methods are inherently
independent of the spatial or statistical particle distributions, thus best suited for low particle concentrations or
some limited special configurations. In contrast, microstructure-dependent particle interaction methods were
proposed in the literature to predict effective elastic properties of composites with spatially randomly located
yet locally interacting inclusions by employing micromechanical approximations, or by featuring special con-
figurations for inclusions dispersed in the matrix; see, e.g., Batchelor and Green [9], and Chen and Acrivos [12].

In Ju and Chen [13,14], a novel higher-order (in φ) ensemble-volume micromechanical framework was
presented to predict effective elastic moduli of multi-phase composites containing randomly dispersed iden-
tical spherical or ellipsoidal inhomogeneities. Explicit probabilistic micromechanical pairwise inter-particle
interactions were accounted for during the derivations of effective elastic moduli in Ju and Chen [13,14].
Moreover, the ensemble-volume homogenization procedure was utilized, and the formulation was of complete
second order. Ju and Chen showed that effective elastic properties predicted by the Mori–Tanaka method
[5] coincide with their first-order results and Hashin–Shtrikman [3] bounds for isotropic composites, and
with Wills [15] bounds for anisotropic composites containing unidirectionally aligned and identically shaped
inclusions. Emanating from the general framework of Ju and Chen [13,14], Ju and co-workers further investi-
gated the micromechanics and effective elastoplastic behaviors of two-phase metal matrix composites [16–20],
micromechanical effective transverse elastic moduli and elastoplastic behaviors of composites with randomly
located yet aligned circular fibers [21,22], the exact formulation for the exterior-point Eshelby’s tensor of an
ellipsoidal inclusion [23], and micromechanical damage models for effective elastoplastic behaviors of duc-
tile matrix composites accommodating evolutionary particle debonding and cracking [24–30] or progressive
interfacial fiber debonding [31–34].

The primary objective of the present paper is to extend the framework of Ju and Chen [13,14] to predict
effective elastic moduli of three-phase composites based on mechanical properties of the constituent phases,
volume fractions, spatial distributions of particles, and direct inter-particle interactions. The two inclusion
phases feature distinct elastic properties. All particles are considered non-intersecting, randomly dispersed,
and embedded firmly in the matrix with perfect interfaces. A higher-order framework is constructed based on the
probabilistic spatial distribution of spherical particles, pairwise particle interactions, and the ensemble-volume
averaging procedure for three-phase elastic composites.

The remainder of the paper is organized as follows. In Sect. 2, we present the approximate analytical
solutions for the direct interactions between two different, randomly located elastic spheres embedded in the
matrix material. Subsequently, the ensemble-volume averaged eigenstrains are obtained through the proba-
bilistic pairwise particle interaction mechanism. Two non-equivalent formulations are considered in detail to
derive effective elastic moduli of three-phase composites. In combination with the results from Sect. 2 and
the governing ensemble-volume averaged field equations, effective elastic moduli of three-phase composites
containing randomly dispersed distinct spherical particles are analytically derived in Sect. 3. Comparisons
between our micromechanical predictions and other homogenization methods as well as experimental data are
rendered in Sect. 4. As a special case, a three-phase composite containing randomly dispersed microvoids and
rigid spheres embedded in an elastic matrix is also considered.

2 Approximate local solutions of two interacting particles

Let us consider a three-phase composite consisting of an isotropic elastic matrix (phase 0) with the bulk
modulus κ0 and shear modulus µ0, randomly dispersed elastic spherical particles (phase 1) with the bulk
modulus κ1 and shear modulus µ1, and randomly dispersed elastic spherical particles (phase 2) with the bulk
modulus κ2 and shear modulus µ2 (cf. Fig. 1). In addition, the linearly elastic isotropic stiffness tensors for
three distinct phases are expressed as

(Cη)i jkl = λη δi j δkl + µη (δikδ jl + δilδ jk), η = 0, 1, 2, (1)

where λη and µη are the Lamé constants of the phase-η material.
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Fig. 1 The schematic diagram for the two-particle interaction problem

Following the eigenstrain concept introduced by Eshelby [8,35], the perturbed strain field ε′(x) induced by
particles can be related to the specified eigenstrains ε∗(x) by replacing the particles with the matrix material.
The key equation can be rephrased as follows:

Cη : [ε0 + ε′(x)] = C0 : [ε0 + ε′(x) − ε∗(x)], η = 1, 2, (2)

where ε0 is the uniform strain field induced by the far-field loads for a homogeneous matrix material only.
Throughout the paper, the colon symbol “:” denotes the tensor contraction between a fourth-rank tensor and
a second-rank tensor, while the dot symbol “•” represents the tensor multiplication between two four-rank
tensors.

According to Eshelby [8,35], the perturbed strain field induced by the distributed eigenstrain ε∗(x) in a
representative volume element (RVE) V reads

ε′(x) =
∫

V

G(x − x′) : ε∗(x′) dx′, (3)

where x, x′ ∈ V and the components of the fourth-rank three-dimensional Green’s function tensor G take the
form

Gi jkl(x − x′) = 1

8 π(1 − ν0)r3 Fi jkl(−15, 3ν0, 3, 3 − 6ν0, −1 + 2ν0, 1 − 2ν0), (4)

where i, j, k, l = 1, 2, 3 (cf. Mura [36]), r = x − x′ and r = ∥∥x − x′∥∥. The components of the tensor
F – which depends on its arguments (B1, B2, B3, B4, B5, B6) – are defined by (m = 1 to 6):

Fi jkl(Bm) ≡ B1 n′
i n

′
j n

′
kn′

l + B2 (δikn′
j n

′
l + δiln

′
j n

′
k + δ jkn′

i n
′
l + δ jln

′
i n

′
k)

+ B3 δi j n
′
kn′

l + B4 δkln
′
i n

′
j + B5 δi jδkl + B6 (δikδ jl + δilδ jk) (5)

with the normal vector n′ ≡ r/r . All physical quantities refer to the Cartesian coordinates, and the summation
convention applies here. Furthermore, δi j is the Kronecker delta, and ν0 defines the Poisson’s ratio of the
homogeneous matrix.

From Eqs. (2) and (3), we arrive at

− Ai : ε∗(x) = ε0 +
∫

V

G(x − x′) : ε∗(x′) dx′ (6)
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for x ∈ V, and

Ai ≡ (Ci − C0)
−1•C0. (7)

Within the present two-sphere interaction context, the integral Eq. (6) can be recast as

− Ai : ε∗
(i)(x) = ε0 +

∫

�i

G(x − x′) : ε∗
(i)(x

′) dx′ +
∫

� j

G(x − x′) : ε∗
( j)(x

′) dx′, i �= j, i, j = 1, 2, (8)

where x ∈ �i , and ε∗
(i)(x

′) is the eigenstrain at x′ in the i th sphere within the domain �i .

As discussed earlier in Ju and Chen [13], the first-order solution for the eigenstrain, denoted by ε∗0
(i) for the

i th phase, can be obtained by neglecting the last term in the right-hand side of Eq. (8), which represents the
interaction effects due to the other sphere. The first-order formulation leads to

− Ai : ε∗0
(i) = ε0 + s : ε∗0

(i), (9)

where the Eshelby tensor s is defined as

s ≡
∫

�i

G(x − x′) dx′, x ∈ �i . (10)

The components of s depend on the Poisson’s ratio of the matrix (ν0) and the shape of the particle �i . For a
spherical particle, the tensor s reads

si jkl = 1

15 (1 − ν0)

{
(5ν0 − 1) δi jδkl + (4 − 5ν0) (δikδ jl + δilδ jk)

}
. (11)

We refer to Mura [36] for more details.
By subtracting the first-order solution Eq. (9) from Eq. (8), the effects of inter-particle interactions can be

derived by solving the following integral equation:

− Ai : d∗
(i)(x) =

∫

� j

G(x − x′) dx′ : ε∗0
( j) +

∫

�i

G(x − x′) : d∗
(i)(x

′) dx′

+
∫

� j

G(x − x′) : d∗
( j)(x

′) dx′, for x ∈ �i , i �= j, (12)

where

d∗
(i)(x) ≡ ε∗

(i)(x) − ε∗0
(i). (13)

To obtain the higher-order interaction correction for ε∗
(i) (x), one may expand the fourth-rank tensor G(x − x′)

in the domain � j with respect to its center point x; i.e.,

G(x − x′) = G(x − x j ) − (x′ − x j ) : [∇x ⊗ G(x − x j )]
+ 1

2
[(x′ − x j ) ⊗ (x′ − x j )] : [∇x ⊗ ∇x ⊗ G(x − x j )] + · · · (14)

where the relation

∇x′ ⊗ G(x − x′) = −∇x ⊗ G(x − x′) (15)

has been employed. From Eqs. (12) and (14), we arrive at

− Ai : d∗
(i)(x) =

∫

� j

G(x − x′) dx′ : ε∗0
( j) +

∫

�i

G(x − x′) : d∗
(i)(x

′) dx′

+ � j G(x − x j ) : d
∗
( j)(x j ) − � j a j {∇x ⊗ G(x − x j )} : P

∗
( j)

+ 1

2
� j a2

j {∇x ⊗ ∇x ⊗ G(x − x j )} : Q
∗
( j) + · · · (16)



Effective elastic moduli of three-phase composites 15

for x ∈ �i and i �= j (i, j = 1, 2). Here � = �i = � j = 4πa3/3 denotes the volume of a spherical particle,
and a = ai = a j defines its radius. Moreover, the averaged fields involved in Eq. (16) are defined as follows:

d
∗
( j) ≡ 1

� j

∫

� j

d∗
( j)(x) dx, (17)

P
∗
( j) ≡ 1

� j a j

∫

� j

(x − x j ) ⊗ d∗
( j)(x) dx, (18)

Q
∗
( j) ≡ 1

� j a2
j

∫

� j

(x − x j ) ⊗ (x − x j ) ⊗ d∗
( j)(x) dx. (19)

The third-rank tensor P
∗
( j) and the fourth-rank tensor Q

∗
( j) correspond to the dipole and quadrapole of

d∗
( j) in the domain � j , respectively. Due to the spherical symmetry of particles, the leading order of P

∗
( j) is

of the order O(ρ4), rather than O(ρ3), by substituting Eq. (18) into Eq. (16). Here, ρ ≡ a/r , and r is the
spacing between the centers of two spheres. By performing the volume average in Eq. (16) for the domain �i

and truncating those terms of higher order moments, the approximate equations d
∗
(i) for the local two-sphere

interaction problem can be exhibited:

− Ai : d
∗
(i) = G2(xi − x j ) : ε∗0

( j) + s : d
∗
(i) + G1(xi − x j ) : d

∗
( j) + O(ρ8), (20)

where

G1 ≡
∫

�1

G(x − x2) dx =
∫

�2

G(x1 − x) dx = 1

30 (1 − ν0)
(ρ3H1 + ρ5 H2), (21)

G2 ≡ 1

�

∫

�1

∫

�2

G(x − x′) dx′ dx = 1

30 (1 − ν0)
(ρ3 H1 + 2ρ5 H2), (22)

and the components of H1 and H2 are rendered by

H1
i jkl(x1 − x2) ≡ 5 Fi jkl(−15, 3ν0, 3, 3 − 6ν0, −1 + 2ν0, 1 − 2ν0), (23)

H2
i jkl(x1 − x2) ≡ 3 Fi jkl(35, −5,−5,−5, 1, 1). (24)

It is noted that the leading-order error induced by dropping the higher order moments in Eq. (20) is of the order
O(ρ8) since P

∗
(i) and �a∇x ⊗ G are of the order O(ρ4).

Moreover, Eq. (20) can be recast as

(A1 + s) : d
∗
(1) + G1 : d

∗
(2) = −G2 : ε∗0

(2), (25)

G1 : d
∗
(1) + (A2 + s) : d

∗
(2) = −G2 : ε∗0

(1). (26)

Therefore, the solutions of Eqs. (25) and (26) are

d
∗
(1) = [

(G1)−1•(A1 + s) − (A2 + s)−1•G1]−1
[
(A2 + s)−1•G2 : ε∗0

(1) − (G1)−1•G2 : ε∗0
(2)

]
, (27)

d
∗
(2) = [

(A1 + s)−1•G1 − (G1)−1•(A2 + s)
]−1

[
(G1)−1•G2 : ε∗0

(1) − (A1 + s)−1•G2 : ε∗0
(2)

]
, (28)

where the leading orders of (A2 + s)−1•G1 and (G1)−1•(A1 + s) are of the order O(ρ3) and O(ρ−3) in Eq.
(27), respectively. It is interesting to note that (A2 + s)−1•G1 is truncated since its leading order is greater
than the leading order of (G1)−1•(A1 + s). We also have ρ < 1/2.

Therefore, the solution of Eq. (27) is

d
∗
(1) = (A1 + s)−1•(G1)•(A2 + s)−1•G2 : ε∗0

(1) − (A1 + s)−1•G2 : ε∗0
(2). (29)

Similarly, Eq. (28) can be rephrased as

d
∗
(2) = (A2 + s)−1•(G1)•(A1 + s)−1•G2 : ε∗0

(2) − (A2 + s)−1•G2 : ε∗0
(1). (30)
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3 Effective elastic moduli of three-phase composites

3.1 Ensemble-volume averaged eigenstrains

To obtain the probabilistic ensemble-averaged solution of d
∗
(i) within the context of approximate pairwise

local particle interaction, one has to integrate Eqs. (29) and (30) over all possible positions (x j ) of the second
particle for a given location of the first particle (xi ). The ensemble-average process takes the form

〈
d

∗
(i)

〉
(xi ) =

∫

V −�i

d
∗
(i)(xi − x j ) P(x j

∣∣xi ) dx j , i �= j, (31)

in which P(x j |xi ) is the conditional probability density function for finding the second particle centered at
x j given the first particle centered at xi . Moreover, angled brackets define the ensemble-average operator. In
this paper, a three-dimensional statistically isotropic and homogeneous two-point probability density function
P(x j |xi ) is considered. The three-dimensional isotropic probabilistic integration domain V in Eq. (31) can
therefore be evaluated as a sphere. Further, �i in Eq. (31) defines the probabilistic “exclusion zone” for x j .

The two-point conditional probability function P(x j |xi ) is determined by the microstructure of a com-
posite, which in turn depends on the particle volume fraction and underlying manufacturing processes. For
illustration, the two-point conditional probability density function is taken as statistically isotropic and uniform,
and obeys the following:

P(x j |xi ) =
{

N
V if r ≥ 2a,

0 otherwise,
(32)

where N
V is the three-dimensional number density of particles in a composite and r is the spacing between the

centers of two spheres. By substituting Eq. (29) into (31), the explicit expression for
〈
d

∗
(1)

〉
(x1) can be depicted

as

〈
d

∗
(1)

〉
(x1) =

⎡
⎣

∞∫

2a

∫

	

P(x2 |x1 ) (A1 + s)−1•(G1)•(A2 + s)−1•G2 d	 dr

⎤
⎦ : ε∗0

(1)

−
⎡
⎣

∞∫

2a

∫

	

P(x2 |x1 ) (A1 + s)−1•G2 d	 dr

⎤
⎦ : ε∗0

(2), (33)

where 	 signifies the spherical surface of radius r .
In what follows, we present two non-equivalent formulations to predict the effective elastic moduli of

three-phase composites, involving “Formulation I” here and “Formulation II” in Sect. 3.2. Specifically, the
following identities can be easily proved:∫

	

ni n j d	 = 4πr2

3
δi j , (34)

∫

	

ni n j nk nl d	 = 4πr2

15
(δi j δkl + δik δ jl + δil δ jk), (35)

where n is the normal vector at a point on 	; i.e., n = r/r with r = x2 − x1. Using Eqs. (21)–(22) and Eqs.
(34)–(35), it is straightforward to verify that the surface integral of (A1 + s)−1•G2 in the second line of Eq.
(33) is identically zero. By carrying out the lengthy algebra and utilizing the identities (34)–(35), the ensemble

integration for
〈
d

∗
(1)

〉
(x1) reads

〈
d

∗
(1)

〉
(x1) =

{
φ2

(
q1 + 90

64β1β2

)
δi jδkl + φ2

(
q2 − 135

64β1β2

)
(δikδ jl + δilδ jk)

+ φ1

(
q3 + 90

64β2
1

)
δi jδkl + φ1

(
q4 − 135

64β2
1

)
(δikδ jl + δilδ jk)

}
: ε∗0

(1). (36)
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Here, φi = Ni
V

( 4
3πa3

)
, with i = 1, 2, is the volume fraction of the i-phase particle. Other parameters in the

above equation are summarized in Appendix A.
The approximate ensemble-volume averaged eigenstrain tensor can be derived from Eqs. (17) and (32),

and takes the form 〈
ε∗

(1)

〉
= �1 : ε∗0

(1). (37)

Here, the components of the isotropic tensor �1 are

�1
i jkl = r1 δi jδkl + r2 (δikδ jl + δilδ jk) (38)

in which

r1 = φ2 t1 + φ1 t3, r2 = 1

2
+ φ2 t2 + φ1 t4 (39)

with

t1 = q1 + 90

64

(
1

β1β2

)
, t2 = q2 − 135

64

(
1

β1β2

)
, t3 = q3 + 90

64

(
1

β2
1

)
, t4 = q4 − 135

64

(
1

β2
1

)
. (40)

Similarly, the approximate ensemble-volume averaged eigenstrain tensor
〈
ε∗

(2)

〉
reads

〈
ε∗

(2)

〉
= �2 : ε∗0

(2). (41)

The components of the isotropic tensor �2 are

�2
i jkl = r3 δi jδkl + r4 (δikδ jl + δilδ jk), (42)

where

r3 = φ1 t5 + φ2 t7, r4 = 1

2
+ φ1 t6 + φ2 t8. (43)

Other parameters in Eqs. (42) and (43) are exhibited in Appendix B.

3.2 Effective bulk and shear moduli of three-phase composites containing randomly dispersed
spherical particles

In this section, we derive effective elastic moduli of composites containing many randomly dispersed spherical
particles of different elastic properties. We shall utilize the probabilistic ensemble-volume averaged pairwise

local interaction solutions for
〈
ε∗
(i)

〉
and other ensemble-volume averaged field equations. In what follows,

angle brackets for the ensemble-average operators will be dropped for compactness.
According to Ju and Chen [13] and Zhao et al. [37], the following relations governing the ensemble-volume

averaged stress σ , the averaged strain ε, the uniform remote strain ε0 and the averaged eigenstrain ε∗
(i) take

the form

σ = C0 :
(

ε −
2∑

i=1

φi ε∗
(i)

)
, (44)

ε = ε0 +
2∑

i=1

φi s : ε∗
i . (45)

Upon substitution of the solution of ε∗
(i) in Eqs. (37) and (41) into Eq. (45), and invoking the relation between

ε0 and ε∗0
(i) given by Eq. (9), the relations between the averaged eigenstrain ε∗

(i) and the averaged strain ε are
rendered as

ε∗
(1) = �1• (

T1)−1 : ε, ε∗
(2) = �2• (

T2)−1 : ε, (46)
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where

T1 = (−A1 − s + φ1 s•�1 + φ2 s•�2•(A2 + s)−1•(A1 + s)
)
, (47)

T2 = (−A2 − s + φ2 s•�2 + φ1 s•�1•(A1 + s)−1•(A2 + s)
)
. (48)

Substituting Eq. (46) into (44) leads to the effective stiffness C∗ relating σ and ε:

C∗ = C0•
{

I − φ1�
1•(T1)−1 − φ2 �2•(T2)−1 }

. (49)

Since all fourth-rank tensors on the right-hand side of Eq. (49) are isotropic in three dimensions, the effective
stiffness tensor C∗ for a three-phase composite is isotropic as well. Further, the effective bulk modulus κ∗ and
shear modulus µ∗ can be explicitly derived as

κ∗ = κ0

(
1 + 30(1 − ν0) [ω2 φ1(3r1 + 2r2) + ω1 φ2(3r3 + 2r4)]

ω1 ω2 − 10(1 + ν0) [ω2 φ1(3r1 + 2r2) + ω1 φ2(3r3 + 2r4)]
)

, (50)

µ∗ = µ0

(
1 + 30 (1 − ν0) (β2φ1r2 + β1φ2r4)

β1β2 − 4(4 − 5ν0) (β2φ1r2 + β1φ2r4)

)
, (51)

where ωi = 3αi + 2βi and i = 1, 2. In addition, r1, r2, r3 and r4 have previously been defined by Eqs. (39)
and (43).

We now consider an interesting special case involving the non-equivalent “Formulation II” by neglecting
the higher-order components O(ρ5 ) in Eqs. (21) and (22). Following a similar procedure as in “Formulation
I” in Sect. 3.1, the approximate ensemble-volume averaged eigenstrain tensors become

〈
ε∗

(1)

〉
= �1 : ε∗0

(1) and
〈
ε∗

(2)

〉
= �2 : ε∗0

(2), (52)

where the components of the isotropic tensors �1 and �2 read

�1
i jkl = r1δi jδkl + r2(δikδ jl + δilδ jk) and �2

i jkl = r3δi jδkl + r4(δikδ jl + δilδ jk). (53)

with

r1 = φ2q1 + φ1q3, r2 = 1

2
+ φ2q2 + φ1q4, r3 = φ1q5 + φ2q7, r4 = 1

2
+ φ1q6 + φ2q8. (54)

Other parameters in Eq. (54) are exhibited in Appendices A and B.
The effective bulk modulus κ∗ and shear modulus µ∗ can be explicitly expressed as

κ∗ = κ0

(
1 + 30(1 − ν0) [ω2φ1(3r1 + 2r2) + ω1φ2(3r3 + 2r4)]

ω1ω2 − 10(1 + ν0) [ω2φ1(3r1 + 2r2) + ω1φ2(3r3 + 2r4)]
)

, (55)

µ∗ = µ0

(
1 + 30(1 − ν0) (β2φ1r2 + β1φ2r4)

β1β2 − 4(4 − 5ν0)(β2φ1r2 + β1φ2r4)

)
, (56)

where ωi = 3αi + 2βi and i = 1, 2. Further, r1, r2, r3 and r4 are defined by Eq. (54).
In the special event that a matrix material contains identical spherical particles (i.e., κ1 = κ2, µ1 =

µ2, a1 = a2), Eqs. (55) and (56) reduce to

κ∗ = κ0

(
1 + 30 (1 − ν0)φ(3r1 + 2r2)

3α + 2β − 10(1 + ν0)φ(3r1 + 2r2)

)
, (57)

µ∗ = µ0

(
1 + 30(1 − ν0)φr2

β − 4(4 − 5ν0)φr2

)
, (58)

with α = α1 = α2, β = β1 = β2, r1 = r3, r2 = r4 and φ = φ1 + φ2. Here, φ denotes the total particle
volume fraction. It is noted that Eqs. (57)–(58) are entirely identical to Eqs. (23)–(24) in Ju and Tseng [17].
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4 Some analytical examples

A number of analytical examples are presented in this section for two-phase and three-phase elastic composites
containing many randomly dispersed spherical particles.

4.1 Two-phase elastic composites

For an incompressible matrix containing randomly located and identical rigid spheres, the proposed pairwisely
local interacting solution from Eq. (51) reduces to the following effective shear modulus:

µ∗ = µ0

(
1 + 5φ

2

32 + 15φ

32 − 32φ − 15φ2

)
. (59)

Equation (59) becomes singular at φ = 0.742. Nevertheless, the singularity point is irrelevant since the
maximum random packing density of identical spherical particles is 0.74. In comparison with Eq. (56) of
Ju and Chen [14], it is observed that significant improvement in the singular problem has been achieved by
employing the current methodology. Moreover, the Taylor’s series expansion of Eq. (59) with respect to φ
results in

µ∗ = µ0

(
1 + 5

2
φ + 235

64
φ2 + O(φ3)

)
. (60)

We note that Eqs. (49)–(51) and (59) for effective elastic moduli form an approximate, analytical, higher-order
overall micromechanical formulation in φ; the proposed framework differs from the second-order overall
model in the literature. Comparisons of the second-order truncated solution of Eq. (60) with other existing
second-order models are discussed next. The coefficient of O(φ2) in Eq. (60) (the shear modulus) is 235/64 (or
3.671875). Our truncated second-order calculation has a considerable difference with other existing second-
order calculations. For example, the prediction made by Ju and Chen [14] and Willis and Acton [38] is 4.84375,
which is less accurate (in term of ρ) than our truncated second-order result, since an added number of terms in
the series solution are required in our current approach. The other calculations of the second-order coefficient
of O(φ2) made by Batchelor and Green [9], Kim and Mifflin [39] and Chen and Acrivos [12] are 5.2 ± 0.3,
5.07 and 5.01, respectively.

We now take upon the special case of an incompressible matrix containing randomly dispersed identical
spherical microvoids. According to Eqs. (50)–(51), the corresponding effective bulk and shear moduli of the
proposed interacting solutions become

κ∗ = 4

3
µ0

(
1

φ
− 1

)
and µ∗ = µ0

(
1 − 120φ + 25φ2

72 + 48φ + 10φ2

)
. (61)

It is of some interest to compare the effective bulk and shear moduli in Eq. (61) with Eqs. (46) and (47) made
by Ju and Chen [13]. It is observed that the expression for the effective bulk modulus rendered in Eq. (61) is
surprisingly the same as the first-order (“non-interacting”) result discussed in Eq. (46) by Ju and Chen [13].
On the other hand, Taylor’s series expansion of the effective shear modulus in Eq. (61) with respect to φ yields

µ∗ = µ0

(
1 − 5

3
φ + 55

72
φ2 + O(φ3)

)
. (62)

The second-order term 55
72φ2 here is very different from that

( 10
9 φ2

)
of Eq. (47) in Ju and Chen [13] which was

derived based on the first-order (non-interacting) formulation.

4.2 Three-phase elastic composites

If the first and the second phases contain identical rigid spheres and identical spherical microvoids, respectively,
then we write A1 = 0 and A2 = −I as a special case. Consequently, the effective bulk (Eq. 50) and shear
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Fig. 2 Effective Young’s moduli E∗ versus particle volume fractions φ, with solid circles signifying experimental data from
Smith [40]

moduli (Eq. 51) are

κ∗ = κ0

(
1 + 3(1 − ν0)

(1 + ν0)
· 2(1 − 2ν0)φ1(3r1 + 2r2) − (1 + ν0)φ2(3r3 + 2r4)

2(1 − 2ν0) [1 − φ1(3r1 + 2r2)] + (1 + ν0)φ2(3r3 + 2r4)

)
, (63)

µ∗ = µ0

(
1 + 30(1 − ν0)

(8 − 10ν0)
· (7 − 5ν0)φ1r2 − (8 − 10ν0)φ2r4

(7 − 5ν0)(1 − 2φ1r2) + 2(8 − 10ν0)φ2r4

)
. (64)

In addition, if one entirely neglects the local particle interaction effects, then �1 in Eq. (37) and �2 in Eq. (41)
would reduce to I at the same time. Accordingly, the effective bulk κ∗ and shear modulus µ∗ become:

κ∗ = κ0

(
1 + 3(1 − ν0)

(1 + ν0)
· 2(1 − 2ν0)φ1 − (1 + ν0)φ2

2(1 − 2ν0) (1 − φ1) + (1 + ν0)φ2

)
, (65)

µ∗ = µ0

(
1 + 15(1 − ν0)

(8 − 10ν0)
· (7 − 5ν0)φ1 − (8 − 10ν0)φ2

(7 − 5ν0)(1 − φ1) + (8 − 10ν0)φ2

)
. (66)

It is observed that these first-order (“non-interacting”) expressions are identical to Eqs. (48) and (49) in Ju and
Chen [13], as expected.

To further assess the capability of the proposed micromechanical framework, the analytical predictions
with particle interaction effects are compared with the two-point bounds (Hashin and Shtrikman [3]), the
three-point bounds (Milton and Phan-Thien [11], Torquato and Lado [4]), and experimental data (Smith [40],
Walsh et al. [41]). The following material properties of two separate experiments are taken as follows: (i)
E0 = 3.0GPa, ν0 = 0.4, E1 = 76.0GPa and ν1 = 0.23 from Smith’s [40] data; (ii) E0 = 0.75 × 106bars and
ν0 = 0.23 with spherical voids of volume fractions ranging from 0 to 0.5, based on Walsh et al. [41]. Figure 2
displays the predicted effective Young’s moduli at various particle volume fractions φ. Here, the effective
Young’s modulus E∗ can be easily obtained through the expression

E∗ = 9κ∗µ∗
3κ∗ + µ∗

. (67)

We exhibit the theoretical predictions in Fig. 2 based on Hashin’s second-order bounds [3], the third-order
bounds [4,6], the proposed “Formulation I” Eqs. (50)–(51) and (67), as well as the simplified “Formulation
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Fig. 3 Effective bulk moduli versus void volume fractions φ, with solid circles signifying experimental data from [41]

II” Eqs. (55)–(56) and (67), respectively. In addition, the experimental data of [40] are rendered in Fig. 2 for
comparison purposes. As a special case, the proposed formulations rendered in Eqs. (50)–(51) and (55)–(56)
reduce to the two-phase formulas as expected; i.e., phase 1 is entirely identical to phase 2. Clearly, our analytical
predictions are well within Hashin’s second-order bounds [3] and the third-order bounds [4,6].

Figure 3 exhibits comparisons among our analytical predictions (Eqs. (50) and (55)), Hashin’s second-order
upper bound [3], the third-order upper bound [4,6], and Walsh et al. experimental data [41] on effective bulk
moduli κ∗ of porous glasses. We observe that the closed-form predictions of Eqs. (50) and (55) are identical
in this special case. It is also interesting to note that the proposed formulation compares very well with exper-
imental data for void volume fractions φ up to about 50%. Based on the foregoing preliminary analytical and
experimental comparisons, the proposed micromechanical approach offers a simple, approximate, yet suffi-
ciently accurate framework for the predictions of effective elastic moduli of two-phase composites containing
randomly dispersed elastic spherical particles.

Next, we proceed to assess the validity of the proposed micromechanical framework in predicting effective
elastic properties of three-phase composites (e.g., an elastic matrix with randomly dispersed spherical parti-
cles and voids). Experimental studies to characterize three-phase evolutions and statistical microstructures in
composites are still much needed in the literature. In the absence of actual manufacturing and microstructural
evidences, it is assumed that micro-defects such as voids exist often in composite materials. For convenience,
we adopt the same material parameters of Smith’s experiment [40] as discussed earlier. The predictions of
effective Young’s moduli at various void volume fractions (phase 2) with different particle volume fractions
(phase 1) are shown in Fig. 4, where φ1 and φ2 define the volume fractions of particles and voids, respec-
tively. Unless noted otherwise, in subsequent analytical simulations the matrix properties are taken as Young’s
modulus E0 = 3.0GPa and Poisson’s ratio ν0 = 0.4.

To examine the effects of varying Young’s moduli (E2) of the second-phase particles, we perform various
micromechanics-based predictions in Figs. 5 and 6. Specifically, Figs. 5 and 6 show the predicted effective
(normalized) bulk moduli κ∗/κ0 and effective (normalized) shear moduli µ∗/µ0 of three-phase composites at
various particle volume fractions φ2 (phase 2) with a constant particle volume fraction φ1 (phase 1). Here, we
employ the particle parameters as follows: E1/E0 = 20, ν1 = 0.2, φ1 = 0.1, and ν2 = 0.2. Various E2/E0
ratios are displayed in Figs. 5 and 6. From these results, it is clear that higher Young’s modulus ratio E2/E0
leads to higher effective (normalized) bulk modulus κ∗/κ0 and higher effective (normalized) shear modulus
µ∗/µ0.

Further, we consider three-phase composites consisting of an elastic matrix, spherical rigid particles
(phase 1), and spherical voids (phase 2). The analytical predictions of effective (normalized) bulk moduli
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Fig. 5 The predicted effective (normalized) bulk moduli κ∗/κ0 of three-phase composites versus particle volume fractions φ2
(phase 2) with constant particle volume fraction φ1 (phase 1)

κ∗/κ0 from the proposed micromechanical higher-order interaction formulation (Eq. 63) and the first-order
“non-interacting” formulation (Eq. 65) are compared in Fig. 7. No available experimental data are found at
this time for comparison. The differences in effective (normalized) bulk moduli κ∗/κ0 between the proposed
higher-order and the first-order formulations increase as rigid volume fractions (φ1) increase in Fig. 7.



Effective elastic moduli of three-phase composites 23

0 0.1 0.2 0.3 0.4 0.5

Particle Volume Fraction  φ2

0

1

2

3

4

5

6

µ */µ
ο

Particle(φ1):E1/E0=20, ν1=0.2, φ1=0.1
Predictions from Eq. (51)

E2/E0=1

E2/E0=0.1

E2/E0=0

E2/E0=10

E2/E0=20

E2/E0=100

E0=3.0 GPa, ν0=0.4,

E1/E0=20, ν1=0.2, φ1=0.1, ν2=0.2
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5 Conclusions

Based on the governing micromechanical field equations and the approximate (higher-order) pairwise particle
interaction solutions, new micromechanical formulations have been presented in this work to predict effective
elastic moduli of three-phase composites containing randomly dispersed spherical particles of distinct elastic
properties. The effects of random dispersion of spherical particles are accounted for through the probabilistic
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ensemble averaging process. The ensemble-volume averaged eigenstrains in particles are approximately yet
accurately evaluated by Eqs. (37) and (41) through the pairwise particle interactions. Hence, a compact ana-
lytical formula (49) is derived. As a result, two different analytical formulas of effective elastic moduli have
been derived in Sect. 3. The present paper represents a significant improvement over the previous work of
Ju and Chen [14] (and other researchers) which is based on the identical spherical particles on the matrix.
Moreover, the present higher-order prediction (in ρ) in Eq. (36) is compared with that of Ju and Chen [14]. The
two formulations, corresponding to Eqs. (50)–(51) and (55)–(56), both reduce to the formulas of two-phase
elastic composites, and are compared with Hashin’s second-order bounds [3], the third-order bounds [4,6],
and select experimental data. These comparisons and simulations encompass particle reinforced elastic com-
posites, elastic matrices with randomly dispersed particles and voids, and rigid particles and voids. No Monte
Carlo simulations or finite element calculations are needed here.

The authors are currently working on the extension of the proposed methodology to predict effective elastic
moduli of multi-phase composites containing randomly dispersed spherical particles of distinct properties and
different sizes. The methods proposed by Ju and Chen [14] and the present authors will be adopted to construct
micromechanical ensemble-volume averaged estimates of the aforementioned analytical extension.
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Number 4-592565-19914) and in part by Bellagio Engineering.

Appendix A

The parameters in Eq. (36) take the form:

q1 = −5

4

{
α1

[
2β2

(
11 − 11ν0 + 5ν2

0

) + 3α2
(
10 − 10ν0 + 7ν2

0

)]
β1β2 (3α1 + 2β1) (3α2 + 2β2)

+ 2β1
[
2β2

(
2 − 2ν0 + 5ν2

0

) + α2
(
5 − 5ν0 + 17ν2

0

)]
β1β2 (3α1 + 2β1) (3α2 + 2β2)

}
, (68)

q2 = 5

8

{
2β2

(
11 − 11ν0 + 5ν2

0

) + 3α2
(
10 − 10ν0 + 7ν2

0

)
β1β2 (3α2 + 2β2)

}
, (69)

q3 = −5

4

{
2β1

(
2 − 2ν0 + 5ν2

0

) + α1
(
10 − 10ν0 + 7ν2

0

)
β2

1 (3α1 + 2β1)

}
, (70)

q4 = 5

8

{
2β1

(
11 − 11ν0 + 5ν2

0

) + 3α1
(
10 − 10ν0 + 7ν2

0

)
β2

1 (3α1 + 2β1)

}
, (71)

with

αm = 2 (5ν0 − 1) + 10 (1 − ν0)

(
κ0

κm − κ0
− µ0

µm − µ0

)
, (72)

βm = 2 (4 − 5ν0) + 15 (1 − ν0)

(
µ0

µm − µ0

)
, m = 1, 2, (73)

where κ0, κm and µ0, µm denote the bulk and shear moduli of the matrix and the m-phase particle.

Appendix B

The parameters in Eqs. (42)–(43) are derived as follows:

t5 = q5 + 90

64

(
1

β1β2

)
; t6 = q6 − 135

64

(
1

β1β2

)
; t7 = q7 + 90

64

(
1

β2
2

)
; t8 = q8 − 135

64

(
1

β2
2

)
; (74)
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q5 = −5

4

{
α2

[
2β1

(
11 − 11ν0 + 5ν2

0

) + 3α1
(
10 − 10ν0 + 7ν2

0

)]
β1β2 (3α1 + 2β1) (3α2 + 2β2)

+ 2β2
[
2β1

(
2 − 2ν0 + 5ν2

0

) + α1
(
5 − 5ν0 + 17ν2

0

)]
β1β2 (3α1 + 2β1) (3α2 + 2β2)

}
, (75)

q6 = 5

8

{
2β1

(
11 − 11ν0 + 5ν2

0

) + 3α1
(
10 − 10ν0 + 7ν2

0

)
β1β2 (3α1 + 2β1)

}
, (76)

q7 = −5

4

{
2β2

(
2 − 2ν0 + 5ν2

0

) + α2
(
10 − 10ν0 + 7ν2

0

)
β2

2 (3α2 + 2β2)

}
, (77)

q8 = 5

8

{
2β2

(
11 − 11ν0 + 5ν2

0

) + 3α2
(
10 − 10ν0 + 7ν2

0

)
β2

2 (3α2 + 2β2)

}
. (78)
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