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Abstract The Eshelby problem of an infinite homogeneous isotropic elastic material containing an inclusion
is analytically solved using a simplified strain gradient elasticity theory that involves one material length scale
parameter in addition to two classical elastic constants. The Green’s function in the simplified strain gradient
elasticity theory is first obtained in terms of elementary functions by applying Fourier transforms, which reduce
to the Green’s function in classical elasticity when the strain gradient effect is not considered. The Eshelby
tensor is then derived in a general form for an inclusion of arbitrary shape, which consists of a classical part and
a gradient part. The former contains Poisson’s ratio only, while the latter includes the length scale parameter
additionally, thereby enabling the interpretation of the size effect. By applying the general form of the Eshelby
tensor derived, the explicit expressions of the Eshelby tensor for the special case of a spherical inclusion
are obtained. The numerical results quantitatively show that the components of the new Eshelby tensor for
the spherical inclusion vary with both the position and the inclusion size, unlike their counterparts based on
classical elasticity. It is found that when the inclusion radius is small, the contribution of the gradient part
is significantly large and thus should not be ignored. For homogenization applications, the volume average
of this newly obtained Eshelby tensor over the spherical inclusion is derived in a closed form. It is observed
that the components of the averaged Eshelby tensor change with the inclusion size: the smaller the inclusion
radius, the smaller the components. Also, these components are seen to approach from below the values of
their counterparts based on classical elasticity when the inclusion size becomes sufficiently large.

1 Introduction

Eshelby’s eigenstrain method and inclusion problem solutions [1,2] are monumental in the development of
micromechanics. The Eshelby tensor provides a direct link between the actual (induced) strain in an infinite
homogeneous isotropic elastic material and the stress-free uniform transformation strain (eigenstrain) in an
inclusion embedded in the infinite material [1]. This fourth-order tensor plays a key role in homogenization
methods by Mori and Tanaka [3] and others [4–9]. However, Eshelby’s tensor in its original form is based
on classical elasticity and depends only on the elastic constants and the inclusion shape (e.g., the aspect ratio
for an ellipsoidal inclusion [9]). As a result, Eshelby’s tensor and the subsequent homogenization methods
cannot capture the size effect exhibited by inclusion-matrix composites [10–12]. This motivated the studies on
the Eshelby inclusion problem using higher-order elasticity theories, which, unlike classical elasticity, contain
microstructure-dependent material length scale parameters and are therefore capable of explaining the size
effect.
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The Eshelby tensors for a spherical inclusion and a cylindrical inclusion were respectively derived by
Cheng and He [13] and Cheng and He [14] using a micropolar elasticity theory. The same micropolar theory
was employed by Ma and Hu [15] to obtain Eshelby’s tensor for an ellipsoidal inclusion. The analytical
expressions of Eshelby’s tensor for a spherical inclusion embedded in an infinite microstretch material were
derived by Liu and Hu [16] and Kiris and Inan [17]. Zheng and Zhao [18] studied the Eshelby inclusion problem
and obtained explicit expressions of Eshelby’s tensor for a spherical inclusion using a couple stress elasticity
theory. The Eshelby tensor for a spherical inclusion in a microelongated medium was derived by Kiris and Inan
[19]. Zhang and Sharma [20] obtained Eshelby’s tensor for an inclusion of arbitrary shape based on a strain
gradient elasticity theory, with the spherical inclusion problem solved explicitly. More recently, Ma and Hu [21]
provided an analytical form of the Eshelby tensor for an ellipsoidal inclusion using a microstretch elasticity
theory. However, the higher-order elasticity theories used in the afore-mentioned studies other than that in [18]
contain at least four elastic constants, with two or more being material length scale parameters. Due to the
difficulties in determining these microstructure-dependent length scale parameters [22–24] and in dealing with
the fourth-order Eshelby tensor, it is very desirable to study the Eshelby inclusion problem using a higher-order
elasticity theory containing only one material length scale parameter in addition to the two classical elastic
constants. The work reported in [18] appears to be the only study that involves just one additional length
scale parameter, which is based on a couple stress theory modified from the classical couple stress theory [25]
that contains four elastic constants in the constitutive equations but three in the displacement-equations of
equilibrium. There is still a lack of studies on the Eshelby inclusion problem based on strain gradient elasticity
theories involving only one additional elastic constant.

The objective of this paper is to provide such a study. A simplified strain gradient elasticity theory involving
only one additional material length scale parameter [26,27] is used in the current study to analytically solve
the Eshelby problem of an infinite homogeneous isotropic elastic medium containing an inclusion of arbitrary
shape. The procedure to be followed here is similar to that used in [18], where an illuminating Green’s function
based approach is also used. The rest of this paper is organized as follows. In Sect. 2, Green’s function in the
simplified strain gradient elasticity theory is obtained from directly solving the governing equations using
Fourier transforms, which reduce to the Green’s function in classical elasticity when the strain gradient effect
is ignored. Based on the Green’s function obtained, the Eshelby tensor is derived in Sect. 3 in a general form for
an inclusion of arbitrary shape, which consists of a classical part and a gradient part. The former contains only
one classical elastic constant (Poisson’s ratio), while the latter includes the length scale parameter additionally.
In Sect. 4, the explicit expressions for the Eshelby tensor are obtained for the special case of a spherical
inclusion by directly applying the general form of the newly derived Eshelby tensor. This specific Eshelby
tensor is position-dependent even inside the inclusion, unlike its counterpart based on classical elasticity. For
homogenization applications, the volume average of this Eshelby tensor over the spherical inclusion is also
analytically determined in Sect. 4. Sample numerical results are provided in Sect. 5 to illustrate the Eshelby
tensor for the spherical inclusion. The paper concludes with a summary in Sect. 6.

2 Green’s function

The Navier-like basic governing equations in the simplified strain gradient elasticity theory are given by [27]

(λ + µ)ui,i j + µu j,kk − L2 [(λ + µ)ui,i j + µu j,kk
]
,mm + f j = 0, (1)

which are the displacement-equations of equilibrium that have incorporated the geometrical equations:

εi j = 1

2

(
ui, j + u j,i

)
, (2.1)

κi jk = εi j,k = 1

2

(
ui, jk + u j,ik

)
, (2.2)

and the constitutive equations:

σi j ≡ τi j − µi jk,k (3.1)

τi j = λεllδi j + 2µεi j , (3.2)

µi jk = L2τi j,k = L2(λκllkδi j + 2µκi jk). (3.3)
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In Eqs. (1)–(3.1), ui (i ∈ {1, 2, 3}) are the Cartesian components of the displacement vector, L is a material
length scale parameter(with L2 = c, c being the strain gradient coefficient used in [27]), λ and µ are the
Lamé constants, f j are the Cartesian components of the body force vector (force per unit volume), εi j are
the components of the classical (infinitesimal) strain, κi jk are the components of the strain gradient, σi j are
the components of the total stress, τi j are the components of the Cauchy stress conjugated to εi j , µi jk are the
components of the double stress conjugated to κi jk , and δi j is the Kronecker delta. Note that the standard index
notation, together with the Einstein summation convention, is used in Eqs. (1)–(3.1–3.3) and throughout this
paper, with each Latin index (subscript) ranging from 1 to 3 unless otherwise stated.

The solution of Eq. (1), which is the final form of the governing equations that has incorporated
Eqs. (2.1, 2.2) and (3.1–3.3), subject to the boundary conditions of ui and their derivatives vanishing at
infinity, provides the fundamental solution and Green’s function in the simplified strain gradient elasticity
theory, as will be shown next.

The three-dimensional (3D) Fourier transform of a sufficiently smooth function F(x) and its inverse can
be defined as

F̂(ξ) =
∫ ∫ +∞∫

−∞
F(x)e−iξ ·xdx, (4.1)

F(x) = 1

(2π)3

∫ ∫ +∞∫

−∞
F̂(ξ)eiξ ·xdξ , (4.2)

where x is the position vector of a point in the 3D physical space, ξ is the position vector of the same point
in the Fourier (transformed) space, i is the usual imaginary number with i2 = −1, and F̂(ξ) is the Fourier
transform of F(x).

Suppose that ui are sufficiently differentiable and that ui and their derivatives vanish at | x |→ ∞. Then,
applying Eq. (4.1), the product rule and the divergence theorem gives

ûi (ξ) =
∫ ∫ +∞∫

−∞
ui (x)e−iξ ·xdx, ûk,i j (ξ) = −ξiξ j ûk(ξ), ûk,i jll(ξ) = ξiξ jξlξl ûk(ξ). (5)

Taking Fourier transforms on Eq. (1) and using Eqs. (4.1) and (5) will lead to

ξ2(1 + L2ξ2)
[
(λ + 2µ)ξ0

i ξ0
j + µ(δi j − ξ0

i ξ0
j )
]

ûi = f̂ j , (6)

where ξ ≡| ξ |= (ξkξk)
1/2, and ξ0

i = ξi/ξ are the components of the unit vector ξ0 = ξ/ξ . Equation (6) gives
a system of three algebraic equations to solve for the three unknowns ûi . This equation system can be readily
solved to obtain

ûi (ξ) = Ĝi j (ξ) f̂ j (ξ), (7.1)

where Ĝi j (ξ) is the inverse of the coefficient matrix of ûi (ξ) in Eq. (6) given by (see Appendix A)

Ĝi j (ξ) = 1

ξ2(1 + L2ξ2)

[
1

µ

(
δi j − ξ0

i ξ0
j

)
+ 1

λ + 2µ
ξ0

i ξ0
j

]
. (7.2)

Taking inverse Fourier transforms on both sides of Eq. (7.1) then yields, with the help of the convolution
theorem, the solution of Eq. (1) as

ui (x) =
∫ ∫ +∞∫

−∞
Gi j (x − y) f j (y)dy, (8)

where Gi j (x), as the inverse Fourier transform of Ĝi j (ξ) listed in Eq. (7.2), is (see Eq. (4.2))

Gi j (x) = 1

8π3

∫ ∫ +∞∫

−∞
Ĝi j (ξ)eiξ ·xdξ . (9)
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Equation (8) gives the fundamental solution in the simplified strain gradient elasticity theory in terms of the
Green’s function Gi j (x) defined in Eq. (9).

To evaluate the definite integral in Eq. (9), a convenient spherical coordinate system (ξ, θ, φ) in the
transformed space is chosen such that the angle between x and ξ is θ, with the direction of x being the axis
where θ = 0. Then, it follows that ξ ·x = ξk xk = ξ x cos θ , with x =| x |= (xk xk)

1/2, and the volume element
dξ = ξ2 sin θdξdθdφ. Substituting Eq. (7.2) into Eq. (9) yields

Gi j (x) = 1

8π3

2π∫

0

〈 π∫

0

⎧
⎨

⎩

∞∫

0

1

1 + L2ξ2

[
1

µ

(
δi j − ξ0

i ξ0
j

)
+ 1

λ + 2µ
ξ0

i ξ0
j

]
eiξ x cos θdξ

⎫
⎬

⎭
sin θdθ

〉

dφ

= 1

8π3

π∫

0

〈⎧⎨

⎩

2π∫

0

[
1

µ

(
δi j − ξ0

i ξ0
j

)
+ 1

λ + 2µ
ξ0

i ξ0
j

]
dφ

⎫
⎬

⎭

⎛

⎝
∞∫

0

1

1 + L2ξ2 eiξ x cos θdξ

⎞

⎠

〉

sin θdθ.

(10)

From Eq. (7.2) it is seen that Ĝi j (ξ) is an even function of ξ with Ĝi j (−ξ) = Ĝi j (ξ), and from Eq. (9) it then
follows that Gi j (x) is also an even function of x with Gi j (−x) = Gi j (x). Using this fact and the expression
of Gi j (x) in Eq. (10) gives

∞∫

0

1

1 + L2ξ2 eiξ x cos θdξ = 1

2

∞∫

−∞

1

1 + L2ξ2 eiξ x cos θdξ = π

2L
e−|x cos θ |/L , (11)

where the second equality follows from the Euler formula, integration properties of even and odd functions,
and a known integration result in calculus. Also, it can be shown that (see Appendix B)

2π∫

0

ξ0
i ξ0

j dφ = π
[
δi j sin2 θ − x0

i x0
j (1 − 3 cos2 θ)

]
, (12)

where x0
i = xi/x are the components of the unit vector x0 = x/x . Substituting Eqs. (11) and (12) into Eq. (10)

then yields

Gi j (x) = 1

16π L

1∫

−1

{[
2

µ
+
(

1

λ + 2µ
− 1

µ

)
(1 − t2)

]
δi j −

(
1

λ + 2µ
− 1

µ

)
x0

i x0
j (1 − 3t2)

}
e−|xt |/Ldt,

(13)

where use has been made of t = − cos θ to facilitate the integration.
Evaluating the integral in Eq. (13) finally gives the Green’s function as

Gi j (x) = 1

32πµ(1 − ν)

[
�(x)δi j + X(x)x0

i x0
j

]
, (14)

where ν is Poisson’s ratio, and

�(x) = 2

x

{
(3 − 4ν)

(
1 − e− x

L

)
+ 1

x2

[
2L2 − (x2 + 2Lx + 2L2)e− x

L

]}
, (15.1)

X(x) = 2

x

[(
1 − 6L2

x2

)
+
(

2 + 6L

x
+ 6L2

x2

)
e− x

L

]
(15.2)

are two convenient functions. Note that in reaching Eq. (14) use has also been made of the identities [28]:

λ = Eν

(1 + ν)(1 − 2ν)
, µ = E

2(1 + ν)
, (16)

where E is Young’s modulus.
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The Green’s function derived here in Eqs. (14) and (15.1, 15.2) can be shown to be the same as that obtained
by Polyzos et al. [29] using a different approach based on the use of the Helmholtz decomposition and potential
functions. This Green’s function can also be reduced to the Green’s function in classical elasticity when the
strain gradient effect is ignored. That is, by setting L = 0, Eqs. (14) and (15.1, 15.2) become

Gi j (x) = 1

16πµ(1 − ν)x

[
(3 − 4ν)δi j + x0

i x0
j

]
, (17)

which is the Green’s function for 3D problems in classical elasticity [5,9].
To facilitate the differentiation of the Green’s function needed for determining Eshelby’s tensor, the

expressions given in Eqs. (14) and (15.1, 15.2) can be rewritten as follows. Note that x,i = xi/x = x0
i

and xi, j = ∂xi/∂x j = δi j . It then follows that

x,i j = 1

x

(
δi j − x0

i x0
j

)
⇒ x0

i x0
j = δi j − xx,i j . (18)

Inserting Eq. (18) into Eq. (14) then gives

Gi j (x) = 1

32πµ(1 − ν)

[
(�(x) + X(x)) δi j − X(x)xx,i j

]
. (19)

Next, using Eq. (15.2) and the following two identities:

1

x2 x,i j = 2

3x3 δi j − 1

3

(
1

x

)

,i j
, (20.1)

(
1 + 3L2

x2 + 3L

x

)
e− x

L x,i j =
(

1

x
+ 2L

x2 + 2L2

x3

)
e− x

L δi j − L2
(

1

x
e− x

L

)

,i j
(20.2)

leads to

X(x)xx,i j = 2

{[
−4L2

x3 + 2

(
1

x
+ 2L

x2 + 2L2

x3

)
e− x

L

]
δi j +

(
x + 2L2

x
− 2L2

x
e− x

L

)

,i j

}

. (21)

Substituting Eqs. (15.1, 15.2) and (21) into Eq. (19) finally yields

Gi j (x) = 1

32πµ(1 − ν)

[
A(x)δi j − B(x),i j

]
, (22)

where

A(x) ≡ 8(1 − ν)
1

x

(
1 − e− x

L

)
, B(x) ≡ 2

(
x + 2L2

x
− 2L2

x
e− x

L

)
. (23)

It can be readily shown that when L = 0, Eqs. (22) and (23) reduce to Eq. (17), the Green’s function in
classical elasticity.

Equations (22) and (23) give the final form of the strain gradient Green’s function for 3D elastic deformations
in terms of elementary functions, which is different from the form obtained in Eqs. (14) and (15.1, 15.2) that
involves x0

i (= xi/x) and x0
j (= x j/x) and is not convenient for differentiation. Equations (22) and (23) will

be directly used in the next section to derive the general expressions of the Eshelby’s tensor based on the
simplified strain gradient elasticity theory.
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3 Eshelby tensor

Consider an infinite homogenous isotropic elastic body containing an inclusion. An eigenstrain ε∗ and an
eigenstrain gradient κ∗ are prescribed in the inclusion, while no body force or any other external force is
present in the elastic body. ε∗ and κ∗ may have been induced by inelastic deformations such as thermal
expansion, phase transformation, residual stress, and plastic flow [8].

According to the simplified strain gradient elasticity theory [27], the stress-equations of equilibrium in the
absence of body forces are

τi j, j − µi j p,pj = 0, (24)

where the Cauchy stress τi j is related to the elastic strain εe
i j = εi j −ε∗

i j through the generalized Hooke’s law:

τi j = Ci jkl(εkl − ε∗
kl), (25.1)

and the double stress µi jk is obtained from Eqs. (3.3) and (25.1) as

µi j p = L2Ci jkl(κklp − κ∗
klp), (25.2)

with Ci jkl being the components of the stiffness tensor of the isotropic elastic body given by

Ci jkl = λδi jδkl + µ
(
δikδ jl + δilδ jk

)
. (26)

Substituting Eqs. (25.1, 25.2) into Eq. (24) then yields the displacement-equations of equilibrium as

Ci jkl(εkl − L2κklp,p), j − Ci jkl(ε
∗
kl, j − L2κ∗

klp,pj ) = 0, (27)

where Ci jkl are given in Eq. (26). A comparison of Eq. (27) with Eq. (1) shows that Eq. (27) will be the same
as that of Eq. (1) if the body force components f j there are now replaced by −Ci jkl(ε

∗
kl, j − L2κ∗

klp,pj ) and
Eq. (26) is used. As a result, the solution of Eq. (27) can be readily obtained from Eq. (8) as

ui (x) = −
∫ ∫ +∞∫

−∞
Gi j (x − y) C jklmε∗

lm,kdy +
∫ ∫ +∞∫

−∞
Gi j (x − y)

[
L2(C jklmκ∗

lmp,pk)
]

dy. (28)

The use of the product rule, the divergence theorem and the fact that ε∗
lm = 0, κ∗

lmp = 0 outside the
inclusion (and thus at infinity) in Eq. (28), together with Ci jkl = constants, gives

ui (x) =
∫ ∫ +∞∫

−∞
Gi j,k(x − y) C jklmε∗

lmdy +
∫ ∫ +∞∫

−∞
Gi j,kp(x − y)[L2(C jklmκ∗

lmp)]dy. (29)

Equation (29) is valid for any (uniform or non-uniform) ε∗
lm and κ∗

lmp. For the Eshelby problem with ε∗
lm and

κ∗
lmp being uniform in the inclusion and vanishing outside the inclusion and the elastic body being homogeneous

(with Ci jkl= constants), Eq. (29) can be rewritten as

ui (x) = C jklmε∗
lm

∫ ∫ ∫

�

Gi j,k(x − y)dy + L2C jklmκ∗
lmp

∫ ∫ ∫

�

Gi j,kp(x − y)dy, (30)

where � denotes the region occupied by the inclusion.
It should be mentioned that all the derivatives in the integrals introduced so far are with respect to y, which

is the integration variable. However, it can be easily proved that

∂Gi j (x − y)

∂yk
= −∂Gi j (x − y)

∂xk
. (31)
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Using Eq. (31) in Eq. (30) then gives the displacement as

ui (x) = −C jklmε∗
lm

∂

∂xk

⎡

⎣
∫ ∫ ∫

�

Gi j (x − y)dy

⎤

⎦+ L2C jklmκ∗
lmp

∂

∂xk∂x p

⎡

⎣
∫ ∫ ∫

�

Gi j (x − y)dy

⎤

⎦ . (32)

Let

〈F〉 ≡
∫ ∫ ∫

�

F(y)dy (33)

be the volume integral of a sufficiently smooth function F(y) over the inclusion occupying region �. Then,
Eq. (32) can be written as

ui (x) = −C jklmε∗
lm

〈
Gi j
〉
,k + L2C jklmκ∗

lmp

〈
Gi j
〉
,kp , (34)

where 〈Gi j 〉 is the volume integral of the Green’s function Gi j (x − y) defined according to Eq. (33), and the
derivatives indicated are now with respect to x. Inserting Eq. (34) into Eq. (2.1) then yields

εi j = −1

2

(〈
Giq

〉
,k j + 〈

G jq
〉
,ki

)
Cqklmε∗

lm + L2

2

(〈
Giq

〉
,kpj + 〈

G jq
〉
,kpi

)
Cqklmκ∗

lmp

≡ Si jlmε∗
lm + Ti jlmpκ

∗
lmp (35)

as the actual (disturbance) strain, εi j , induced by the presence of the eigenstrain, ε∗
lm , and the eigenstrain

gradient, κ∗
lmp, where

Si jlm ≡ −1

2

(〈
Giq

〉
,k j + 〈

G jq
〉
,ki

)
Cqklm, (36.1)

Ti jlmp ≡ L2

2

(〈
Giq

〉
,kpj + 〈

G jq
〉
,kpi

)
Cqklm . (36.2)

Clearly, Eq. (35) shows that εi j is solely related to ε∗
lm in the absence of κ∗

lmp, and εi j is linked to only κ∗
lmp if

ε∗
lm = 0.

The fourth-order tensor Si jlm defined in Eqs. (35) and (36.1) is known as the Eshelby tensor. Since εi j
and ε∗

i j are both symmetric, Si jlm satisfies Si jlm = Si jml = S jilm (a minor symmetry rather than the major
symmetry that requires Si jmn = Smni j additionally) and therefore has 36 independent components. From
Eqs. (22), (23), (33) and (36.1) it then follows that

Si jlm = − 1

8πµ

[
�,k jδiq + �,kiδ jq − 1

2(1 − ν)
�,i jkq

]
Cqklm

+ 1

8πµ(1 − ν)

[
(1 − ν)(�,k jδiq + �,kiδ jq) + L2(� − �),i jkq

]
Cqklm, (37)

where

�(x) ≡ 〈|x − y|〉 , �(x) ≡
〈

1

|x − y|
〉
, �(x) ≡

〈
e− |x−y|

L

|x − y|

〉

(38)

are three scalar-valued functions that can be obtained analytically or numerically by evaluating the volume
integrals. Clearly, among these three functions only �(x) depends on the length scale parameter L . As a result,
the Eshelby tensor given in Eq. (37) can be separated into the classical part, SC

i jlm , which is independent

of the material length scale parameter L , and the gradient part, SG
i jlm , which depends on L , thereby being

microstructure-dependent. Accordingly, the general form of the Eshelby tensor in the simplified strain gradient
elasticity theory derived in Eq. (37) for an inclusion of arbitrary shape can be rewritten as
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Si jlm = SC
i jlm + SG

i jlm, (39.1)

SC
i jlm = − 1

8πµ

[
�,k jδiq + �,kiδ jq − 1

2(1 − ν)
�,i jkq

]
Cqklm, (39.2)

SG
i jlm = 1

8πµ(1 − ν)

[
(1 − ν)(�,k jδiq + �,kiδ jq) + L2(� − �),i jkq

]
Cqklm, (39.3)

where the scalar-valued functions �(x), �(x) and �(x) are defined in Eq. (38) along with Eq. (33). Clearly,
when L = 0 (i.e., when the strain gradient effect is ignored), Eqs. (38) and (39.1–39.3) show that SG

i jlm = 0

and Si jlm = SC
i jlm . That is, the Eshelby tensor obtained in Eqs. (39.1–39.3) using the simplified strain gradient

elasticity theory reduces to that based on classical elasticity.
The Eshelby-like fifth-order tensor Ti jlmp defined in Eqs. (35) and (36.2) links the eigenstrain gradient,

κ∗
lmp, to the actual (induced) strain, εi j . Since εi j is symmetric and κ∗

lmp = κ∗
mlp, Ti jlmp satisfies Ti jlmp =

Ti jmlp = Tjilmp and therefore has 108 independent components (as opposed to 35 = 243 such components).
From Eqs. (22), (23), (33) and (36.2) it follows that

Ti jlmp = L2

32πµ(1 − ν)

{
4(1 − ν)

[
(�−�),kpj δiq + (�−�),kpi δ jq

]− 2
[
�+2L2 (� − �)

]
,i jkpq

}
Cqklm

(40)

as the expression of the fifth-order tensor, with the scalar-valued functions �(x),�(x) and �(x) defined in
Eq. (38) along with Eq. (33). Clearly,Ti jlmp has only the gradient part and vanishes when L = 0 (i.e., when
the strain gradient effect is not considered). In fact, in this special case without the microstructural effect (i.e.,
L = 0), both SG

i jlm and Ti jlmp vanish, and Eq. (35) simply becomes εi j = SC
i jlmε∗

i j , the defining relation for
the Eshelby tensor based on classical elasticity [1], as expected.

It can be readily demonstrated that for a sufficiently smooth function F(x) the following differential
relations hold:

F,i = xi D1 F,

F,i j = xi x j D2 F + δi j D1 F,

F,i jk = xi x j xk D3 F + 〈
δi j xk

〉
3 D2 F,

F,i jkl = xi x j xk xl D4 F + 〈
δi j xk xl

〉
D3 F + 〈

δi jδkl
〉

D2 F,

F,i jmm = x2xi x j D4 F + (
x2δi j + 7xi x j

)
D3 F + 5δi j D2 F,

F,i jklm = xi x j xk xl xm D5 F + 〈
δi j xk xl xm

〉
10 D4 F + 〈

δi jδkl xm
〉
15 D3 F,

F,i jkkm = xi x j xm x2 D5 F + (
x2
〈
δi j xm

〉
3 + 9xi x j xm

)
D4 F + 7

〈
δi j xm

〉
3 D3 F,

(41)

where

D1 F = F ′
x , D2 F = 1

x2

(
F ′′ − F ′

x

)
, D3 F = 1

x3

(
F ′′′ − 3F ′′

x + 3F ′
x2

)
,

D4 F = 1
x4

[
F (4) − 6F ′′′

x + 15F ′′
x2 − 15F ′

x3

]
,

D5 F = 1
x5

[
F (5) − 10F (4)

x + 45F (3)

x2 − 105F ′′
x3 + 105F ′

x4

]
,

〈
δi j xk

〉
3 = δi j xk + δk j xi + δik x j ,

〈
δi j xk xl

〉 ≡ δi j xk xl + δkl xi x j + δ jl xi xk + δ jk xi xl + δil x j xk + δik x j xl = δi j xk xl + δkl xi x j + 〈
δi j xk xl

〉
4,〈

δi j xk xl
〉
4 ≡ δ jl xi xk + δ jk xi xl + δil x j xk + δik x j xl ,〈

δi j xk xl xm
〉
10 = δi j xk xl xm + δik x j xl xm + δil xk x j xm + δim xk xl x j + δ jk xi xl xm + δ jl xk xi xm

+δ jm xk xl xi + δkl xi x j xm + δkm xi xl x j + δlm xk xi x j ,〈
δi jδkl xm

〉
15 = (δi jδkl + δikδ jl + δilδ jk)xm + (δi jδlm + δimδ jl + δilδ jm)xk + (δi jδkm + δikδ jm + δimδ jk)xl

+(δ jmδkl + δ jkδml + δ jlδmk)xi + (δimδkl + δikδml + δilδmk)x j .〈
δi jδkl

〉 ≡ δi jδkl + δikδ jl + δilδ jk .

(42)
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In Eq. (42), F ′ = dF/dx, F ′′ = d2 F/dx2, F ′′′ = d3 F/dx3, F (4) = d4 F/dx4, and F (5)= d5 F /dx5, as usual.
Also, in Eqs. (41) and (42) F can be �(x),�(x) or �(x) involved in Eqs. (39.1–39.3) and Eq. (40).

Using Eqs. (26), (41) and (42) in Eq. (39.2) leads to

SC
i jlm = K C

1 (x) δi jδlm + K C
2 (x) (δilδ jm + δimδ jl) + K C

3 (x)δlm x0
i x0

j + K C
4 (x)δi j x0

l x0
m

+ K C
5 (x)(δil x

0
j x0

m + δim x0
j x0

l + δ jl x
0
i x0

m + δ jm x0
i x0

l ) + K C
6 (x)(x0

i x0
j x0

l x0
m), (43)

where

K C
1 (x) = 1

8π(1 − ν)(1 − 2ν)

[−4v(1 − ν)D1� + νx2 D3� + (1 + 3ν)D2�
]
, (44.1)

K C
2 (x) = 1

8π(1 − ν)
[−2(1 − v) D1� + D2�] , (44.2)

K C
3 = x2

8π(1 − ν)(1 − 2ν)

[−4ν(1 − ν)D2� + νx2 D4� + (1 + 5ν)D3�
]
, (44.3)

K C
4 = x2

8π(1 − ν)
D3�, (44.4)

K C
5 = x2

8π(1 − ν)
[−(1 − ν)D2� + D3�] , (44.5)

K C
6 = x4

8π(1 − ν)
D4�. (44.6)

It is seen from Eqs. (43) and (44.1–44.6) that SC
i jlm depends only on one material constant (i.e., Poisson’s

ratio ν) even for an inclusion of arbitrary shape. Similarly, applying Eqs. (26), (41) and (42) to Eq. (39.3)
results in

SG
i jlm = K G

1 (x) δi jδlm + K G
2 (x)(δilδ jm + δimδ jl) + K G

3 (x)δlm x0
i x0

j + K G
4 (x)δi j x0

l x0
m

+K G
5 (x)(δil x

0
j x0

m + δim x0
j x0

l + δ jl x
0
i x0

m + δ jm x0
i x0

l ) + K G
6 (x)(x0

i x0
j x0

l x0
m), (45)

where

K G
1 = 1

4π(1 − ν)

[
2ν(1 − ν)

1 − 2ν
D1� − ν

1 − 2ν
L2x2 D3(� − �) − 1 + 3ν

1 − 2ν
L2 D2(� − �)

]
, (46.1)

K G
2 = 1

4π(1 − ν)

[
(1 − ν) D1� − L2 D2(� − �)

]
, (46.2)

K G
3 = x2

4π(1 − ν)

[
2ν(1 − ν)

1 − 2v
D2� − ν

1 − 2ν
L2x2 D4(� − �) − 1 + 5v

1 − 2ν
L2 D3(� − �)

]
, (46.3)

K G
4 = − L2x2

4π(1 − ν)
D3(� − �), (46.4)

K G
5 = x2

8π(1 − ν)

[
(1 − ν)D2� − 2 L2 D3(� − �)

]
, (46.5)

K G
6 = − L2x4

4π(1 − ν)
D4(� − �). (46.6)
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Clearly, Eqs. (45) and (46.1–46.6) show that SG
i jlmdepends not only on Poisson’s ratio ν but also on the material

length scale parameter L , unlike SC
i jlm given in Eqs. (43) and (44.1–44.6). Finally, the use of Eqs. (26), (41)

and (42) in Eq. (40) yields

Ti jlmp = L2

8π(1 − ν)

{
−4ν(1 − ν)

1 − 2ν
δlm

[
xi x j x p D3(� − �) + 〈

x pδi j
〉
3 D2(� − �)

]

−(1 − ν)(xi xm x pδ jl + x j xm x pδil + xi xl x pδ jm + x j xl x pδim)D3(� − �)

−(1 − ν)(
〈
xiδmp

〉
3 δ jl + 〈

x jδmp
〉
3 δil + 〈

xiδlp
〉
3 δ jm + 〈

x jδlp
〉
3 δim)D2(� − �)

+ 2νL2

1 − 2v
δlm

[
xi x j x px2 D5

(
� − � − �

2L2

)
+ (x2 〈x pδi j

〉
3 + 9xi x j x p)D4

(
� − � − �

2L2

)

+7
〈
x pδi j

〉
3 D3

(
� − � − �

2L2

)]
+ 2L2

[
xi x j xl xm x p D5

(
� − � − �

2L2

)

+ 〈δi j xl xm x p
〉
10 D4

(
� − � − �

2L2

)
+ 〈

δi jδlm x p
〉
15 D3

(
� − � − �

2L2

)]}
. (47)

Equations (39.1) and (43)–(47) provide the general formulas for determining Si jlm(= SC
i jlm + SG

i jlm) and
Ti jlmp for an inclusion of arbitrary shape in terms of the scalar-valued functions �(x), �(x) and �(x) defined
in Eq. (38) along with Eq. (33). As volume integrals over the inclusion region �, these three functions cannot
be obtained in closed forms in general for an inclusion of arbitrary shape. However, for simple shapes such as
a spherical inclusion, explicit expressions can be derived for �(x),�(x) and �(x) and thus for the Eshelby
tensor given in Eqs. (39.1) and (43)–(46.1–46.6), as will be shown in the next section.

4 Spherical inclusion

The problem of a spherical inclusion embedded in an infinite elastic body and prescribed with a uniform
eigenstrain is directly related to composites filled by spherical particles [4,12]. The closed-form expressions
for the components of the Eshelby tensor for a spherical inclusion will be derived here by directly applying
the general formulas obtained in the preceding section.

Consider a spherical inclusion of radius R and centered at the origin of the coordinate system (x1, x2, x3)
in the physical space. In this case, the three volume integrals defined in Eq. (38) along with Eq. (33) can be
exactly evaluated to obtain the following closed-form expressions:

�(x) =
⎧
⎨

⎩

− π
15 x4 + 2π

3 R2x2 + π R4, x ∈ �,

4π
15

R5

x + 4π
3 R3x, x /∈ �;

(48.1, 48.2)

�(x) =
{− 2π

3 x2 + 2π R2, x ∈ �,

4π
3

R3

x , x /∈ �; (48.3, 48.4)

�(x) =
{

4π L2 − 4π L2(L + R)e− R
L 1

x sinh
( x

L

)
, x ∈ �,

−4π L3

x

[
sinh

( R
L

)− R
L cosh

( R
L

)]
e− x

L , x /∈ �.
(48.5, 48.6)

Note that in Eqs. (48.1–48.6), x ≡| x |= (xk xk)
1/2, as defined earlier in Sect. 2. These expressions can be

readily shown to be equivalent to those provided in [13] and [18], where different definitions and notation
were used for the three scalar-valued functions. Clearly, �(x),�(x) and �(x) given in Eqs. (48.1–48.6) are
infinitely differentiable at any x 
= 0.
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Then, it follows from Eqs. (48.1, 48.3, 48.5), (42) and (43) and (44.1–44.6) that the classical part of the
Eshelby tensor for the interior case with x locating inside the spherical inclusion (i.e., x ∈ � or x < R) is

SC
i jlm = 5ν − 1

15(1 − ν)
δi jδlm + 4 − 5ν

15(1 − ν)
(δilδ jm + δimδ jl). (49)

Next, using Eqs. (48.1, 48.3, 48.5) and (42) leads to

D1� = −4

3
π, D2� = D3� = D4� = 0,

D1� = 4

15
π(−x2 + 5R2), D2� = − 8

15
π, D3� = D4� = 0,

D1� = −4π L(L + R)e− R
L

x3

[
x cosh

( x

L

)
− L sinh

( x

L

)]
,

D2� = −4π(L + R)e− R
L

x5

[
−3Lx cosh

( x

L

)
+ (

x2 + 3L2) sinh
( x

L

)]
,

D3� = −4π(L + R)e− R
L

Lx7

[
x
(
x2 + 15L2) cosh

( x

L

)
− 3L

(
2x2 + 5L2) sinh

( x

L

)]
,

D4� = −4π(L + R)e− R
L

L2x9

[
−5Lx

(
2x2 + 21L2) cosh

( x

L

)
+ (

x4 + 45L2x2 + 105L4) sinh
( x

L

)]
,

D5� = −4π(L+R)e− R
L

L3x11

[(
x5+105L2x3 + 945L4x

)
cosh

( x

L

)
− 15L

(
x4 + 28L2x2 + 63L4) sinh

( x

L

)]

(50)

for any interior point x ∈ � (or x < R). Substituting Eq. (50) into Eqs. (45) and (46.1–46.6) will then give the
closed-form expression of the gradient part of the Eshelby tensor for the interior case with x locating inside
the spherical inclusion. Similarly, the use of Eq. (50) in Eq. (47) will yield the explicit formula for determining
Ti jlmp at any x inside the spherical inclusion (i.e., x ∈ � or x < R).

Note that Eq. (49) clearly shows that for the spherical inclusion considered here the classical part of the
Eshelby tensor, SC

i jlm , is uniform inside the inclusion, independent of L , R and x . In fact, SC
i jlm listed in Eq. (49)

is identical to that based on classical elasticity (see, e.g., Equation (3.123) in Li and Wang [9]). In contrast,
the gradient part, SG

i jlm , given in Eqs. (45), (46.1–46.6) and (50) depends on L , R and x in a complicated
manner, and is therefore non-uniform inside the spherical inclusion and differs for different materials (with
distinct values of L) and inclusion sizes (with distinct values of R). However, if the strain gradient effect is
ignored, then L = 0 and Eqs. (45), (46.1–46.6) and (50) give SG

i jlm = 0. It thus follows from Eq. (39.1) that

Si jlm = SC
i jlm . That is, the Eshelby tensor for the spherical inclusion derived here using the simplified strain

gradient elasticity theory reduces to that based on classical elasticity when L = 0.
Considering that SG

i jlm is position-dependent inside the spherical inclusion, its volume average over the
spherical region occupied by the inclusion is examined next. This averaged Eshelby tensor is needed for
predicting the effective elastic properties of a heterogeneous composite containing spherical inclusions. The
volume average of a sufficiently smooth function F(x) over the spherical inclusion occupying region � is
defined by

〈F〉v = 1

Vol(�)

∫ ∫ ∫

�

FdV = 1
4
3 π R3

R∫

0

2π∫

0

π∫

0

Fx2 sin θdθdφdx, (51)

where use has been made of the volume element dV = x2 sin θdθdφdx in a spherical coordinate system.

Letting SG
i jlm given in Eqs. (45) and (46.1–46.6) be F(x) in Eq. (51) will lead to

〈
SG

i jlm

〉

v
.

Note that in the spherical coordinate system adopted here,

x0
1 = sin θ cos φ, x0

2 = sin θ sin φ, x0
3 = cos θ. (52)
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It then follows from Eq. (52) that

2π∫

0

π∫

0

x0
i x0

j sin θdθdφ = 4

3
π δi j ,

2π∫

0

π∫

0

(
δil x

0
j x0

m + δim x0
j x0

l + δ jl x
0
i x0

m + δ jm x0
i x0

l

)
sin θdθdφ = 8

3
π
(
δilδ jm + δimδ jl

)
,

2π∫

0

π∫

0

(
x0

i x0
j x0

l x0
m

)
sin θdθdφ = 4

15
π
(
δi jδlm + δilδ jm + δimδ jl

)
.

(53)

Using Eqs. (53) and (45) in Eq. (51) then gives

〈
SG

i jlm

〉

v
= 1

R3

[(
3K G

1 + K G
3 + K G

4 + 1

5
K G

6

)
δi jδlm +

(
3K G

2 + 2K G
5 + 1

5
K G

6

)
(δilδ jm + δimδ jl)

]
,

(54)

where

K G
n ≡

R∫

0

x2 K G
n (x) dx, (55)

with K G
n (n = 1, 2, . . ., 6) to be substituted from Eqs. (46.1–46.6) and (50). The six integrals in Eq. (55) can

be exactly evaluated, and Eq. (54) becomes

〈
SG

i jlm

〉

v
= 1

10(1 − ν)

(
L

R

)3
[

1−
(

R

L

)2

−
(

1+ R

L

)2

e− 2R
L

]
[
(5ν−1) δi jδlm +(4 − 5ν) (δilδ jm +δimδ jl)

]
,

(56)

which gives

〈
SG

1111

〉
ν

= 7 − 5ν

10(1 − ν)

(
L

R

)3
[

1 −
(

R

L

)2

−
(

1 + R

L

)2

e− 2R
L

]

=
〈
SG

2222

〉

ν
=
〈
SG

3333

〉

ν
,

〈
SG

1122

〉
ν

= 5ν − 1

10(1 − ν)

(
L

R

)3
[

1 −
(

R

L

)2

−
(

1 + R

L

)2

e− 2R
L

]

=
〈
SG

1133

〉

ν
=
〈
SG

2233

〉

ν
=
〈
SG

2211

〉

ν
=
〈
SG

3311

〉

ν
=
〈
SG

3322

〉

ν
,

〈
SG

1212

〉
ν

= 4 − 5ν

10(1 − ν)

(
L

R

)3
[

1 −
(

R

L

)2

−
(

1 + R

L

)2

e− 2R
L

]

=
〈
SG

2323

〉

ν
=
〈
SG

3131

〉

ν

(57)

as the 12 non-vanishing, volume-averaged components of the gradient part of the Eshelby tensor inside the
inclusion. Clearly, these components are constants, but they depend on the inclusion size (R), the length scale
parameter (L) and Poisson’s ratio (ν) of the material. This differs from the components of the classical part
of the Eshelby tensor inside the inclusion, which, as given in Eq. (49), are constants depending only on ν.

However, when L = 0 (or R/L → ∞), Eq. (57) shows that all non-zero components of
〈
SG

i jlm

〉

ν
will vanish,

as will be further illustrated in the next section.
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By following the same procedure, the volume average of the classical part of the Eshelby tensor inside the

inclusion,
〈
SC

i jlm

〉

v
, can also be obtained using Eqs. (49) and (51). Since SC

i jlm is uniform inside the inclusion,

there will be
〈
SC

i jlm

〉

v
= SC

i jlm . It then follows from Eqs. (39.1), (51), (49) and (56) that

〈
Si jlm

〉
ν

= 1

15(1 − ν)

{

1 + 3

2

(
L

R

)3
[

1 −
(

R

L

)2

−
(

1 + R

L

)2

e− 2R
L

]}

× [(5ν − 1) δi jδlm + (4 − 5ν) (δilδ jm + δimδ jl)
]

(58)

as the volume average of the Eshelby tensor inside the spherical inclusion based on the simplified strain gradient

elasticity theory. Clearly, when L = 0 (or R/L → ∞), Eq. (58) reduces to
〈
SC

i jlm

〉

v
= SC

i jlm given in Eq. (49).

The volume average of Ti jlmp for x locating inside the spherical inclusion (i.e., x ∈ � or x < R) can be
readily shown to vanish, i.e.,

〈
Ti jlmp

〉
v

= 1

Vol(�)

∫ ∫ ∫

�

Ti jlmpdV = 1
4
3 π R3

R∫

0

2π∫

0

π∫

0

Ti jlmpx2 sin θdθdφdx ≡ 0. (59)

The reason for this is that Ti jlmp involved in Eq. (59) and to be substituted from Eqs. (47) and (50) is odd in
x0

i , which makes the integration of Ti jlmp over any spherical surface vanish [30].
Similarly, the Eshelby tensor for the exterior case with x locating outside the spherical inclusion (i.e.,

x /∈ � or x > R) can be determined by using Eqs. (48.2, 48.4, 48.6) in the general formulas derived in Sect. 3
for an inclusion of arbitrary shape. Specifically, from Eqs. (42) and (48.2, 48.4, 48.6) it follows that

D1� = −4π

3

R3

x3 , D2� = 4π R3

x5
, D3� = −20π R3

x7 , D4� = 140π R3

x9 ,

D1� = −4π

15

R3

x3 (R2 − 5x2), D2� = −4π

15

R3

x5
(−3R2 + 5x2),

D3� = −4π R3

x7 (R2 − x2), D4� = −4π R3

x9 (−7R2 + 5x2),

D1� = 4π L2
[
sinh

( R
L

)− R
L cosh

( R
L

)]

x3 (x + L) e− x
L ,

D2� = −4π L
[
sinh

( R
L

)− R
L cosh

( R
L

)]

x5

(
x2 + 3Lx + 3L2) e− x

L ,

D3� = 4π
[
sinh

( R
L

)− R
L cosh

( R
L

)]

x7

(
x3 + 6Lx2 + 15L2x + 15L3) e− x

L ,

D4� = −4π
[
sinh

( R
L

)− R
L cosh

( R
L

)]

Lx9

(
x4 + 10Lx3 + 45L2x2 + 105L3x + 105L4) e− x

L ,

D5� = 4π
[
sinh

( R
L

)− R
L cosh

( R
L

)]

L2x11

(
x5 + 15Lx4 + 105L2x3 + 420L3x2 + 945L4x + 945L5

)
e− x

L

(60)

for any exterior point x /∈ � (or x > R). Note that the functions listed in Eq. (60) for the exterior case with
x /∈ � (or x > R) are clearly different from those defined in Eq. (50) for the interior case with x ∈ � (or
x < R). From Eqs. (60), (43) and (44.1–44.6) the classical part of the Eshelby tensor for any x outside the
spherical inclusion (i.e., x /∈ � or x > R) is then obtained as

SC
i jlm = R3

x5(1 − ν)

{
1

30

[−5(1 − 2ν)x2 + 3R2] δi jδlm + 1

30

[
5(1 − 2ν)x2 + 3R2] (δilδ jm + δimδ jl)

+ 1

2

[
(1 − 2ν)x2 − R2] δlm x0

i x0
j − 1

2

(
R2 − x2) δi j x0

l x0
m

−1

2

(
R2 − νx2)

(
δil x

0
j x0

m + δim x0
j x0

l + δ jl x
0
i x0

m + δ jm x0
i x0

l

)
− 1

2

(
5x2 − 7R2) x0

i x0
j x0

l x0
m

}
.

(61)
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It can be readily shown that the expression given in Eq. (61) is the same as that based on classical elasticity
[13]. Clearly, a comparison of Eq. (61) with Eq. (49) shows that SC

i jlm is not uniform outside the spherical
inclusion, although it is uniform inside the same spherical inclusion.

Finally, using Eq. (60) in Eqs. (45) and (46.1–46.6) will result in the explicit formula for determining
SG

i jlm at any exterior point x /∈ � (or x > R), and the substitution of Eq. (60) into Eq. (47) will lead to the
closed-form expression for Ti jlmp at any point x locating outside the spherical inclusion.

5 Numerical results

By using the closed-form expressions of the Eshelby tensor for the spherical inclusion derived in the preceding
section, some numerical results are obtained and presented here to quantitatively illustrate how the components
of the newly obtained Eshelby tensor vary with position and inclusion size.

From Eqs. (45), (46.1–46.6) and (50), the components of the gradient part of the Eshelby tensor at any x
inside the spherical inclusion along the x1 axis (with x2 = 0 = x3) can be obtained as

SG
1111 = L + R

x5(1 − ν)
e− R

L

{[−(1 − ν)x4 + 2(ν + 4)x2L2 + 24L4] sinh
( x

L

)

−2x L(νx2 + 12L2) cosh
( x

L

)}
, (62.1)

SG
1122 = SG

1133 = L + R

x5(1 − ν)
e− R

L

{
− [νx4 + (2ν + 5)x2L2 + 12L4] sinh

( x

L

)

+x L(x2 + 2νx2 + 12L2) cosh
( x

L

)}
, (62.2)

SG
1212 = SG

1313 = L + R

2x5(1 − ν)
e− R

L
{− [(1 − ν)x4 + (11 − ν)x2L2 + 24L4] sinh

( x

L

)

+x L
[
(3 − ν)x2 + 24L2] cosh

( x

L

)}
, (62.3)

SG
2211 = SG

3311 = L(L + R)

x5(1 − ν)
e− R

L

{
−L

[
(5 − ν)x2 + 12L2] sinh

( x

L

)

+x
[
(1 − ν)x2 + 12L2] cosh

( x

L

)}
, (62.4)

SG
2222 = SG

3333 = − L(L + R)

x5(1 − ν)
e− R

L

{
−L

[
(5 − ν)x2 + 9L2] sinh

( x

L

)

+x
[
(2 − ν)x2 + 9L2] cosh

( x

L

)}
, (62.5)

SG
2233 = SG

3322 = L(L + R)

x5(1 − ν)
e− R

L

{
L
[
(1 + ν)x2 + 3L2] sinh

( x

L

)
− x (νx2 + 3L2) cosh

( x

L

)]}
, (62.6)

SG
2323 = L(L + R)

x5(1 − ν)
e− R

L

{
L
[
(2 − ν)x2 + 3L2] sinh

( x

L

)
− x

[
(1 − ν)x2 + 3L2] cosh

( x

L

)}
. (62.7)

Note that in this special case (with x = x1, x2 = 0 = x3) there are only 12 non-zero components among the
36 independent components of SG

i jlm .
In the numerical analysis, the Poisson’s ratio v is taken to be 0.3, and the material length scale parameter L

to be 17.6 µm. Figure 1 shows the distribution of S1111 = SC
1111 + SG

1111 along the x1 axis (or a radial direction
of the inclusion due to the spherical symmetry) for five different values of the inclusion radius, where the
values of SC

1111 and SG
1111 are, respectively, obtained from Eqs. (49) and (62.1).

It is seen from Fig. 1 that S1111 varies with x (the position) and depends on R (the inclusion size), unlike
the classical part SC

1111 which is a constant (i.e.,SC
1111 = 0.5238 from Eq. (49), as shown) independent of both

x and R. When R is small (comparable to the length scale parameter L = 17.6 µm here), S1111 is much smaller
than SC

1111, which indicates that the magnitude of SG
1111(= S1111 − SC

1111) is very large and the strain gradient
effect is significant. However, when R is much larger than L (e.g., R = 6L = 105.6 µm shown here), S1111 is
seen to be quite uniform and its value approaches from below SC

1111 (= 0.5238), indicating that the magnitude
of SG

1111 is very small and the strain gradient effect become insignificant and can therefore be ignored.
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Fig. 1 S1111 along a radial direction of the spherical inclusion

Fig. 2 S1212 along a radial direction of the spherical inclusion

Similar trends are observed from Figs. 2 and 3, where the values of S1212 and S2222 varying with x and R
are displayed together with those of their classical parts that are horizontal lines independent of both x and
R. The values of SG

1212 and SG
2222 included in S1212 (= SC

1212 + SG
1212) and S2222 (= SC

2222 + SG
2222) that are

illustrated in Figs. 2 and 3 are, respectively, obtained from Eqs. (62.3) and (62.5), while those of SC
1212 and

SC
2222 are both calculated using Eq. (49).

The variation of the component of the averaged Eshelby tensor inside the spherical inclusion, 〈S1111〉ν , with
the inclusion size (i.e., radius R) is shown in Fig. 4, where its counterpart in classical elasticity,

〈
SC

1111

〉
ν
, is also

displayed for comparison. Note that 〈S1111〉ν is obtained from Eq. (58), while
〈
SC

1111

〉
ν
(= SC

1111 = 0.5238) is
from Eq. (49). The material properties used here are v = 0.3 and L = 17.6 µm, which are the same as those
used in generating the results shown in Figs. 1, 2, and 3. It is observed from Fig. 4 that 〈S1111〉ν is indeed
varying with R: the smaller R, the smaller 〈S1111〉ν , while

〈
SC

1111

〉
ν

is a constant independent of R. Moreover,
the difference between 〈S1111〉ν and

〈
SC

1111

〉
ν
, which is

〈
SG

1111

〉
ν

(=〈S1111〉ν − 〈SC
1111

〉
ν
), is seen to be significantly

large only when the inclusion is small (with R/L < 25 or R < 440 µm here). As the inclusion size increases,
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Fig. 3 S2222 along a radial direction of the spherical inclusion

Fig. 4 〈S1111〉ν varying with the inclusion radius

〈S1111〉ν approaches from below the corresponding value of SC
1111(= 0.5238) based on classical elasticity. The

same is true for all the other non-vanishing components of
〈
Si jkm

〉
ν
, as seen from Eqs. (58) and (49). These

observations, once again, indicate that the strain gradient effect is insignificant for large inclusions and may
be neglected.

Clearly, the numerical results presented above quantitatively show that the newly obtained Eshelby tensor
captures the size effect at the micron scale, unlike that based on classical elasticity.

6 Conclusion

The Eshelby inclusion problem is solved analytically by using a simplified strain gradient elasticity theory.
This is accomplished by first deriving the Green’s function in the strain gradient elasticity theory in terms
of elementary functions using Fourier transforms. The resulting Green’s function reduces to that in classical
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elasticity when the strain gradient effect is ignored. The Eshelby tensor is then obtained in a general form for
an inclusion of arbitrary shape using the Green’s function method. The newly derived Eshelby tensor consists
of two parts: a classical part depending only on Poisson’s ratio, and a gradient part depending on the length
scale parameter additionally.

The Eshelby tensor for the special case of a spherical inclusion is explicitly obtained by employing the
general form of the newly derived Eshelby tensor. To further illustrate this Eshelby tensor, sample numerical
results are provided, which reveal that the components of the new Eshelby tensor vary with both the position
and the inclusion size, thereby capturing the size effect at the micron scale. In addition, the volume average
of this new Eshelby tensor over the spherical inclusion is derived in a closed form, which is needed in
homogenization analyses. The components of the averaged Eshelby tensor are found to decrease as the inclusion
radius decreases, and these components are observed to approach from below the values of the corresponding
components of the Eshelby tensor based on classical elasticity when the inclusion size is large enough.

Acknowledgments The work reported in this paper is supported by a grant from the U.S. National Science Foundation, with
Dr. Clark V. Cooper as the program manager. This support is gratefully acknowledged. The authors also wish to thank Professor
George J. Weng and one anonymous reviewer for their encouragement and helpful comments on an earlier version of the paper.

Appendix A

Note that in reaching Eq. (7.2) use has been made of the following identity:

(
α I P

i j + β I S
i j

)−1 =
(

1

α
I P
i j + 1

β
I S
i j

)
, (A.1)

where α, β are two arbitrary non-zero scalars, IS
i j = ξ0

i ξ0
j are the components of a second-order spin tensor

IS = ξ0 ⊗ ξ0 (with ξ0 being a unit vector introduced in Eq. (6)), I P
i j = δi j − ξ0

i ξ0
j are the components of

the associated projection tensor IP = I − IS , with I = δi j ei ⊗ e j being the second-order identity tensor.
Equation (A.1) can be easily proved by using the definition of an inverse tensor.

Appendix B

In this appendix, it is shown that the integration result given in Eq. (12) is true. That is,

2π∫

0

ξ0
i ξ0

j dφ = π
[
δi j sin2 θ − x0

i x0
j (1 − 3 cos2 θ)

]
. (B.1)

Proof For the chosen spherical coordinate system (ξ, θ, φ) in the transformed space where the position vector
ξ = ξξ0 makes the angle θ with the position vector x (with the direction of x being where θ = 0) in the
physical space, one can write the unit vector in the ξ direction as

ξ0 = x0 cos θ + (
y0 cos φ + z0 sin φ

)
sin θ, (B.2)

where x0 is the unit vector along the x direction, and y0 and z0 are the unit vectors perpendicular to x0. In
component form, Eq. (B.2) reads

ξ0
i = x0

i cos θ + (
y0

i cos φ + z0
i sin φ

)
sin θ. (B.3)

Then, it follows from Eq. (B.3) that

ξ0
i ξ0

j = x0
i x0

j cos2 θ + x0
i y0

j sin θ cos θ cos φ + x0
i z0

j sin θ cos θ sin φ

+y0
i x0

j sin θ cos θ cos φ + y0
i y0

j sin2 θ cos2 φ + y0
i z0

j sin2 θ sin φ cos φ

+z0
i x0

j sin θ cos θ sin φ + z0
i y0

j sin2 θ sin φ cos φ + z0
i z0

j sin2 θ sin2 φ. (B.4)
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Note that

2π∫

0

cos φdφ = 0,

2π∫

0

sin φdφ = 0,

2π∫

0

sin φ cos φdφ = 0,

2π∫

0

cos2 φdφ = π,

2π∫

0

sin2 φdφ = π.

(B.5)

Integrating on both sides of Eq. (B.4), together with the use of Eq. (B.5), results in

2π∫

0

ξ0
i ξ0

j dφ = 2πx0
i x0

j cos2 θ + πy0
i y0

j sin2 θ + π z0
i z0

j sin2 θ. (B.6)

Notice that

x0
i x0

j + y0
i y0

j + z0
i z0

j = (x0 · ei )(x0 · e j ) + (y0 · ei )(y0 · e j ) + (z0 · ei )(z0 · e j )

= ei · (x0 ⊗ x0)e j + ei · (y0 ⊗ y0)e j + ei · (z0 ⊗ z0)e j

= ei · [(x0 ⊗ x0) + (y0 ⊗ y0) + (z0 ⊗ z0)
]

e j

= ei · Ie j = δi j , (B.7)

where the fourth equality is based on the fact that the three orthogonal unit vectors x0, y0 and z0 form a set of
base vectors in the 3D physical space. Using Eq. (B.7) and the identity sin2 θ = 1 − cos2 θ in Eq. (B.6) will
immediately give Eq. (B.1). �
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