
Acta Mech 206, 237–259 (2009)
DOI 10.1007/s00707-008-0092-9

R. Bustamante

Transversely isotropic non-linear electro-active elastomers

Received: 21 April 2008 / Revised: 2 July 2008 / Published online: 10 October 2008
© Springer-Verlag 2008

Abstract Electro-active or electro-sensitive elastomers are ‘smart materials’, which are composed of a rubber-
like basis material filled with electro-active particles, and as a result, their properties are able to change
significantly by the application of electric fields. In this paper, we provide the theoretical basis of the non-linear
properties for a special class of these materials, namely, the transversely isotropic electro-active elastomers,
whose characteristic is that during the curing process, due to the presence of an external applied field, the
electro-active particles are aligned in a preferred direction. The theory is applied to some boundary value
problems. As well as this, a linear approximation is obtained from the general non-linear formulation, which
is compared with the results of the classical theory for piezoelectric materials.

1 Introduction

There has been recently a growing interest in a class of rubber-like materials, called electro-active and
magneto-active elastomers.1 These materials are composed of a rubber-like matrix filled with electro-active or
magneto-active particles. They are capable of developing large non-linear elastic deformations by applying an
electric or a magnetic field. Due to these characteristics, they have been used in applications where we need a
quick response in the properties of the material (see, for example, [1,2]).

It has been shown [3–5] that if an external field is applied during the curing process, then the particles
align in a preferred direction, and as a result the capability of these materials to deform, in the presence of an
external electric or magnetic field, is enhanced significantly in comparison with the same kind of material but
with a random distribution of particles.

The first theoretical study of large elastic deformations due to the presence of an electric field was done by
Toupin [6], who used the virtual work principle to find the general equations that relate the stress, deformation
and the electric field inside a highly non-linear elastic dielectric body. There is not a unique way to write the
fundamental equations in the theory of deformable media and electromagnetic fields, a complete review and
comparison of the different theories can be found, for example, in [7,8]. Modern treatises on the interaction of
electromagnetism and mechanics have been written, for example, by Eringen and Maugin [9] and Kovetz [10].

Dorfmann and Ogden [11] developed a theory for non-linear electro-active solids, which does not take the
polarization as the main independent electric variable to characterize the behaviour of the material; instead,
they developed the constitutive equations assuming either the electric field or the electric displacement as the
independent electric variable. With this assumption and the assumption of existence of an energy function,

1 These materials are denoted also as ES and MS elastomers. These are abbreviations for the phrases ‘electro-sensitive’ and
‘magneto-sensitive’ elastomers respectively.
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Dorfmann and Ogden developed simple expressions for the stress and the electric displacement (or electric
field), which are obtained as simple derivatives of this energy potential.

Dorfmann and Ogden have been working with isotropic electro- or magneto-active elastomers, which
basically implies the assumption of a random distribution of particles inside the rubber-like matrix material
[11–14]. For this particular case, several boundary value problems have been solved. The complete set of
controllable or universal solutions is also available [15].

The situation is not the same for the transversely isotropic electro-active elastomers. The general theory
developed, for example, by Eringen and Maugin [9], or by Dorfmann and Ogden [11,14] are good starting
points to study this problem.

Using as basis the work by Dorfmann and Ogden [11], we develop the constitutive equations for transversely
isotropic ES elastomers; a similar theory for transversely isotropic MS elastomer has been developed recently
by Bustamante and Ogden [16].

In Sect. 2, we have a short review of the theory for ES elastomers of Dorfmann and Ogden [11,14].
In Sect. 3.1, we study the form of the constitutive equations using the electric field as the independent

electric variable. In Sect. 3.2 an equivalent set of equations is found assuming the electric-displacement as the
independent electric variable.

Most of the researches on electro-elasticity have been focused on the linear theory, which means the
assumption of small deformations, displacements and electric field. Derivations of linear theories from the
non-linear formulation can be found, for example, in [9,17]. This process of linear approximation has been
formulated starting from the general expressions for the stress and the independent electric variable as deri-
vatives of the energy function. In Sect. 4, we obtain a linear approximation in a rather different way. First,
for the full non-linear formulation, we compute the stress and the independent electric variable as functions
of the invariants, then we approximate the expressions assuming small deformation and fields. We obtain the
same kind of linear constitutive equation as, for example, for some well-known piezoelectric materials such
as certain polarized ceramics (see, for example, [17]).

In Sect. 5, we study some boundary value problems: the simple shear of a slab, the uniform extension of
a bar, the extension and inflation of a tube, the extension and torsion of a tube and helical shear. For some
of these boundary value problems, we study the effect of assuming different alignments for the particles in
the reference configuration on the controllability of the solutions. In the particular case of helical shear [18]
we are interested in finding a non-linear universal relation, similar to the one found for the isotropic case by
Bustamante and Ogden [19].

In Sect. 6, we give some final remarks.
This paper is based on Chapter 8 of the Ph.D. thesis by Bustamante [20].

2 Basic equations

2.1 Kinematics

The reference configuration is denoted as B0 and a material particle is labelled by its position vector X. Let
B denote the deformed configuration in which the particle X has position vector x defined by the mapping
x = χ(X). The boundary of the body in the reference configuration is denoted as ∂B0, and in the deformed
configuration is denoted as ∂B. The deformation gradient F is defined as

F = Gradχ , (1)

where the operator Grad is the gradient in B0. Let us denote J = det F and by convention we take J > 0.
The right and left Cauchy Green deformation tensors are given as

c = FTF, b = FFT. (2)

Finally, let us define the displacement field u as

u = x − X. (3)
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2.2 Electric balance equations

In the current configuration B we denote by E, D and P the electric field, the electric induction and the
polarization density, respectively. For condensed matter, these vectors are related by the standard equation [10]

D = εoE + P, (4)

where εo is the electric permittivity for vacuum (or free space).
For free space P = 0 and we have

D = εoE. (5)

For the quasi-static case and in the absence of magnetic fields, free currents and electric charges, the electric
field and the electric displacement satisfy the simplified form of Maxwell’s equations

curlE = 0, divD = 0, (6.1,2)

where the operators curl and div are defined in B.
From the global forms of (6.1,2) we can find the Lagrangian counterparts of the electric field and the

electric induction, which we denote El and Dl , respectively, and are given by [11]

El = FTE, Dl = JF−1D. (7.1,2)

Standard identities ensure that (6.1,2) are equivalent to

CurlEl = 0, DivDl = 0, (8)

provided that χ is suitably regular, where Curl and Div are the curl and divergence operators in B0.
For the polarization density P there is no natural way to define a corresponding Lagrangian counterpart.

For convenience we define a Lagrangian form of P, which we denote Pl as

Pl = JF−1P. (9)

Therefore, from (4) and (7.1,2), we obtain

Dl = εo Jc−1El + Pl . (10)

More details about the above expressions can be found in [11].

2.3 Mechanical balance laws

If we denote by ρ0 and ρ the mass densities in the reference and current configurations, respectively, then the
conservation of mass equation is given by

Jρ = ρ0. (11)

We can write the electric body forces as the divergence of a second-order tensor (see, for example, [8]), and
add this tensor to the Cauchy stress tensor to define a ‘total (Cauchy) stress tensor’ (see, for example, [11,21]),
which we denote τ . In such a case, the equilibrium equation in the absence of mechanical body forces can be
written in the form

divτ = 0. (12)

Since the electric body forces and couples are included in the definition of the stress, then from the balance of
angular momentum we have τT = τ .

The counterpart of the nominal stress tensor is denoted here by T, and is defined by

T = JF−1τ , (13)

and the equilibrium equation (12) can be written in the alternative form

DivT = 0. (14)
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2.4 Boundary conditions

We assume the body B completely surrounded by an infinite free (vacuum) space.
In the deformed configuration, in the absence of surface charge, the standard continuity conditions for the

electric field and the electric displacement through ∂B are

n · [[D]] = 0, n × [[E]] = 0, (15)

where the double square brackets indicates discontinuity across the surface and n is the unit normal outward
to the surface. The Lagrangian form of these equations is

N · [[Dl ]] = 0, N × [[El ]] = 0, (16)

where N is the normal vector in the reference configuration.
The boundary condition for the total stress in the current configuration is given by

[[τ ]]n = 0, (17)

where the Maxwell stress, denoted by τm , must be accounted as an external surface load [21]. In vacuum
(D = εoE), this Maxwell stress is given by [22]

τm = D ⊗ E − εo
1

2
(E · E)I, (18)

where I is the identity tensor.

2.5 Constitutive equations

Following Dorfmann and Ogden [11], we assume the existence of a free energy function �, which depends
on the deformation gradient F and the electric field or the electric displacement. In the case, we choose the
electric field as the independent electric variable and have

� = �(F, El). (19)

It can be proved that the total stress and the polarization are given by (see, for example, [11])

τ = ρF
∂�

∂F
+ τm, P = −ρF

∂�

∂El
, (20.1,2)

where τm is given by Eq. (18).
Dorfmann and Ogden defined the amended (or total) free energy function � = �(F, El) by [11,13,14]

� = ρ0� − 1

2
εo JEl · (c−1El). (21)

From Eqs. (20.1), (13) and (21) we can obtain the simple forms for the stresses

T = ∂�

∂F
(22)

and

τ = J−1F
∂�

∂F
. (23)

From Eq. (20.2), with Eqs. (7.2), (9) and (10) we have

Dl = − ∂�

∂El
(24)

and

D = −J−1F
∂�

∂El
. (25)
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The expressions listed above require some modifications in the case of incompressible materials, which
are subjected to the constraint

J = det F = 1. (26)

In this case, we have

τ = F
∂�

∂F
− pI, T = ∂�

∂F
− pF−1, D = −F

∂�

∂El
, (27.1–3)

where p is a Lagrange multiplier associated with the constraint.

3 Constitutive equations for transversely isotropic ES materials

3.1 The electric field as the independent electric variable

Consider the case of a transversely isotropic electro-elastic solid. The energy function is given as

� = �(F, El , a0), |a0| = 1, (28)

where a0 is a field that represents the particular alignment of the electro-active particles in the reference
configuration. In the current configuration, we have

a = Fa0. (29)

For the energy function � = �(F, El , a0) we have that � depends on the following set of invariants2

[23,24]

I1 = trc, I2 = 1

2
[(trc)2 − trc2], I3 = det c = J 2, (30.1,2)

I4 = El · El , I5 = El · cEl , I6 = El · c2El , (31)

I7 = a0 · ca0, I8 = a0 · c2a0, I9 = a0 · El , I10 = a0 · cEl . (32)

Then � = �(I1, I2, I3, I4, I5, I6, I7, I8, I9, I10). Consider the derivatives

∂ I1

∂F
= 2FT,

∂ I2

∂F
= 2(I1FT − FTFFT),

∂ I3

∂F
= 2I3F−1, (33)

∂ I5

∂F
= 2El ⊗ FEl ,

∂ I6

∂F
= 2(El ⊗ FFTFEl) + FTFEl ⊗ FEl , (34)

∂ I7

∂F
= 2a0 ⊗ Fa0,

∂ I8

∂F
= 2(a0 ⊗ FFTFa0 + FTFa0 ⊗ Fa0), (35)

∂ I10

∂F
= a0 ⊗ FEl + El ⊗ Fa0. (36)

Using the chain rule and these derivatives in (23) the total stress tensor is given as3

τ = J−1[2b�1 + 2(I1b − b2)�2 + 2I3I�3 + 2bE ⊗ bE�5

+2(bE ⊗ b2E + b2E ⊗ bE)�6 + 2a ⊗ a�7 + 2(a ⊗ ba + ba ⊗ a)�8

+(a ⊗ bE + bE ⊗ a)�10]. (37)

2 There is an error in Zheng’s paper on the theory of invariants [24]. According to Zheng for this problem, where we have one
tensor field and two vectors fields as arguments in the energy function, we would need to work with 11 invariants, where the extra
invariant would be a0 · c2El . However, it can be proved (see, for example, the Appendix B of the thesis by Bustamante [20]) that
this invariant is not independent of the rest of the invariants of the list (30.1,2)–(32).

3 We use the notation �i = ∂�
∂ Ii

for i = 1, . . . , 10.
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From Eq. (27.1) for an incompressible material we have

τ = 2b�1 + 2(I1b − b2)�2 − pI + 2bE ⊗ bE�5 + 2(bE ⊗ b2E + b2E ⊗ bE)�6

+2a ⊗ a�7 + 2(a ⊗ ba + ba ⊗ a)�8 + (a ⊗ bE + bE ⊗ a)�10. (38)

Consider the derivatives

∂ I4

∂El
= 2El ,

∂ I5

∂El
= 2cEl ,

∂ I6

∂El
= 2c2El ,

∂ I9

∂El
= a0,

∂ I10

∂El
= ca0. (39)

From Eq. (25) using the chain rule we have

D = −J−1(2bE�4 + 2b2E�5 + 2b3E�6 + a�9 + ba�10). (40)

For an incompressible material, Eq. (27.3) becomes

D = −(2bE�4 + 2b2E�5 + 2b3E�6 + a�9 + ba�10). (41)

Some restrictions on the energy function � can be obtained by considering the undeformed state. If for the
undeformed state with no external electric field, there is no residual stresses and no residual polarization, then
we have

τ = 0, D = 0. (42)

In this case the invariants (30.1,2)–(32) are given by

I1 = I2 = 3, I3 = 1, I4 = I5 = I6 = I9 = I10 = 0, I7 = I8 = a0 · a0. (43)

Let �̄i denote the function �i evaluated with the above values for the invariants. Remembering that F = I,
El = 0 and a = Fa0 = a0, then Eqs. (37) and (40) become

τ = 2(�̄1 + 2�̄2 + �̄3)I + 2(�̄7 + 2�̄8)a0 ⊗ a0, (44)

D = −(�̄9 + �̄10)a0, (45)

and in view of Eqs. (42) we need

�̄1 + 2�̄2 + �̄3 = 0, �̄7 + 2�̄8 = 0, �̄9 + �̄10 = 0. (46.1–3)

In the incompressible case, Eq. (46.1), should be replaced by

2�̄1 + 4�̄2 − p = 0. (47)

Piezoelectric materials produce polarization when deformed, even in the case there is no external field
[17,25]. The reason why some materials like quartz produces a polarization field when deformed has to do
with its particular atomic structure; a deformation produces an asymmetric arrangement of charges creating this
polarization field. In general, we cannot expect the same phenomenon for transversely isotropic ES materials.

Consider the case when there is deformation but no applied external field, in such a case if E = 0 we have
the extra restriction D = 0. Let �̆i denote the function �i evaluated for I4 = I5 = I6 = I9 = I10 = 0 (these
values for the invariants are consequence of E = 0). With D = 0 from Eq. (40) we have the restriction

I�̆9 + b�̆10 = 0, (48)

which, if b �= I, implies

�̆9 = �̆10 = 0. (49)

We easily see that if Eq. (49) holds so does (46.3).
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3.2 The electric displacement as the independent electric variable

If we choose to work with Dl as the independent variable, then by defining the energy potential �∗ by using
the partial Legrende transform

�∗(F, Dl , a0) = �(F, El , a0) + Dl · El , (50)

it follows that

τ = J−1F
∂�∗

∂F
, El = ∂�∗

∂Dl
. (51.1,2)

For an incompressible material, we have

τ = F
∂�∗

∂F
− p∗I. (52)

Consider the following set of invariants [23,24]:

I1 = trc, I2 = 1

2
[(trc)2 − trc2], I3 = det c, (53)

K4 = Dl · Dl , K5 = Dl · cDl , K6 = Dl · c2Dl , (54)

I7 = a0 · ca0, I8 = a0 · c2a0, K9 = a0 · Dl , K10 = a0 · cDl . (55)

The derivative ∂�∗
∂F can be calculated using the invariants Ii and Ki defined as above, in which case the

expression for the total stress (51.1) becomes4

τ = J−1[2b�∗
1 + 2(I1b − b2)�∗

2 + 2I3I�∗
3 + 2J 2D ⊗ D�∗

5

+2J 2(D ⊗ bD + bD ⊗ D)�∗
6 + 2a ⊗ a�∗

7 + 2(a ⊗ ba + ba ⊗ a)�∗
8

+J (a ⊗ D + D ⊗ a)�∗
10], (56)

where the connections Dl = JF−1D and a0 = F−1a have been used. The corresponding expression for the
incompressible case (52) is

τ = 2b�∗
1 + 2(I1b − b2)�∗

2 − p∗I + 2D ⊗ D�∗
5 + 2(D ⊗ bD + bD ⊗ D)�∗

6

+2a ⊗ a�∗
7 + 2(a ⊗ ba + ba ⊗ a)�∗

8 + (a ⊗ D + D ⊗ a)�∗
10. (57)

Finally, the expression for the electric field (51.2) becomes

E = 2Jb−1D�∗
4 + 2JD�∗

5 + 2JbD�∗
6 + b−1a�∗

9 + a�∗
10, (58)

and the corresponding incompressible case is

E = 2b−1D�∗
4 + 2D�∗

5 + 2bD�∗
6 + b−1a�∗

9 + a�∗
10. (59)

As in Sect. 3.1, we can find some restrictions on the form of the energy function if we assume that for the
case when there is no deformation or external electric displacement, there is no residual stresses and residual
electric field. Let �̄∗

i denote the function �∗
i evaluated with the invariants (53)–(55) calculated using F = I

and Dl = 0. From Eqs. (56) and (58), the conditions τ = 0 and E = 0 imply

�̄∗
1 + 2�̄∗

2 + �̄∗
3 = 0, �̄∗

7 + 2�̄∗
8 = 0, �̄∗

9 + �̄∗
10 = 0. (60.1–3)

In the incompressible case, (60.1) should be replaced by

2�̄∗
1 + 4�̄∗

2 − p = 0. (61)

4 The notation �∗
i means the derivative of �∗ in Ii if i = 1, 2, 3, 7, 8, or Ki if i = 4, 5, 6, 9, 10.
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A different restriction can be found if we assume now that whenever we have deformation but no external
electric displacement, then from Eq. (58) the electric field is zero. Let �̆∗

i denote the function �∗
i evaluated

for Dl = 0 but with F in general different to the identity tensor. From Eq. (58) we have

b−1�̆∗
9 + I�̆∗

10 = 0, (62)

which, if b−1 �= I, implies

�̆∗
9 = �̆∗

10 = 0. (63)

4 Derivation of the equations for the linear elastic case

To develop a linear theory through a linear expansion from the non-linear general formulation is a standard
procedure. In electro-elasticity that has been done mainly by expanding directly, for example, the expressions
(23), (25) as Taylor series in c (instead of F) and El (see, for example, [9,17,26,27]). In this section, we want
to obtain linear approximate expressions from, for example, (37) and (40), which would relate directly the
different parameters and quantities that appear in the general non-linear formulation, and the parameters that
appear in the classical linear theory.

Let us assume that

|Gradu| � 1, |El | � 1. (64.1,2)

It is not problematic to define what we mean for ‘small’ in the case of the gradient of the displacement.
The situation is more complicated for the electric field. The concept of ‘small’ is relative; in the case of the
gradient of the displacement this is not a problem because this gradient of the displacement is dimensionless.
For the electric field, we need to define the ‘smallness’ of the electric field El with respect to a ‘reference value’
for the field. Let us denote this value ER , then the inequality (64.2) should be understood as |El |/ER � 1 or
|El | � ER . In this section, we assume that El has been divided by ER , and so |El | � 1 actually means that
|El | � ER . We do not use a different notation for this dimensionless electric field. As for ER , this might seem
to be an arbitrary value, but in fact it should have a physical meaning related to, for example, the behaviour of
the polarization near the saturation point. We do not have enough experimental data for ES elastomers, and so
we do not discuss any further about ER .

The linear deformation tensor e is defined as e ≡ 1
2 (Gradu+GraduT). Let us determine the approximation

of b, b2, bE and b2E if |Gradu| and |El | are of order δ with δ � 1. From Eqs. (64) and the definitions (2),
(7), and (3) we have

b = FFT ≈ I + 2e, El ≈ E, bE ≈ E. (65)

As well as this, it is not difficult to show that b2 ≈ I + 4e, b2E ≈ E and I3 = J 2 ≈ 1.
Using the above expressions for b, El , bE, b2, b2E and J in (37), and neglecting terms of order δ2 we get

τ ≈ 2[�1 + (I1 − 1)�2 + �3]I + 4[�1 + (I1 − 2)�2]e + 2[�7 + �8]a ⊗ a
+ 4�8(a ⊗ ea + ea ⊗ a) + �10(a ⊗ E + E ⊗ a). (66)

For the electric displacement (40), we have

D ≈ −(2[�4 + �5 + �6]E + [�9 + �10]a + 2�10ea). (67)

To be frame-indifferent, � is a function of c and El , but since c = FTF we write � = �(F, El , a0). Now
let us approximate �i in c and E. We have

�i = �̄i + ∂�̄i

∂c
: (c − I) + ∂�̄i

∂E
· E + · · · ,

where f̄ denotes the function f = f (c, El) evaluated with F = I and El = 0. Using the definition of the
linear deformation tensor e we have the following approximation:

�i ≈ �̄i + ∂�̄i

∂c
: 2e + ∂�̄i

∂E
· E. (68)
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As a result, after neglecting the terms of order δ2 we obtain for (66)

τ ≈ 2(�̄1 + 2�̄2 + �̄3)I + 4[(�̄1c + 2�̄2c + �̄3c) : e]I + 2[(�̄1E + 2�̄2E + �̄3E ) · E]I
+ 4(�̄1 + �̄2)e + 2(�̄7 + 2�̄8)a ⊗ a + 4[(�̄7c + 2�̄8c) : e]a ⊗ a

+ 2[(�̄7E + 2�̄8E ) · E]a ⊗ a + 4�̄8(a ⊗ ea + ea ⊗ a) + �̄10(a ⊗ E + E ⊗ a), (69)

where we have used the notation �̄ic ≡ ∂�̄i
∂c , �̄i E ≡ ∂�̄i

∂E . Using Eqs. (46.1), and (46.2), the above equation
simplifies to

τ ≈ 4[(�̄1c + 2�̄2c + �̄3c) : e]I + 2[(�̄1E + 2�̄2E + �̄3E ) · E]I + 4(�̄1 + �̄2)e

+ 4[(�̄7c + 2�̄8c) : e]a ⊗ a + 2[(�̄7E + 2�̄8E ) · E]a ⊗ a

+ 4�̄8(a ⊗ ea + ea ⊗ a) + �̄10(a ⊗ E + E ⊗ a). (70)

For the constitutive equation for the electric displacement (70) we get

D ≈ −{2(�̄4 + �̄5 + �̄6)E + (�̄9 + �̄10)a + 2[(�̄9c + �̄10c) : e]a
+ [(�̄9E + �̄10E ) · E]a + 2�̄10ea}, (71)

which in view of Eq. (46.3) reduces to

D ≈ −{2(�̄4 + �̄5 + �̄6)E + 2[(�̄9c + �̄10c) : e]a + [(�̄9E + �̄10E ) · E]a + 2�̄10ea}. (72)

We calculate �̄ic and �̄i E in terms of the derivatives in the invariants, which are evaluated at the reference
configuration for E = 0. From the chain rule we have

�ic = ∂2�

∂ Ii∂ I j

∂ I j

∂c
, �i E = ∂2�

∂ Ii∂ I j

∂ I j

∂E
.

Consider the following derivatives of the invariants:

∂ I1

∂c
= I,

∂ I2

∂c
= I1I − c,

∂ I3

∂c
= I3c−1,

∂ I4

∂c
= 0,

∂ I5

∂c
= E ⊗ E, (73)

∂ I6

∂c
= E ⊗ cE + cE ⊗ E,

∂ I7

∂c
= a0 ⊗ a0,

∂ I8

∂c
= a0 ⊗ ca0 + ca0 ⊗ a0, (74)

∂ I9

∂c
= 0,

∂ I10

∂c
= 1

2
(a0 ⊗ E + E ⊗ a0), (75)

and

∂ I1

∂E
= ∂ I2

∂E
= ∂ I3

∂E
= 0,

∂ I4

∂E
= 2E,

∂ I5

∂E
= 2cE,

∂ I6

∂E
= 2c2E, (76)

∂ I7

∂E
= ∂ I8

∂E
= 0,

∂ I9

∂E
= a0,

∂ I10

∂E
= ca0. (77)

Therefore, we have

�̄ic = (�̄i,1 + 2�̄i,2 + �̄i,3)I + (�̄i,7 + 2�̄i,8)a ⊗ a, (78)

�̄i E = (�̄i,9 + �̄i,10)a, (79)

where we have used the notation �i, j ≡ ∂2�
∂ Ii ∂ I j

.
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4.1 Approximation for the stress

Let us calculate separately the different terms that appear in (70). Since �i, j = � j,i , we have

4(�̄1c + 2�̄2c + �̄3c) = 4[(�̄1,1 + 4�̄1,2 + 2�̄1,3 + 4�̄2,2 + 4�̄2,3 + �̄3,3)I

+(�̄1,7 + 2�̄1,8 + 2�̄2,7 + 4�̄2,8 + �̄3,7 + 2�̄3,8)a ⊗ a], (80)

2(�̄1E + 2�̄2E + �̄3E ) = 2(�̄1,9 + �̄1,10 + 2�̄2,9 + 2�̄2,10 + �̄3,9 + �̄3,10)a, (81)

4(�̄7c + 2�̄8c) = 4[(�̄7,1 + 2�̄7,2 + �̄7,3 + 2(�̄8,1 + 2�̄8,2 + �̄8,3))I

+(�̄7,7 + 4�̄7,8 + 4�̄8,8)a ⊗ a], (82)

2(�̄7E + 2�̄8E ) = 2[�̄7,9 + �̄7,10 + 2(�̄8,9 + �̄8,10)]a. (83)

Let us define

α1 = �̄1,1 + 4�̄1,2 + 2�̄1,3 + 4�̄2,2 + 4�̄2,3 + �̄3,3, (84)

α2 = �̄1,7 + 2�̄1,8 + 2�̄2,7 + 4�̄2,8 + �̄3,7 + 2�̄3,8, (85)

α3 = 2(�̄1,9 + �̄1,10 + 2�̄2,9 + 2�̄2,10 + �̄3,9 + �̄3,10), (86)

α4 = �̄7,7 + 4�̄7,8 + 4�̄8,8, (87)

α5 = 2[�̄7,9 + �̄7,10 + 2(�̄8,9 + �̄8,10)], (88)

then (70) becomes

τ ≈ 4[(α1I + α2a ⊗ a) : e]I + α3(a · E)I + 4(�̄1 + �̄2)e + 4[(α2I + α4a ⊗ a) : e]a ⊗ a
+α5(a · E)a ⊗ a + 4�̄8(a ⊗ ea + ea ⊗ a) + �̄10(a ⊗ E + E ⊗ a). (89)

Let us define β1 ≡ 4(�̄1 + �̄2) and let us consider the particular case a = ı̂3, where ı̂3 is the unitarian vector
in the direction 3 (Cartesian coordinates). We obtain

τ11 = (4α1 + β1)e11 + 4α1e22 + 4(α1 + α2)e33 + α3 E3, (90)

τ22 = 4α1e11 + (4α1 + β1)e22 + 4(α1 + α2)e33 + α3 E3, (91)

τ33 = 4(α1 + α2)(e11 + e22) + [4(α1 + 2α2 + α4) + β1 + 8�̄8]e33

+(α3 + α5 + 2�̄10)E3, (92)

τ23 = (β1 + 4�̄8)e23 + �̄10 E2, (93)

τ13 = (β1 + 4�̄8)e13 + �̄10 E1, (94)

τ12 = β1e12. (95)

Defining γ1 = 4(α1 + 2α2 + α4) + β1 + 8�̄8, and using the following vector notation for the stress and the
deformation

T = (T1, T2, T3, T4, T5, T6)
T = (τ11, τ22, τ33, τ23, τ13, τ12)

T, (96)

E = (E1, E2, E3, E4, E5, E6)
T = (e11, e22, e33, 2e23, 2e13, 2e12)

T, (97)
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we can rewrite Eqs. (90)–(95) as (see, for example, the form of the linear constitutive equations for a polarized
ceramic [17])

⎛
⎜⎜⎜⎜⎜⎝

T1
T2
T3
T4
T5
T6

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(4α1 + β1) 4α1 4(α1 + α2) 0 0 0
4α1 (4α1 + β1) 4(α1 + α2) 0 0 0
4(α1 + α2) 4(α1 + α2) γ1 0 0 0
0 0 0 1

2 (β1 + 4�̄8) 0 0
0 0 0 0 1

2 (β1 + 4�̄8) 0
0 0 0 0 0 1

2β1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

E1
E2
E3
E4
E5
E6

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 α3
0 0 α3
0 0 (α3 + α5 + 2�̄10)

0 �̄10 0
�̄10 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎝

E1
E2
E3

⎞
⎠ . (98)

4.2 Approximation for the electric displacement

We can repeat the same procedure for the electric displacement. From Eq. (72) we have

2(�̄9c + �̄10c) = 2[(�̄9,1 + 2�̄9,2 + �̄9,3 + �̄10,1 + 2�̄10,2 + �̄10,3)I

+ (�̄9,7 + 2�̄9,8 + �̄10,7 + 2�̄10,8)a ⊗ a]
= α3I + α5a ⊗ a, (99)

�̄9E + �̄10E = (�̄9,10 + �̄9,9 + �̄10,10 + �̄10,9)a. (100)

Finally, let us define

β2 = �̄9,9 + �̄10,10 + 2�̄9,10, ε1 = 2(�̄4 + �̄5 + �̄6). (101)

Using Eq. (46.3) we get from (72)

D1 = −[ε1 E1 + 2�̄10E5], (102)

D2 = −[ε1 E2 + 2�̄10E4], (103)

D3 = −[ε1 E3 + β2 E3 + α3E1 + α3E2 + (α3 + α5)E3 + 2�̄10E3], (104)

which can be rewritten as

⎛
⎝

D1
D2
D3

⎞
⎠ = −

⎛
⎝

ε1 0 0
0 ε1 0
0 0 ε1 + β2

⎞
⎠

⎛
⎝

E1
E2
E3

⎞
⎠ −

⎛
⎝

0 0 0 0 �̄10 0
0 0 0 �̄10 0 0
α3 α3 (α3 + α5 + 2�̄10) 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎝

E1
E2
E3
E4
E5
E6

⎞
⎟⎟⎟⎟⎟⎠

. (105)

5 Boundary value problems

For transversely isotropic electro-active elastomers, we do not have the complete set of universal solutions as
in the isotropic case [15,28]. In the next examples, in particular for the problems with cylindrical symmetry,
we show that the controllability depends strongly on the particular alignment of the electro-active particles
with respect to the given external electric field or electric displacement.

Remark To look for exact solutions of Eqs. (6), and (12), we need to consider the boundary conditions (15)
and (17). These conditions are rather complex; the method used by Sing and Pipkin [15] and other authors
[11–14,29] was to assume ‘semi-infinite’ geometries, see, for example, the paper by Bustamante et al. [30].

All the problems presented in this section correspond to incompressible materials.
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5.1 Simple shear

Consider the simple shear deformation defined as

x1 = X1 + γ X2, x2 = X2, x3 = X3, (106)

which is applied to a slab of initial dimensions 0 ≤ X1 ≤ A, 0 ≤ X2 ≤ B and 0 ≤ X3 ≤ C . We apply
an electric field with components E0 = El = (0, Eo, 0)T and an alignment for the particles a0 = (0, 1, 0)T.
In this problem, we reproduce theoretically what happens with the shear of a transversely isotropic slab, which
has been studied experimentally for the magneto-elastic problem by Jolly et al. [5].

The matrix forms of the deformation gradient and the left and right Cauchy–Green deformation tensors
are given as

F =
⎛
⎝

1 γ 0
0 1 0
0 0 1

⎞
⎠ , b =

⎛
⎝ 1 + γ 2 γ 0

γ 1 0
0 0 1

⎞
⎠ , c =

⎛
⎝

1 γ 0
γ 1 + γ 2 0
0 0 1

⎞
⎠ . (107)

We have det F = 1. The invariants Ii are given by Eqs. (30)–(32) as

I1 = 3 + γ 2 = I2, I4 = E2
o , I5 = (1 + γ 2)E2

o , I6 = [γ 2 + (1 + γ 2)]E2
o , (108)

I7 = 1 + γ 2, I8 = γ 2 + (1 + γ 2)2, I9 = Eo, I10 = (1 + γ 2)Eo. (109)

From Eqs. (38) and (41) we obtain

τ11 = 2(1 + γ 2)�1 + 2(2 + γ 2)�2 − p + 2(γ Eo)
2�5 + 4γ 2(2 + γ 2)E2

o�6 + 2γ 2�7

+4γ 2(2 + γ 2)�8 + 2γ 2 Eo�10, (110)

τ22 = 2�1 + 4�2 − p + 2E2
o�5 + 4(1 + γ 2)E2

o�6 + 2�7 + 4(1 + γ 2)�8 + 2Eo�10, (111)

τ33 = 2�1 + 2(2 + γ 2)�2 − p, (112)

τ12 = 2γ�1 + 2γ�2 + 2γ E2
o�5 + 2γ (3 + 2γ 2)E2

o�6 + 2γ�7 + 2γ (3 + 2γ 2)�8

+2γ Eo�10, (113)

τ13 = τ23 = 0, (114)

and

D1 = −[2 + γ Eo�4 + 2γ (2 + γ 2)Eo�5 + 2γ (1 + γ 2)(3 + γ 2)Eo�6 + γ�9

+γ (2 + γ 2)�10], (115)

D2 = −[2Eo�4 + 2(1 + γ 2)Eo�5 + 2(1 + 3γ 2 + γ 4)Eo�6 + �9 + (1 + γ 2)�10], (116)

D3 = 0. (117)

Let us define

ω(γ, Eo) = �(Ii ), i = 1, 2, . . . , 10. (118)

Using Eqs. (108)–(109) and the chain rule we can show that

∂ω

∂γ
= 2γ�1 + 2γ�2 + 2γ�5 E2

o + �62γ (3 + γ 2)E2
o + 2γ�7 + �82γ (3 + γ 2)

+2γ�10 Eo, (119)
∂ω

∂ Eo
= 2�4 Eo + 2�5(1 + γ 2)Eo + �62[γ 2 + (1 + γ 2)2]Eo + �9 + �10(1 + γ 2), (120)

and we get the connections

τ12 = ∂ω

∂γ
, D2 = − ∂ω

∂ Eo
. (121)
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The stress, the electric field and the electric displacement are constant, and as a result, they satisfy automa-
tically, Eqs. (6) and (12). However, as we mentioned in the remark, the situation with the boundary conditions
(15) is not simple. If we consider a ‘finite’ slab, then it is not difficult to see that to satisfy simultaneously
the two boundary conditions (15) we would need a non-uniform field, which in general will depend strongly
on the particular form of �. For the solution (110)–(114) and (115)–(117) to be valid we would need at least
that two of the three dimensions of the slab to be infinite. Consider, for example, the initial dimensions for the
slab, −∞ ≤ X1 ≤ ∞, 0 ≤ X2 ≤ B and −∞ ≤ X3 ≤ ∞; this is the geometry of a infinite wall of width
B. In this case, the only surfaces where we need to check the boundary conditions are the surfaces X2 = 0
and X2 = B. For a uniform external electric field of the form (0, Eo, 0)T the boundary conditions (15) are
satisfied automatically.

5.2 Uniform extension of a bar

We consider the uniform extension of a cylindrical bar. The uniform extension of a cylinder was used to obtain
some important results for MS and ES elastomers [3,4], where we can see the difference in the response for
isotropic and transversely isotropic cases.

Consider a cylinder with initial dimensions 0 ≤ R ≤ Ro and −∞ ≤ Z ≤ ∞. In cylindrical coordinates
the deformation is given as

r = λ−1/2 R, θ = �, z = λZ . (122)

We work with the external axial applied field E0 = El = (0, 0, Eo)
T and the alignment for the particles in

the reference configuration a0 = (0, 0, 1)T. The matrix forms of the deformation gradient and left and right
Cauchy–Green tensors are given by

F =
⎛
⎝

λ−1/2 0 0
0 λ−1/2 0
0 0 λ

⎞
⎠ , b = c =

⎛
⎝

λ−1 0 0
0 λ−1 0
0 0 λ2

⎞
⎠ , (123)

then the invariants are, from Eqs. (30)–(32), given as

I1 = 2λ−1 + λ2, I2 = λ−2 + 2λ, I4 = E2
o , I5 = λ2 E2

o , I6 = λ4 E2
o , (124)

I7 = λ2, I8 = λ4, I9 = Eo, I10 = λ2 Eo. (125)

The components of the stress and the electric displacement (38) and (41) are

τrr = τθθ = 2λ−1�1 + 2(λ−2 + λ)�2 − p, (126)

τzz = 2λ2�1 + 4λ�2 − p + 2λ2 E2
o�5 + 4λ4 E2

o�6 + 2λ2�7 + 4λ4�8 + 2λ2 Eo�10, (127)

τrθ = τr z = τθ z = 0, (128)

and

Dr = Dθ = 0, (129)

Dz = −(2λEo�4 + 2λ3 Eo�5 + 2λ5 Eo�6 + λ�9 + λ3�10). (130)

The components of the Maxwell stress in the radial and the azimuthal directions are given by Eq. (18):

τmrr = τmθθ = −εo

2
λ−2 E2

o . (131)

From Eq. (17), we have

τrr − τmrr = 0, τθθ − τmθθ = 0,

and as a result we obtain

p = 2λ−1�1 + 2(2 + λ−2)�2 + εo

2
λ−2 E2

o . (132)
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Therefore, for (127) we get

τzz = 2(λ2 − λ−1)�1 + 2(λ − λ−2)�2 + 2λ2 E2
o�5 + 4λ4 E2

o�6 + 2λ2�7

+4λ4�8 + 2λ2 Eo�10 − εo

2
λ−2 E2

o . (133)

We can define

ω(λ, Eo) = �(Ii ), i = 1, 2, . . . , 10. (134)

Using the chain rule with (124) and (125) we can show that

∂ω

∂λ
= 2�1(λ − λ−2) + 2�2(1 − λ−3) + 2�5λE2

o + 4�6λ
3 E2

o + 2�7λ

+4�8λ
3 + 2�10λEo, (135)

∂ω

∂ Eo
= 2�4 Eo + 2�5λ

2 Eo + 2�6λ
4 Eo + �9 + �10λ

2. (136)

Thus

τzz = λ
∂ω

∂λ
− εo

2
λ−2 E2

o , (137)

and

Dz = −λ
∂ω

∂ Eo
. (138)

As in the simple shear problem, since the components of the stress and the electric field and electric
displacement are constant, they satisfy automatically Eqs. (6) and (12). Regarding the boundary conditions
(15) the cylinder has an infinite length (L = ∞), then the only surface where we would need to check the
boundary conditions (15) is the surface r = ro and to satisfy (15) we only need to require the same uniform
electric field outside and inside the cylinder.

5.3 Problems with cylindrical symmetry

Let us assume that τ = τ (r, z), then in cylindrical coordinates the Eq. (12) becomes (see, for example, [31])

∂τrr

∂r
+ ∂τr z

∂z
+ 1

r
(τrr − τθθ ) = 0, (139)

∂τrθ

∂r
+ ∂τθ z

∂z
+ 2

r
τrθ = 0, (140)

∂τr z

∂r
+ ∂τzz

∂z
+ 1

r
τr z = 0. (141)

If we assume E = E(r, z) then Eq. (6.1) in cylindrical coordinates becomes

∂ Er

∂z
− ∂ Ez

∂r
= 0,

1

r

∂

∂r
(r Eθ ) = 0. (142)

Finally, if we assume that D = D(r, z) the simplified form of Eq. (6.2) is

1

r

∂

∂r
(r Dr ) + ∂ Dz

∂z
= 0. (143)

We study three problems, the extension and inflation of a tube, the extension and torsion of a tube, and
helical shear [11,14]. For the first two of these problems we want to find universal solutions, which will depend
among other factors on the particular form of the field a0.
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5.3.1 Extension and inflation of a tube

Consider the deformation given in cylindrical coordinates [14]

r2 = a2 + λ−1
z (R2 − A2), θ = �, z = λz Z , (144)

where a ≤ r ≤ b, 0 ≤ θ ≤ 2π and −∞ ≤ z ≤ ∞.
The matrix forms of the deformation gradient and the left and right Cauchy–Green tensors are given by

F =
⎛
⎝ (λzλ)−1 0 0

0 λ 0
0 0 λz

⎞
⎠ , b = c =

⎛
⎝

(λzλ)−2 0 0
0 λ2 0
0 0 λ2

z

⎞
⎠, (145)

where we have used the definition λ = r/R.
The first two invariants (30.1) and (30.2) are

I1 = (λzλ)−2 + λ2 + λ2
z , I2 = λ−2

z + λ−2 + (λλz)
2. (146)

Now, it is necessary to consider a particular form for the external applied electric field, and for the initial
alignment of the electro-active particles. Consider two cases.

1. Axial electric field and particle alignment
Let us assume that the external electric field is El = (0, 0, Eo)

T, where Eo is constant. From Eq. (7.1) we
have that E = (0, 0, λ−1

z Eo)
T, and Eqs. (142) are satisfied automatically. As well as this, from (31) we

have

I4 = E2
o , I5 = λ2

z E2
o , I6 = λ4

z E2
o . (147)

With the above electric field, the non-zero components of the Maxwell stress tensor (18) are

τmrr = τmθθ = −εo

2
λ−2 E2

o , τmzz = εo

2
λ−2 E2

o . (148)

We assume that in the reference configuration the particles are aligned uniformly in the axial direction.
We have a0 = (0, 0, 1)T, the remaining invariants are given by (32) as

I7 = λ2
z , I8 = λ4

z , I9 = Eo, I10 = λ2
z Eo. (149)

From (38) we get

τrr = 2(λzλ)−2�1 + 2(λ−2
z + λ−2)�2 − p, (150)

τθθ = 2λ2�1 + 2[λ−2
z + (λzλ)2]�2 − p, (151)

τzz = 2λ2
z�1 + 2[λ−2 + (λzλ)2]�2 − p + 2(λz Eo)

2�5 + 4(λ2
z Eo)

2�6

+2λ2
z�7 + 4λ4

z�8 + 2λ2
z Eo�10, (152)

τrθ = τr z = τθ z = 0, (153)

and from (41) we have

Dr = Dθ = 0, (154)

Dz = −(2λz Eo�4 + 2λ3
z Eo�5 + 2λ5

z Eo�6 + λz�9 + λ3
z�10). (155)

We have that λ = λ(r); thus, the different invariants are function of r . Consider the decomposition of
the components of the stress τrr = τ̃rr − p, τθθ = τ̃θθ − p, τzz = τ̃zz − p. We have that τ̃rr = τ̃rr (r),
τ̃θθ = τ̃θθ (r) and τ̃zz = τ̃zz(r). As a result, Eq. (140) is satisfied automatically. From (141) we have

∂

∂z
(τ̃zz(r) − p) = 0, ⇒ ∂p

∂z
= 0 ⇔ p = p(r), (156)

and the deformation is controllable.
Regarding the electric displacement, from (155) we have that Dz = Dz(r) and with (154) we conclude
that (143) is satisfied trivially. As a result for this electric field and initial orientation of the electro-active
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particles we conclude that (144) is universal (for an analysis of universal solutions in the context of isotropic
electro- and magneto-elastic problems see [15,28]).
Let us consider the simplified form for the energy function

ω(λz, λ, Eo) = �(Ii ), i = 1, 2, . . . 10,

where from (146), (147) and (149) we have Ii = Ii (λz, λ, Eo). Consider the partial derivatives

∂ω

∂λz
= 2�1(λz − λ−3

z λ−2) + 2�2(λ
2λz − λ−3

z ) + 2�5λz E2
o + 4�6λ

3
z E2

o

+2�7λz + 4�8λ
3
z + 2�10λz Eo, (157)

∂ω

∂λ
= 2�1(λ − λ−2

z λ−3) + 2�2(λλ2
z − λ−3), (158)

∂ω

∂ Eo
= 2�4 Eo + 2�5λ

2
z Eo + 2�6λ

4
z Eo + �9 + �10λ

2
z . (159)

From the above relations we can prove that

τzz − τθθ = λz
∂ω

∂λz
− λ

∂ω

∂λ
, (160)

and

Dz = −λz
∂ω

∂ Eo
. (161)

2. Radial electric displacement and alignment for the particles
Consider an external electric displacement in vector form given by Dl = (Do/R, 0, 0)T, where Do is
constant. From (7.2) for an incompressible material we have D = (λ−1

z Do/r, 0, 0)T. For this particular
form of the electric displacement, Eq. (143) is satisfied automatically.
Consider a radial uniform orientation for the electro-active particles. So a0 = (1, 0, 0)T, and as a result
a = ((λzλ)−1, 0, 0)T. The invariants are given by (53)–(55), and we have

K4 = (Do/R)2, K5 = (Do/R)2(λzλ)−2, K6 = (Do/R)2(λzλ)−4, (162)

I7 = (λzλ)−2, I8 = (λzλ)−4, K9 = Do/R, K10 = (Do/R)(λzλ)−2. (163)

From (57) we obtain

τrr = 2(λzλ)−2�∗
1 + 2(λ−2 + λ−2

z )�∗
2 − p∗ + 2λ−2

z

(
Do

r

)2

�∗
5

+4(λzλ)−4
(

Do

R

)2

�∗
6 + 2(λzλ)−2�∗

7 + 4(λzλ)−4�∗
8

+2(λzλ)−2 Do

R
�∗

10, (164)

τθθ = 2λ2�∗
1 + 2[λ−2

z + (λzλ)2]�∗
2 − p∗, (165)

τzz = 2λ2
z�

∗
1 + 2[λ−2 + (λzλ)2]�∗

2 − p∗, (166)

τrθ = τr z = τθ z = 0, (167)

and from (59) we get for the electric field

Er = 2λzλ
Do

R
�∗

4 + 2(λzλ)−1 Do

R
�∗

5

+2(λzλ)−3 Do

R
�∗

6 + λzλ�∗
9(λzλ)−1�∗

10, (168)

Eθ = Ez = 0. (169)
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The invariants are functions of λz , λ and Do/R. The above electric field then satisfies (142). As well as this,
by an argument similar to the one used in case 1, we can prove that this deformation is controllable, and
that p∗ can be calculated from (139) using the above components of the stress and the same decomposition
used for the stress in 1.
Let us define ξ = Do/R, and the simplified energy function

ω(λz, λ, ξ) = �∗(Ii , K j ),

and consider the derivatives
∂ω

∂λz
= 2�∗

1(λz − λ−3
z λ−2) + 2�∗

2(λzλ
2 − λ−3

z ) − 2�∗
5λ

−3
z λ−2ξ2

−4�∗
6λ

−5
z λ−4ξ2 − 2�∗

7λ
−3
z λ−2 − 4�∗

8λ
−5λ−4 − 2�∗

10λ
−3
z λ−2ξ, (170)

∂ω

∂λ
= 2�∗

1(λ − λ−2
z λ−3) + 2�∗

2(λλ2
z − λ−3) − 2�∗

5λ
−3λ−2

z ξ2

−4�∗
6λ

−5λ−4
z ξ2 − 2�∗

7λ
−2
z λ−3 − 4�∗

8λ
−4
z λ−5 − 2�∗

10λ
−2
z λ−3ξ, (171)

∂ω

∂ξ
= 2�∗

4ξ + 2�∗
5ξ(λzλ)−2 + 2�∗

6ξ(λzλ)−4 + �∗
9 + �∗

10(λzλ)−2. (172)

It is easy to show that

τθθ − τrr = λ
∂ω

∂λ
, τzz − τrr = λz

∂ω

∂λz
, (173)

and

τzz − τθθ = λz
∂ω

∂λz
− λ

∂ω

∂λ
, (174)

which is the same relation found in case 1. Finally, for the electric field we have

Er = λzλ
∂ω

∂ξ
. (175)

Remark We could explore two more cases, an axial electric field with a radial alignment for the particles,
and a radial electric displacement with an axial alignment for the particles. It is possible to prove that for
these two cases τr z �= 0, as a result for these two cases the deformation (144) is not controllable.

5.3.2 Extension and torsion of a tube

Consider the deformation [29]

r = λ
−1/2
z R, θ = � + λzτ Z , z = λz Z , (176)

where λz and τ are constants, and a ≤ r ≤ b, 0 ≤ θ < 2π , and −∞ ≤ z ≤ ∞. Let us define γ = τr , then the
matrix representations of the deformation gradient and the left and right Cauchy–Green tensors are given as

F =
⎛
⎝

λ
−1/2
z 0 0

0 λ
−1/2
z γ λz

0 0 λz

⎞
⎠ , (177)

b =
⎛
⎝

λ−1
z 0 0

0 λ−1
z + γ 2λ2

z γ λ2
z

0 γ λ2
z λ2

z

⎞
⎠ , c =

⎛
⎝

λ−1
z 0 0

0 λ−1
z γ λ

1/2
z

0 γ λ
1/2
z (1 + γ 2)λ2

z

⎞
⎠ . (178)

We have that det F = 1.
The first and second invariants are given by Eqs. (30.1) and (30.2)

I1 = 2λ−1
z + (1 + γ 2)λ2

z , I2 = λ−2
z + (2 + γ 2)λz . (179)

As in the previous boundary value problem, we must choose a field and an alignment for the electro-active
particles. Two cases are considered.
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1. Axial uniform electric field and axial alignment for the electro-active particles.
For this case, we consider the external electric field El = (0, 0, Eo)

T, and the alignment of the particles
in the reference configuration a0 = (0, 0, 1)T. The rest of the invariants (31)–(32) are

I4 = E2
o , I5 = E2

o(1 + γ 2)λ2
z , I6 = E2

o [γ 2λz + (1 + γ 2)2λ4
z ], (180)

I7 = (1 + γ 2)λ2
z , I8 = γ 2λz + (1 + γ 2)2λ4

z , I9 = Eo, I10 = Eo(1 + γ 2)λ2
z . (181)

The non-zero components of the Maxwell stress (18) are

τmrr = τmθθ = −εo

2
λ−2

z E2
o , τmzz = εo

2
λ−2

z E2
o . (182)

The components of the stress (38) and the components of the electric displacement (41) are

τrr = −p + 2λ−1
z �1 + 2[λ−2

z + (1 + γ 2)λz]�2, (183)

τθθ = −p + 2(λ−1
z + γ 2λ2

z )�1 + 2[λ−2
z + (1 + γ 2)λz]�2 + 2E2

oγ 2λ2
z�5

+4E2
oγ 2λz[1 + (1 + γ 2)λ3

z ]�6 + 2γ 2λ2
z�7 + 4γ 2λz[1 + (1 + γ 2)λ3

z ]�8

+2Eoγ
2λ2

z�10, (184)

τzz = −p + 2λ2
z�1 + 4λz�2 + 2E2

oλ2
z�5 + 4E2

oλ4
z (1 + γ 2)�6 + 2λ2

z�7

+4λ4
z (1 + γ 2)�8 + 2Eoλ

2
z�10, (185)

τθ z = 2γ λz{λz�1 + �2 + E2
oλz�5 + E2

o [1 + 2(1 + γ 2)λ3
z ]�6 + λz�7

+ [1 + 2(1 + γ 2)λ3
z ]�8 + Eoλz�10}, (186)

τrθ = τr z = 0. (187)

Dr = 0, (188)

Dθ = −γ {2Eoλz�4 + 2Eo[1 + (1 + γ 2)λ3
z ]�5 + 2Eo[λ−1

z + (1 + 2γ 2)λ2
z

+ (1 + 2γ 2 + γ 4)λ5
z ]�6 + λz�9 + [1 + (1 + γ 2)λ3

z ]�10}, (189)

Dz = −λz{2Eo�4 + 2Eoλ
2
z (1 + γ 2)�5 + 2Eoλz[γ 2 + (1 + 2γ 2 + γ 4)λ5

z ]�6

+ �9 + λ2
z (1 + γ 2)�10}. (190)

We prove that the above deformation is controllable. As in the problem of Sect. 5.3.1, if we decompose
τrr , τθθ and τzz as τrr = −p + τ̃rr , τθθ = −p + τ̃θθ and τzz = −p + τ̃zz ; remembering that γ = τr , and
considering (179)–(181), we can show that τ̃rr = τ̃rr (r), τ̃θθ = τ̃θθ (r), τ̃zz = τ̃zz(r) and τθ z = τθ z(r).
Then, Eq. (140) is satisfied automatically, and from Eqs. (139) and (141) we have that

−∂p

∂r
+ dτ̃rr

dr
+ 1

r
(τ̃rr − τ̃θθ ) = 0,

∂p

∂z
= 0,

from where it is easy to see that p is a function of r , and that it can be calculated directly from (139).
As well as this, from (188) to (190) we have that Dθ = Dθ (r) and Dz = Dz(r), and as a result (143) is
also satisfied; thus this deformation is universal. Since −∞ ≤ z ≤ ∞, it can be easily proved, as in the
previous problems, that the boundary conditions (15) are satisfied.
Consider now the simplified form for the energy function

ω = ω(λz, γ, Eo) = �(Ii ), i = 1, 2, . . . , 10.

From Eqs. (179) to (181) we have

∂ω

∂λz
= 2�1[(1 + γ 2)λz − λ−2

z ] + �2(2 + γ 2 − 2λ−3
z ) + 2�5 E2

o(1 + γ 2)λz

+�6 E2
o [γ 2 + 4(1 + γ 2)2λ3

z ] + 2�7(1 + γ 2)λz + �8[γ 2 + 4(1 + γ 2)2λ3
z ]

+2�10 Eo(1 + γ 2)λz, (191)
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∂ω

∂γ
= 2γ λz{�1λz + �2 + �5 E2

oλz + �6 E2
o [1 + 2(1 + γ 2)λ3

z ] + �7λz

+ �8[1 + 2(1 + γ 2)λ3
z ] + �10 Eoλz}, (192)

∂ω

∂ Eo
= 2�4 Eo + 2�5 Eo(1 + γ 2)λ2

z + 2�6 Eo[γ 2λz + (1 + γ 2)2λ4
z ]

+�9 + �10(1 + γ 2)λ2
z , (193)

and then it is possible to derive the simple connections

τθ z = ∂ω

∂γ
, Dz = −λz

∂ω

∂ Eo
. (194)

2. Radial electric displacement and radial orientation for the electro-active particles
Consider the case where the external electric displacement has the vector form Dl = (Do/R, 0, 0)T in
the reference configuration. As a result D = (λ

−1/2
z Do/R, 0, 0)T, so D = (λ−1

z Do/r, 0, 0)T and this field
satisfies Eq. (143). From Eq. (54) we have

K4 = D2
oλ−1

z

r2 , K5 = D2
oλ−2

z

r2 , K6 = D2
oλ−3

z

r2 . (195)

We consider a radially uniform alignment for the particles in the reference configuration given by
a0 = (1, 0, 0)T, then a = (λ

−1/2
z , 0, 0)T, and the rest of the invariants (55) are (the first and second

invariants are given in (179))

I7 = λ−1
z , I8 = λ−2

z , K9 = Do

R
, K10 = λ−1

z Do

R
. (196)

Using R = λ
1/2
z r , the components of the total stress (57) and the electric field (59) are

τrr = −p∗ + 2λ−1
z �∗

1 + 2[λ−2
z + (1 + γ 2)λz]�∗

2 + 2λ−2
z

(
Do

r

)2

�∗
5

+4λ−3
z

(
Do

r

)2

�∗
6 + 2λ−1

z �∗
7 + 4λ−2

z �∗
8 + 2λ−3/2 Do

r
�∗

10, (197)

τθθ = −p∗ + 2(λ−1
z + γ 2λ2

z )�
∗
1 + 2[λ−2

z + (1 + γ 2)λz]�∗
2, (198)

τzz = −p∗ + 2λ2
z�

∗
1 + 4λz�

∗
2, (199)

τrθ = τr z = 0, (200)

τθ z = 2γ λ2
z�

∗
1 + 2γ λz�

∗
2, (201)

and

Er = 2
Do

r
�∗

4 + 2
Do

r
λ−1

z �∗
5 + 2

Do

r
λ−2

z �∗
6 + λ

1/2
z �∗

9 + λ
−1/2
z �∗

10. (202)

Eθ = Ez = 0, (203)

which by the same reasons described in the previous problems is also universal and satisfies (142). Let us
define ξ = Do/R, and let us consider the simplified form for the energy function

ω = ω(λz, γ, ξ) = �∗(Ii , K j ).
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Then we have

∂ω

∂λz
= 2[(1 + γ 2)λz − λ−2

z ]�∗
1 + �∗

2(2 + γ 2 − 2λ−3
z ) − �∗

5λ
−2
z ξ2 − 2�∗

6λ
−3
z ξ2

−�∗
7λ

−2
z − 2�∗

8λ
−3
z − �∗

10λ
−2
z ξ, (204)

∂ω

∂γ
= 2�∗

1γ λ2
z + 2�∗

2γ λz, (205)

∂ω

∂ξ
= 2�∗

4ξ + 2�∗
5λ

−1
z ξ + 2�∗

6λ
−2
z ξ + �∗

9 + �∗
10λ

−1
z , (206)

from which it follows that

Er = λ1/2 ∂ω

∂ξ
, τθ z = ∂ω

∂γ
. (207)

There are two possibilities that we may study. One is to consider a uniform axial electric field with a uniform
radial alignment for the electro-active particles, and the other is to consider a radial electric displacement as
in the above problem, but with a uniform axial alignment field for the electro-active particles. In any of these
two extra cases is not difficult to show that a shear in the radial direction appears, which implies the arbitrary
pressure p cannot be assumed to be a function of r only. As a result, these cases are not controllable and we
do not consider them here.

5.3.3 Helical shear

Helical shear [18,32] has been studied in the context of isotropic ES elastomers. In this section, we check in
which situation the non-linear universal relation found in [18] holds.

From [18] helical shear was defined in cylindrical coordinates by

r = R, θ = � + g(R), z = Z + w(R), (208)

where g and w are unknown functions of R, and A ≤ R ≤ B, 0 ≤ � < 2π and −∞ ≤ Z ≤ ∞. The matrix
forms of the deformation gradient and the left and right Cauchy–Green tensors are, respectively,

F =
⎛
⎝

1 0 0
κθ 1 0
κz 0 1

⎞
⎠ , b =

⎛
⎝

1 κθ κz

κθ 1 + κ2
θ κθκz

κz κθκz 1 + κ2
z

⎞
⎠ , c =

⎛
⎝ 1 + κ2 κθ κz

κθ 1 0
κz 0 1

⎞
⎠ , (209)

where κθ = rg′(r), κz = w′(r) and κ2 = κ2
θ + κ2

z .
There are many possibilities for the external electric field or electric displacement and for the alignment of

the electro-active particles. We only consider one case, a uniform radial electric field, and a radial alignment
for the particles.

In this case, the external electric field is El = (Eo, 0, 0)T, where Eo is a constant. The alignment of the
electro-active particles in the reference configuration is a0 = (1, 0, 0)T. Therefore, the electric field and the
particle orientation in the current configuration are E = (Eo, 0, 0)T, a = (1, κθ , κz)

T.
The invariants are given by (30)–(32):

I1 = I2 = 3 + κ2, I4 = E2
o , I5 = E2

o(1 + κ2), (210)

I6 = E2
o [κ2 + (1 + κ2)2], I7 = 1 + κ2, I8 = κ2 + (1 + κ2)2, (211)

I9 = Eo, I10 = Eo(1 + κ2). (212)

From Eqs. (38) and (41) the components of the stress and the electric displacement are

τrr = −p + 2�1 + 4�2 + 2E2
o�5 + 4E2

o(1 + κ2)�6 + 2�7 + 4(1 + κ2)�8 + 2Eo�10, (213)

τθθ = −p + 2(1 + κ2
θ )�1 + 2(2 + κ2)�2 + 2E2

oκ2
θ �5 + 4E2

oκ2
θ (2 + κ2)�6

+2κ2
θ �7 + 4κ2

θ (2 + κ2)�8 + 2Eoκ
2
θ �10, (214)
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τzz = −p + 2(1 + κ2
z )�1 + 2(2 + κ2)�2 + 2E2

oκ2
z �5 + 4E2

oκ2
z (2 + κ2)�6

+2κ2
z �7 + 4κ2

z (2 + κ2)�8 + 2Eoκ
2
z �10, (215)

τrθ = 2κθ [�1 + �2 + E2
o�5 + E2

o(3 + 2κ2)�6 + �7 + (3 + 2κ2)�8 + Eo�10], (216)

τr z = 2κz[�1 + �2 + E2
o�5 + E2

o(3 + 2κ2)�6 + �7 + (3 + 2κ2)�8 + Eo�10], (217)

τθ z = 2κzκθ [�1 + E2
o�5 + 2E2

o(2 + κ2)�6 + �7 + 2(2 + κ2)�8 + Eo�10], (218)

and

Dr = −[2Eo�4 + 2Eo(1 + κ2)�5 + 2Eo(1 + 3κ2 + κ4)�6 + �9 + (1 + κ2)�10], (219)

Dθ = −κθ [2Eo�4 + 2Eo(2 + κ2)�5 + 2Eo(3 + 4κ2 + κ4)�6 + �9 + (2 + κ2)�10], (220)

Dz = −κz[2Eo�4 + 2Eo(2 + κ2)�5 + 2Eo(3 + 4κ2 + κ4)�6 + �9 + (2 + κ2)�10]. (221)

Regarding the total stress tensor, we can prove that its components satisfy the following non-linear universal
relation (see, for example, [18,19,32])

(τθθ − τzz)τr zτrθ = τθ z(τ
2
rθ − τ 2

r z). (222)

This relation is also satisfied by the components of the stress if they are calculated from the constitutive
equation (57) for the electric displacement Dl = (Do/R, 0, 0)T, and for a uniform radial field alignment for
the particles a0 = (1, 0, 0)T.

Let us define

ω = ω(κθ , κz, Eo) = �(Ii ), i = 1, 2, . . . , 10.

Then

∂ω

∂κθ

= 2κθ [�1 + �2 + E2
o�5 + E2

o�6(1 + 2κ2) + �7 + �8(1 + 2κ2)Eo�10], (223)

∂ω

∂κz
= 2κz[�1 + �2 + E2

o�5 + E2
o�6(1 + 2κ2) + �7 + �8(1 + 2κ2)Eo�10], (224)

∂ω

∂ Eo
= 2Eo�4 + 2Eo�5(1 + κ2) + 2Eo�6(1 + 3κ2 + κ4) + �9 + �10(1 + κ2), (225)

from which we get the connections

τrθ = ∂ω

∂κθ

, τr z = ∂ω

∂κz
, (226)

and the connection for the radial component of the electric displacement

Dr = − ∂ω

∂ Eo
. (227)

The boundary conditions (15) are satisfied trivially if −∞ ≤ Z ≤ ∞.
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6 Conclusions

In the present paper, we developed a theory for transversely isotropic electro-sensitive elastomers, based on a
previous work for isotropic ES elastomers [11]. Different experimental data [3–5] show that a preferred orien-
tation for the electro-active particles may enhance significantly the properties of these materials in comparison
with the isotropic case.

The different examples of boundary value problems show that the ‘controllability’ of a solution of the
boundary value problem depends strongly on the relative alignment of the particles with respect to the electric
field or electric displacement. It is necessary to point out again that the controllable solutions presented here
were obtained for ‘semi-infinite’ geometries to work with the boundary conditions (15).

To work with an energy function that depends on ten invariants (see, for example, Eq. (37)) will cause
great problems to find this function from experiments. It will be necessary to assume a simplified form for the
function � (or �∗). This has been done for transversely MS elastomers by Bustamante and Ogden [16], where
they chose to work with seven of these ten invariants. It is highly desirable in such a case to have a criterion
to known in advance whether such simplifications are realistic, such a criterion is provided by the ‘universal
relations’ [33]. For transversely isotropic electro-active elastomer some universal relations have been found
for some simplified forms of the constitutive equation; for brevity, these results are not shown here and can be
found in Chapter 8 of the thesis by Bustamante [20].
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