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Abstract The universal thermodynamic variational principle proposed in the previous papers for nonlinear
dielectrics is extended to the thermopiezoelectricity and it is used as a fundamental physical principle to derive
the simple complete governing equations of the generalized dynamical theory of thermopiezoelectricity in this
paper. In the generalized dynamical theory it is assumed that the acceleration of the temperature needs the
extra increment of the heat and the inertial entropy is proposed.

1 Introduction

The variational principles in classical thermoelasticity and thermopiezoelectricity have been established for a
long time [1–3]. In previous theories authors looked for a functional with a mathematical action function and
used its extremum condition to get the momentum equation and the heat conduction equation. The irreversible
thermodynamics was not fully applied and the physical meaning of the mathematical action function is not
clear. Usually the variational principles were constrained in a small temperature variation range.

In the classical thermoelasticity and thermopiezoelectricity the temperature field is coupled with the elastic
or electroelastic field, but the temperature change does not propagate in a wave form. However, the temperature
wave at low temperature in the form of heat pulses propagates with a finite velocity. So many generalized
thermoelastic and thermopiezoelectric theories were proposed to allow a finite velocity for the propagation
of a thermal wave. There were mainly three generalized theories: Lord–Shulman theory [4], Green–Lindsay
theory [5] and Green–Naghdi theory [6]. The Lord–Shulman theory with one relaxation time was based on
a new viscous heat conduction law to replace Fourier’s law. The Green–Lindsay theory with two relaxation
times was based on modifying the Clausius-Duhemin inequality and the energy equation; In their theory they
used a new temperature function φ(T, Ṫ ) to replace the usual temperature T . The Green–Naghdi theory was
based on that there is no energy dissipation in the heat conductive process. Chandrasekharaiah [7] discussed
also the governing equations of a temperature-rate-dependent theory of thermopiezoelasticity

In the papers [8,9] we proposed a universal thermodynamic variational principle for nonlinear dielectrics
and pointed out that which is included in the first law of the thermodynamics. This universal thermodynamic
variational principle is a fundamental physical principle and we can use it to establish other variational principles
and the governing equations in the mechanics. In this paper the entropy flow is used as an independent vector
variable to replace the heat flow. It is proposed that the acceleration of the temperature (the second time
derivative of the temperature) needs the extra increment of the heat and the inertial entropy is introduced.
Using these concepts the generalized theory with a finite velocity for the propagation of a thermal wave can
simply be established and the physical meaning is clear. This theory is fully compatible with the classical
irreversible thermodynamics. Based on this theory the variational principles introduced in this paper are exact
and the governing equations derived by these variational principles are reasonable.
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Together with the first law of thermodynamics, the known facts show that the following universal thermo-
dynamic variational principle also holds [8,9]:

δ� = δU − δW − δQ = 0, (1)

where δ is the variation sign, U is the total internal energy of the body, W is the work done by the external
force and electric field, Q is the heat absorbed from the external heat source. The meaning of Eq. (1) is that
among all virtual general displacements (such as mechanical displacement, electric displacement), the true
general displacements make Eq. (1) zero. From the first law of thermodynamics it is obviously correct for the
true displacement. Therefore all other virtual general displacements can not fit Eq. (1) except at some branch
points on the moving path, but the branch points should be discussed by stability or other theories.

According to the universal thermodynamic variational principle (1), we need to give the expressions of
δU, δW, δQ. If we write down the expressions of δU, δW, δQ, then we obtain a physical variational principle,
and can get the governing equations from it. We do not need to look for another variational functional. In
the irreversible process in order to get the relation between the irreversible force and the irreversible flux
(sometimes we call this relation the second kind of the constitutive equation) and the corresponding boundary
condition, the dissipative energy and the inner heat produced from it should simultaneously enter the variational
formula in an appropriate version. The thermodynamic variational principle is a natural result of the first law
of thermodynamics and can be considered as the extension of the virtual work principle. Substantially it is an
instantaneous principle in current configuration, so in the dynamics the inertial force should be included in the
body force, i.e. D’Alembert’s principle should be used.

Alternatively the electric Gibbs free energy density g can also be used in the thermodynamic variational
principle, i.e.,

g = u − T s − Ei Di , δ�′ = δG − δW ∗ − δQ∗ = 0, (2)

where G is the total electric Gibbs free energy of the body, W ∗ is the sum of the work of the external force
on the medium and the complement work of the medium on the electric field, −Q∗ is the complement heat
absorbed from the external heat source, u, T and s are the internal energy density (per volume), temperature
and the entropy density (per volume), respectively. Other thermodynamic characteristic functions can also be
used.

2 Inertial entropy

In the classical thermoelasticity and thermopiezoelectricity the temperature field is coupled with the elastic or
electroelastic field, but the temperature change does not propagate in a wave form. There are many methods
to establish a temperature wave theory with finite propagation velocity [4–7]. In this paper we use a simple
method with inertial entropy to obtain it. We assume that the variation of the temperature with time will affect
the heat flow and needs the extra heat. This extra heat is equal to the product of the temperature and the inertial
entropy with negative sign. We further assume that the rate of the inertial entropy ṡ(a) is proportional to the
acceleration of the temperature (the second time derivative of the temperature), i.e., ṡ(a) = C� T̈ /T0 and
s(a) = C

∫ t
0 � T̈ dτ/T0 = C� Ṫ /T0, where C is the specific heat, T0 is the reference temperature and �

is a constant coefficient with dimension time. The inertial entropy is not a true entropy, just like the inertial
force in mechanics. So the increment of the heat produced by the acceleration of the temperature is equal to
CT δ(� Ṫ )/T0 = C� T δṪ /T0. When the electric Gibbs function is adopted we should use the extra increment
of the complement heat C� Ṫ δT/T0. The advantage of this method is that Fourier’s law is not changed, and
only the heat conductive process is the irreversible process.

When the D’Alembert’s principle is used, the first law of thermodynamics for continuum mechanics in the
classical theory is

U̇ = Ẇ + Q̇, (3)

U =
∫

V

udV , Q̇ =
∫

V

ṙdV −
∮

a

q · nda =
∫

V

(ṙ − qi,i )dV ,

Ẇ =
∫

V

(f − ρü) · vdV +
∫

a

T · vda +
∫

V

ϕρ̇edV +
∫

a

ϕσ̇eda, (4)
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where ρ, uk, vk, fk , Tk , ϕ, ρe,σe, r and qk are the density, displacement, velocity, mechanical body force,
surface traction, electric potential, body electric charge density, surface electric charge density, body heat
source strength and the heat flow, respectively.

In our inertial entropy theory of the heat propagation dynamics the expression of the heat in Eq. (4) should
be modified to

∫

V

C
T

T0
�δṪ dV =

∫

V

δr dV −
∫

a

T δη · nda − δQ, η =
t∫

0

q
T

dτ , or

Q̇ =
∫

V

(ṙ − T ṡ(a))dV −
∫

a

T η̇ · nda, ṡ(a) = C
1

T0
� T̈ , η̇ = q

T
, (5)

where η is the entropy displacement vector, η̇ is the entropy flow vector. Equation (5) shows that the heat
supplied by the environment is used to balance the heat increment δQ absorbed by the body and the variation
of temperature with time in the medium. It is somewhat similar to the relation of the displacement acceleration
to the external force. We can call (−T s(a)) the inertial heat, which just resembles the inertial force (−ρü) in
the mechanical process.

In the irreversible thermodynamic process the internal dissipation energy in the medium will be transformed
to the dissipation heat and produces the irreversible entropy [10–12]. So the total entropy s consists of the
reversible part s(r) and the irreversible part s(i), i.e.,

ṡ = ṡ(r) + ṡ(i). (6)

From Eq. (5) we assume [10–12]

Ṡ(r) + Ṡ(a) =
∫

V

ṙ

T
dV −

∫

a

η̇ · nda, Ṡ(a) =
∫

V

C

T0
� T̈ dV ,

ṡ(r) + ṡ(a) = ṙ

T
− η̇i,i = 1

T
(ṙ − qi,i + η̇i T,i ). (7)

From Eqs. (6) and (7) we get

Ṡ(i) =
∫

V

ṡ(i)dV =
∫

V

ṡdV −
∫

V

ṡ(r)dV ≥ 0,

ṡ(i) = ṡ − ṡ(r) = ṡ + ṡ(a) − ṙ

T
+ qi,i

T
− qi T,i

T 2 ≥ 0, or (8)

T ṡ(i) = T ṡ + T ṡ(a) − ṙ + qi,i − η̇i T,i ≥ 0.

From Eq. (7) it is seen that in our inertial entropy theory of the heat propagation dynamics, the entropy rate
produced by the environment is used to balance the reversible entropy rate T ṡ(r) of the body and the inertial
entropy rate T ṡ(a) produced by the variation of the temperature in the medium.

In this paper the mechanical and electrical processes are all assumed to be reversible. Because the internal
energy and the entropy are all assumed to be the state function, we can assume that the internal energy is a
function of strain, electric displacement and entropy, i.e.,

u̇ = σ : ε̇ + E · Ḋ + T ṡ. (9)

From the entropy inequality (8) it is assumed that

T ṡ + T ṡ(a) = ṙ − qi,i = ṙ − (T η̇i ),i , T ṡ + C
T

T0
� T̈ = ṙ − qi,i, ḣ = T ṡ(i) = −T,i η̇i , (10)

where ḣ is the dissipative energy rate and ṡ(i) is the entropy production. Using a Legendre transformation we
get the electric Gibbs function g and the complement dissipative energy rate ḣ′ as

g = u − T s − E · D, ġ = σ : ε̇ − D · Ė − sṪ , ḣ′ = ηi Ṫ,i . (11)
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Using the theory of the usual irreversible thermodynamics [10–12], from the last equations in Eqs. (10)
and (11) we assume

η̇i = η̇i (T, j ), or η̇i = −λi j T
−1T, j , T η̇i = qi = −λi j T, j ,

T, j = −̂λi j T η̇i = −̂λi j qi , λ̂i j = λ−1
i j , (12)

where λ is the usual heat conductive coefficient. Eq. (12) is just the Fourier’s law,

3 Internal energy and electric Gibbs function

Since u, ḣ and g, ḣ′ must be invariants in a rigid body rotation, in the case of small deformation theory they
should be in the following form due to the theorem on invariant functions:

u(εkl , Dk, s) = 1

2
Ci jklε j iεlk − hki j Dkεi j + 1

2
βi j Di D j − α̂i jε j i s − τ̂i Di s + T0

2
Ĉs2,

δh = λ̂i j T η̇ jδηi ,

Ci jkl = C jikl = Ci jlk = Ckli j , hki j = hk ji , βkl = βlk, α̂i j = α̂ j i , λ̂i j = λ̂ j i , (13)

g(εkl , Ek, ϑ) = 1

2
Ci jklε j iεlk − eki j Ekεi j − 1

2
∈i j Ei E j − αi jεi jϑ − τi Eiϑ − 1

2T0
Cϑ2,

δh′ = −
⎛

⎝
t∫

0

λi j
1

T
ϑ,i dτ

⎞

⎠ δϑ, j = η jδϑ, j , (14)

Ci jkl = C jikl = Ci jlk = Ckli j , eki j = ek ji , ∈kl=∈lk, αi j = α j i , λi j = λ j i ,

where C is the specific heat at constant deformation and constant electric field, Ĉ is the specific heat at constant
deformation and constant electric displacement, Ci jkl , hki j , eki j , βi j , ∈i j , αi j , α̂i j , τi , τ̂i are material constants.
The following facts are emphasized: It is assumed that in Eq. (13) s = 0 when T = 0 and s = s0 when T = T0.
But in Eq. (14) it is assumed that s = 0 when T = T0 or ϑ = 0, where ϑ = T − T0; T0 is the reference
temperature of the environment. It is obvious that T, j = ϑ, j , Ṫ = ϑ̇ . The constitutive equations derived from
Eq. (13) are

σi j = ∂u

∂εi j
= Ci jklεkl − hki j Dk − α̂i j s,

Ei = ∂u

∂ Di
= βi j D j − hki jεkl − τ̂i s, (15a)

T = ∂u

∂s
= −α̂i jε j i − τ̂i Di + T0Ĉs,

and the heat conduction equation (Fourier’s law or the second kind of the constitutive equation)

T,i = − ∂h

∂ηi
= −̂λi j T η̇ j = −̂λi j q j ,

t∫

0

T,i dτ = −
t∫

0

λ̂i j T η̇ j dτ . (15b)

The constitutive equations derived from Eq. (14) are

σi j = ∂g

∂εi j
= Ci jklεkl − eki j Ek − αi jϑ,

Di = − ∂g

∂ Ei
= ∈i j E j + eki jεkl + τiϑ, (16a)

s = − ∂g

∂ϑ
= αi jεi j + τi Ei + Cϑ/T0,
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and the heat conduction equation (Fourier’s law or the second kind of the constitutive equation)

ηi = ∂h′

∂ϑ,i
= −

t∫

0

λi j
1

T
ϑ, j dτ , T η̇i = qi = −λi jϑ, j . (16b)

4 Electric Gibbs function variational principle

It is assumed that the mechanical displacement ui , the electric potential ϕ and the temperature T satisfy their
own boundary conditions ui = u∗

i , ϕ = ϕ∗ and T = T ∗ (or ϑ = ϑ∗) on au, aϕ and aT , respectively. In the
medium we also have εi j = (ui, j + u j,i )/2, Ei = −ϕ,i and the constitutive equations (16a) and (16b). From
the universal thermodynamic variational principle the electric Gibbs function variational principle with the
inertial entropy for thermopiezoelectricity is

δ�′ =
∫

V

δ(g + h′)dV − δQ∗ − δw∗ = 0,

δQ∗ = −
t∫

0

∫

V

(
ṙ

T

)

δϑdV dτ +
t∫

0

∫

aq

η̇∗δϑdadτ −
t∫

0

∫

V

ṡ(i)δϑdV dτ

(17)

+
t∫

0

∫

V

C
1

T0
�ϑ̈δϑdV dτ ,

δW ∗ =
∫

V

( fk − ρük)δukdV −
∫

V

ρeδϕdV +
∫

aσ

T ∗
k δukda −

∫

aD

σ ∗δϕda,

where fk , T ∗
k , ρe , σ ∗ and η̇∗

i (η̇∗ = η̇∗
i ni ) are the given mechanical body force, surface traction, body electric

charge density, surface electric charge density and surface entropy flow, respectively. In Eq. (17) the term∫ t
0 ṡ(i)δϑdτ is the complement heat per unit volume corresponding to the inner complement dissipation energy

δh′. This is just the request by the thermodynamic variational principle, and this is consistent with the first
law of thermodynamics. In the previous variational principles this fact was not considered. In order to obtain
the heat conduction equation and the boundary condition of the heat flow from the variational principle, the
complement dissipation energy

∫
V δh′dV in δ� and the inner irreversible complement heat

∫ t
0

∫
V ṡ(i)δϑdV dτ

in δQ∗ should be simultaneously included in the variational functional. In Eq. (17) there are two kinds of
variational formulas. The first kind is

∫
V δgdV − δw∗, in which the integrands contain variables themselves,

so it need not integrate with time t . The second kind is
∫

V δh′dV − δQ∗, in which the integrands contain the
time derivatives of variables, so it needs to integrate with time t , which is the feature of the irreversible process.
In the irreversible process the integral is dependent to the integral path. In Eq. (17) the independent variables
are u, ϕ and T (or ϑ).

It is noted that

δ

∫

V

gdV =
∫

V

(Ci jklεkl + eki jϕ,k − αi jϑ)δui, j dV +
∫

V

(eki jεi j+ ∈ik Ei + τkϑ)δϕ,kdV

−
∫

V

(αi jεi j + τi Ei + Cϑ/T0)δϑdV

(18)
=

∫

a

σi j n jδui da −
∫

V

σi j, jδui dV +
∫

a

Dknkδϕda −
∫

V

Dk,kδϕdV −
∫

V

sδϑdV ,

∫

V

δh′dV = −
∫

a

⎛

⎝
t∫

0

λi j
1

T
ϑ,i n j dτ

⎞

⎠ δϑda +
∫

V

⎡

⎣
t∫

0

(

λi j
1

T
ϑ,i

)

, j
dτ

⎤

⎦ δϑdV .
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Finishing the variational calculation, we have

δ�′ =
∫

aσ

(σi j n j − T ∗
i )δui da −

∫

V

(σi j, j + fi − ρüi )δui dV

+
∫

aD

(σ ∗ + Dknk)δϕda −
∫

V

(Dk,k − ρe)δϕdV −
∫

aq

⎡

⎣
t∫

0

1

T
λi jϑ,i n j dτ + η∗

⎤

⎦ δϑda

−
∫

V

⎧
⎨

⎩
s +

t∫

0

[

− ṙ

T
−

(

λi j
1

T
ϑ,i

)

, j
− ṡ(i)

]

dτ

⎫
⎬

⎭
δϑdV −

t∫

0

∫

V

C

T0
�ϑ̈dV dτ

⎫
⎬

⎭
δϑdV = 0.

(19)

Due to the arbitrariness of δui , δϕ and δT , from Eq. (19) we get

σkl,l + fk = ρük, Dk,k = ρe,

s + C

T0
�ϑ̇ =

t∫

0

[
ṙ

T
+

(

λi j
1

T
ϑ,i

)

, j
+ ṡ(i)

]

dτ , or ṡ + C

T0
�ϑ̈ = ṙ

T
− qi,i

T
in the medium;

σklnl = T ∗
k on aσ ; Dknk = −σ ∗ on aD;

t∫

0

λi j
1

T
ϑ,i n j dτ = −η∗, or η̇i = η̇∗

i , or qi = q∗
i on aq . (20)

The above variational principle requests prior that the displacement, the electric potential and the temperature
satisfy the boundary conditions, so in the governing equations the following equations should also be added:

u = u∗ on au; ϕ = ϕ∗ on aϕ; T = T ∗(or ϑ = ϑ∗) on aT . (21)

From Eq. (20) we get the thermal conduction (energy) equation

ṡ + C

T0
�ϑ̈ = ṙ

T
− qi,i

T
, (λi jϑ, j ),i = T

(

αi j ε̇i j + τi Ėi + C

T0
ϑ̇ + C

T0
�ϑ̈

)

− ṙ . (22a)

The above equation is a temperature wave equation with one parameter � and a finite propagation velocity.
This equation can also be obtained from Eqs. (10) and (16) .

If ϑ is much less than T0, ϑ � T0, then the instant temperature T in Eq. (17) can be replaced by T0.
Eq. (22a) is reduced to

λi jϑ, j i = T0αi j ε̇i j + T0τi Ėi + C(ϑ̇ + �ϑ̈) − ṙ . (22b)

If we also use δh′ = η jδϑ, j in Eq. (17), then Eq. (17) is reduced to

δ�′ =
∫

V

(δg + η jδϑ, j )dV − δQ∗ − δw∗ = 0,

δQ∗ = − 1

T0

∫

V

rδϑdV +
∫

aq

η∗
0δϑda −

∫

V

s(i)δϑdV +
∫

V

C
1

T0
�ϑ̇δϑdV , (23)

δW ∗ =
∫

V

( fk − ρük)δukdV −
∫

V

ρeδϕdV +
∫

aσ

T ∗
k δukda −

∫

aD

σ ∗δϕda,

where η∗
0 = (1

/
T0)

∫ t
0 q∗dt . Equation (23) there does not contain any term containing the time integral.
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5 Internal energy variational principle

It is assumed that the mechanical displacement ui , the electric displacement Di and the entropy flow η̇ or the
heat flow q satisfy their own boundary conditions u = u∗, D · n = −σ ∗ and η̇i ni = η̇∗ , or qi ni = q∗
on the boundaries au, aD and aq , respectively. In the medium we have εi j = (ui, j + u j,i )/2, ρe = Di,i , the
constitutive equation (15a) and the thermal conduction equation (22a). From the universal thermodynamic
variational principle the internal energy variational principle for the thermopiezoelectricity is

δ� =
∫

V

δ(u − h)dV − δQ − δw = 0,

δQ =
∫

V

δrdV −
∫

aT

T ∗δηda +
∫

V

T,iδηi dV −
∫

V

C

T0
� T δṪ dV , (24)

δW =
∫

V

( fk − ρük)δukdV +
∫

V

ϕδρedV +
∫

aσ

T ∗
k δukda +

∫

aϕ

ϕ∗δσda,

where δη = niδηi . In Eq. (24) the variable T can be expressed by s, so the independent variables are u, D and
η. In order to obtain Fourier’s law (15b) and the boundary condition of the temperature from the variational
principle, the dissipative energy

∫
V δhdV in δ� and the inner irreversible heat − ∫

V T,iδηi dV in δQ∗ should
be included in the variational functional. It is noted that

δ

∫

V

udV =
∫

V

(Ci jklεkl − hki j Dk − α̂i j s)δui, j dV +
∫

V

(−hki jεi j + βkl Dl − τ̂ks)δDkdV

−
∫

V

(̂αi jε j i + τ̂i Di − T0Ĉs)δsdV

(25)
=

∫

a

σi j n jδui da −
∫

V

σi j, jδui dV +
∫

V

EkδDkdV +
∫

V

T δsdV ,

δ

∫

V

hdV =
∫

V

λ̂i j T η̇ jδηi dV .

Substituting Eq. (25) into Eq. (24) and using ρe = Di,i we obtain

δ� =
∫

a

σi j n jδui da −
∫

V

σi j, jδui dV +
∫

V

EkδDkdV +
∫

V

T δsdV

−
∫

V

λ̂i j T η̇ jδηi dV −
∫

V

δrdV +
∫

aT

T ∗δηda −
∫

a

T niδηi da +
∫

V

T δηi,i dV

+
∫

V

C
T

T0
�δṪ dV −

∫

V

( fk − ρük)δukdV −
∫

a

ϕniδDi dV +
∫

V

ϕ,iδDi dV

(26)
−

∫

aσ

T ∗
k δukda −

∫

aϕ

ϕ∗δσda =
∫

aσ

(σi j n j − T ∗
i )δui da

−
∫

V

(σi j, j + fk − ρük)δui dV +
∫

V

(Ek + ϕ,k)δDkdV +
∫

aϕ

(ϕ − ϕ∗)δσda

−
∫

aT

(T − T ∗)δηda +
∫

V

(T δs + T δs(a) − T λ̂i j η̇ jδηi + T δηi,i − δr)dV = 0.
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Using the relation

T δs + T δs(a) − T λ̂i j η̇ jδηi + T δηi,i − δr = −(T δηi ),i − T λ̂i j η̇ jδηi + T δηi,i∫

V

[−(T δηi ),i + T δηi,i − T λ̂i j η̇ jδηi ]dV =
∫

V

(−T,i − T λ̂i j η̇ j )δηi dV

and the arbitrariness of δui , δDi , and δηi we get

σi j, j + fi − ρüi = 0, Ei = −ϕ,i in the medium;
T,i = −T λ̂i j η̇ j in the medium;
σi j n j = T ∗

i on aσ ; ϕ = ϕ∗ on aϕ; T = T ∗ on aT . (27)

If we let T,i = −T λ̂i j η̇ j hold prior, then we have

−T λ̂i j η̇ jδηi + T δηi,i = T,iδηi + T δηi,i = (T δηi ),i = (T η̇tδt) = δqi,i .

So the last term in Eq. (26) becomes

T δs + T δs(a) + δqi,i − δr = 0 or ṡ + ṡ(a) = ṙ

T
− qi,i

T
,

which is just the thermal conduction equation (22a). However, the entropy wave equation is very complex.
The above variational principle requests prior that the displacement, the electric potential and the tempe-

rature satisfy he boundary conditions, so in the governing equations the following equations should also be
added:

u = u on au; Di ni = −σ ∗ on aD; ηi ni = η∗ (or qi ni = q∗) on aη. (28)

Comparing Eq. (24) with Eq. (17), it is found that the number of the independent variables in Eq. (24) is more
than that in the electric Gibbs function variational principle. So the application of the internal energy variational
principle in engineering is more difficult than that of the electric Gibbs function variational principle. It is also
noted that the internal energy variational principle is not obtained in previous literature though the variational
principles in thermoelasticity and the thermopiezoelectricity have been researched for a long time.

6 Gibbs function variational principle

The Gibbs function is defined as

G = u − σi jεi j − T s − Ei Di , δG = −(εi jδσi j + DiδEi + sδϑ) (29)

if the mechanical stress σi j , the electric potential ϕ and the temperature ϑ satisfy their own boundary conditions
σi j n j = T ∗

i , ϕ = ϕ∗, ϑ = ϑ∗(= 0) on aσ , aϕ and aT , respectively. In the medium we require σi j, j =
−( fi − ρüii ), Ei = −ϕ,i and Fourier’s law T η̇i = qi = −λi jϑ, j . It is also assumed that the constitutive
equation can be derived from the Gibbs function G:

εi j = − ∂G

∂σi j
, Di = − ∂G

∂ Ei
, s = −∂G

∂ϑ
. (30)

Let G be the symmetric function of σi j , so εi j is a symmetric tensor.
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From the universal thermodynamic variational principle the Gibbs function variational principle can be
expressed as

δ�′′ =
∫

V

δ(G + h′)dV − δQ∗ − δw∗∗ = 0,

δQ∗ = −
t∫

0

∫

V

(
ṙ

T

)

δϑdV dτ +
t∫

0

∫

aq

η̇∗δϑdadτ −
t∫

0

∫

V

ṡ(i)δϑdV dτ +
t∫

0

∫

V

C
1

T0
�ϑ̈δϑdV dτ , (31)

δW ∗∗ = −
∫

V

ukδ( fk − ρük)dV −
∫

V

ρeδϕdV −
∫

au

u∗
kδTkda −

∫

aD

σ ∗δϕda.

Using

δ

∫

V

GdV = −
∫

V

εi jδσi j dV +
∫

a

Dknkδϕda −
∫

V

Dk,kδϕdV −
∫

V

sδϑdV ,

∫

V

δh′dV = −
∫

a

⎛

⎝
t∫

0

λi j
1

T
ϑ,i n j dτ

⎞

⎠ δϑda +
∫

V

⎡

⎣
t∫

0

(

λi j
1

T
ϑ,i

)

, j

⎤

⎦ δϑdτdV, (32)

∫

V

ukδ( fk − ρük)dV = −
∫

V

ukδσk j, j dV = −
∫

a

ukδTkda +
∫

V

uk, jδσk j dV .

Equation (31) is reduced to

δ�′′ =
∫

au

(u∗
k − uk)δTkda +

∫

V

(ui, j − εi j )δσi j dV +
∫

aD

(Dknk + σ ∗)δϕda

+
∫

V

(ρe − Dk,k)δϕdV −
t∫

0

∫

aq

(

η̇∗ + λi j
1

T
ϑ,i n j dτ

)

δϑdadτ (33)

−
∫

V

sδϑdV +
∫

V

⎧
⎨

⎩

t∫

0

[(

λi j
1

T
ϑ,i

)

, j
+ ṙ

T
+ ṡ(i) − C

1

T0
�ϑ̈

]

dτ

⎫
⎬

⎭
δϑdV .

Due to the arbitrariness of δσi j , δϕ and δT , from Eq. (33) we get

εi j = 1

2
(ui, j + u j,i ), Dk,k = ρe,

s + C

T0
�ϑ̇ =

t∫

0

[
ṙ

T
+

(

λi j
1

T
ϑ,i

)

, j
+ ṡ(i)

]

dτ , or ṡ + C

T0
�ϑ̈ = ṙ

T
− qi,i

T
in the medium;

uk = u∗
k on au, Dknk = −σ ∗ on aD; (34)

t∫

0

λi j
1

T
ϑ,i n j dτ = −η∗ or η̇i = η̇∗

i or qi = q∗
i on aq ,

where the symmetric behavior of the strain is used. Obviously we can use −G to replace G and the corres-
ponding modifications for other formulas in Eq. (32) to get a more succinct form.
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7 Some remarks

(1) The variational principles for classical theory of thermopiezoelectricity If we omit the terms containing
the inertial entropy in the above theories, the variational principles for classical theory of thermopiezoelectricity
will be obtained from Eqs. (17), (24) and (31). Comparing these variational principles with theories in previous
literatures we can find that the variational principles obtained in this paper are exact for all temperature range.
This is one of the advantages by using the universal thermodynamic variational principle.

(2) Other forms of the variational principles In thermopiezoelectricity the variables can be divided into
three groups, i.e. (σ , ε), (E, D) and (T, s), so there are eight characteristic functions of the thermodynamics.
Therefore there are eight fundamental variational principles. Using the Lagrange multiplier method [9,12,13],
we can get a lot of general or mixed variational principles. All the six variables σ , ε, E, D, T, s have been
separately appeared in the above discussed different variational principles as independent variables, so there
is no difficulty to establish any variational principle in thermopiezoelectricity. It can also be seen that the
electric Gibbs function variational principle, Eq. (17), has the least number of the independent variables u, ϕ
and T . Another variational principle may have the least number of the independent variables u, ϕ and s, but
the governing equations with these independent variables are more complex.

(3) The forms of the thermodynamic characteristic functions In the above discussions the expressions of
u and g are given and the constitutive equations are all in linear forms. The particular forms of the thermody-
namic characteristic functions are not substantially for the derivation of the variational principle, provided the
constitutive equations can be derived from these characteristic functions as shown in Eq. (31) for G. Howe-
ver, the thermal wave equation is dependent to the concrete expressions of the thermodynamic characteristic
functions and the constitutive equations.

(4) Some discussions on the theory In Lord–Shulman theory for an isotropic material they used the viscous
heat conduction law qi + � q̇i = −κϑ, j to replace Fourier’s law, and the relation T ṡ = ṙ − qi,i is still used.
So from their theory we get κT,i i = T ṡ + �(T ṡ)· (in our notation and ṙ = 0). This formula shows that
the entropy possesses viscous property. If the entropy possesses viscous property, then is the entropy a state
function? When the variation of temperature is small and many small terms can be neglected they got the
linearized equation for the isotropic thermoelasticity

κϑ,kk = C(ϑ̇ + �ϑ̈) + (3λ + 2µ)αT0(ε̇kk + �ε̈kk), (35)

which is widely used in literature. In Eq. (35) λ and µ are the usual elastic constants, κ is the isotropic thermal
conduction coefficient. Comparing the above equation with Eq. (22) for an isotropic material it is found that
the difference between two equations is only in a term (3λ + 2µ)αT0�ε̈kk , which is very small and can be
neglected [4]. Though the starting points of two theories are different, but the final equations of the temperature
propagation are similar. However, Eq. (22) is not limited to a small variation of the temperature.

In all the present theories of anisotropic thermoelasticity and thermopiezoelectricity, there is only one
relaxation time constant in the temperature wave equation. Though there are two relaxation time constants in
Green–Lindsay theory [5], but the second relaxation time constant does not appear in the temperature wave
equation [7,14]. All these theories support the theory with one relaxation time constant in the thermal wave
propagation and this is consistent with the inertial entropy theory.

(5) A simple example for the pure heat conduction For a pure heat conduction problem of an isotropic
material when the variation of the temperature is small the heat conduction equation deduced from Eq. (22b) is

λϑ,i i = C(ϑ̇ + �ϑ̈) − ṙ . (36)

Now we discuss the temperature wave propagating along the x direction with r = 0. In this case we let

ϑ = �exp[i(kx − ωt)]. (37)

Substituting Eq. (37) into (36) we get

k2 = Cλ−1ω2(iω−1 + �),

k = ±(Cλ−1�)
1
2 ω

[√
1

2

(√
1 + ω−2�−2 + 1

)
+ i

√
1

2

(√
1 + ω−2�−2 − 1

)
]

. (38)
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Substituting Eq. (38) into (37) we get

ϑ = �exp[i(kx − ωt)] = � exp(−k2x)exp[i(k1x − ωt)],

k1 = ±(Cλ−1�)
1
2 ω

√
1

2

(√
1 + ω−2�−2 + 1

)
, k2 = (Cλ−1�)

1
2 ω

√
1

2

(√
1 + ω−2�−2 − 1

)
,

v = ω

k1
=

√
λ

C�

/√
1

2

(
1 +

√
1 + ω−2�−2

)
, (39)

where v is the phase velocity. So the temperature wave is an attenuate dispersive wave. If � → ∞ and C� is

finite, then v →
√

λ
/

C� and the attenuate coefficient k2 = 0. This is a wave solution without attenuation. If �

is very small and �ω → 0, but C is finite, then the phase velocity of the temperature wave approaches
√

2λω
/

C

and the attenuate coefficient k2 =
√

C
/

2λω. In this case the wave solution without attenuation is not existed.

8 Conclusions

In this paper the universal thermodynamic variational principle recommended in [8,9] is extended to ther-
mopiezoelectricity. Combining the irreversible thermodynamics with the inertial entropy the internal energy,
electric Gibbs function and Gibbs function variational principles are derived from the universal thermodynamic
variational principle. The variational principles derived in this paper are exact. The assumed expression of the
inertial entropy is just assumed to make the heat conduction equation a wave equation, so the inertial entropy
should be further examined, but it is a reasonable idea, which lets us solve the temperature wave problem
with a finite propagation velocity in a very simple manner. The governing equations for thermopiezoelectricity
recommended in this paper are the simplest among all relative theories.
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