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Abstract This study deals with the stochastic linearization technique in a new setting. First of all, the usual
minimum mean-square difference requirement between the original nonlinear force and its linear counterpart
is replaced by the orthogonal condition. Additionally, another recently developed idea of first replacing the
nonlinear terms by higher order terms, prior to its ordinary reduction to linear ones, is super-imposed with the
above condition. The results are checked on several nonlinear oscillators. In the Atalik and Utku oscillator,
instead of 14% error obtained with classical linearization, the error is reduced to about 3%. In the Lutes and
Sarkani oscillator the error is reduced from 22.85 to 1.23%, nearly 18-fold. In the latter case the optimal
number of “regulation” steps is shown to be 2.

1 Introduction

In terminology of [5], “the method of statical linearization has remained a surprisingly popular tool over the
many years since it was first formulated.” The method is based on replacing the original nonlinear system
by a linear one, that is equivalent to the original one in some probabilistic sense. Several criteria have been
suggested to arrive at the expressions of the equivalent stiffness and equivalent damping.

Anh and Di Paola [3] suggested new realization of the stochastic linearization, that appears to be extremely
unusual at the first glance. Instead of simplifying a nonlinear expression appearing in the differential equation,
they, in essence, suggested to seemingly first complicate it by replacing it by higher order terms. These
higher order terms then were replaced by the linear approximation, in several steps. This indirect linearization
certainly prolongs, as it were, the linearization process. Yet it takes into account the higher order statistics
and, as such, has more of a possibility to capture the behavior of the system. It turned out that this long way
towards linearization leads to results that are closer to those obtained via the exact solution, when the latter is
available, or Monte Carlo simulation, when the exact solution is not available. Commenting on this method
as exemplified on a Duffing oscillator, [1] stresses that “in the [usual] linearization we go from X3 [term]
to X . That will yield some error, and we should do something to balance. For regulated Gaussian equivalent
linearization (RGEL) we should go back [to balance the error]. Since [the difference of the powers of the
original cubic and replacing linear terms is] 3 − 1 = 2, so we go back also 2 degrees, i.e. from X3 to X5 and
come back to the first place X3 but with regulated coefficient (7/9 in this case)”.

For the details of implementation of RGEL for the Duffing oscillator the readers may consult the study
by Anh and Di Paola [3]. [2] provides an additional justification of this method: “The natural explanation [of
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RGEL] is that when we want to go through a thing ahead we should move the hand back as how far ahead
so far back. That is why we go first from X3 to X5.” Since this method produces more accurate results than
the classic linearization, one way metaphorically refers as a “long shorter way,” versus classical technique,
that can be dubbed as a “short longer way.” This metaphor is stemming from a folk story about a young boy
who was asked by a stranger how to find the road to the big city. The boy asked: “Do you want a long shorter
way, or a short longer way?” The stranger chose the latter, since the first adjective was a word “short.” Yet,
after several hours of wondering the man returned to the boy and told him: “The way is short, but there are
unsurpassable rocks. Tell me the whereabouts of the long shorter way.” This time the stranger succeeded to
get to his destination.

Anh and Di Paola’s [3] derivation can be viewed as a “ long shorter way ” for it yields much more
satisfactory results than the direct linearization technique; the latter being a “short longer way.” Recently, [4]
demonstrated that the expressions for the equivalent stiffness and damping coefficients adopted in the literature
can be obtained by alternative means, namely via modified orthogonality criterion.

These two ideas, those by Anh and Di Paola [3] and by [4] are combined in this study. We first apply the
Anh and Di Paola procedure to the Atalik and Utku oscillator with attendant dramatic decrease in error in
comparison with the classical stochastic linearization. Then we extend the Anh and Di Paola methodology to
two-step regulation. The latter extension shows considerable improvement of the results in comparison with
both the classical scheme as well as the single step regulation, in the Lutes and Sarkani oscillator.

2 Derivation of results by Anh and Di Paola by orthogonality condition

Anh and Di Paola [3] studied the following nonlinear random vibration problem

Ẍ + 2h Ẋ + ω2
0 X + ε g

(
X, Ẋ

) = f (t) (1)

where X (t) is the displacement, Ẋ(t) is the velocity, Ẍ(t) = acceleration of a single degree of freedom system,
h = damping coefficient, ω0 = natural frequency of the system obtained when h ≡ 0, ε ≡ 0, f (t) ≡ 0;
g

(
X, Ẋ

)
is a nonlinear function, ε = 3 amplitude of nonlinearity, f (t) = random excitation. Let g

(
X, Ẋ

)
be

a polynomial expression of X and Ẋ . The nonlinear function g
(
X, Ẋ

)
then becomes

g
(
X, Ẋ

) =
N∑

k=0

N∑

j=0

(
αk j Ẋ 2k X2 j+1 + βk j X2k Ẋ 2 j+1

)
, (2)

Classical linearization would perform the following replacements of the nonlinear terms by the linear ones:

αk j Ẋ 2k X2 j+1 → λk j X (3)

βk j X2k Ẋ 2 j+1 → µk j Ẋ (4)

Instead, most unusually, at least at the first glance, Anh and Di Paola [3] suggested to replace non-linear
terms by higher-order nonlinear ones,

αk j Ẋ 2k X2 j+1 → ck j

(
Ẋ 2k X 2 j+1

) (
Ẋ 2k X2 j

)

= ck j Ẋ 4k X4 j+1, (5)

βk j X2k Ẋ 2 j+1 → dk j

(
X2k Ẋ 2 j+1

) (
X2k Ẋ 2 j

)

= dk j X4k Ẋ 4 j+1 (6)

where the authors used the mean-square criterion for obtaining the coefficients dk j and ck j :

ck j = αk j E
[

Ẋ 6k X6 j+2
]/

E
[

Ẋ 8k X8 j+2
]
, (7)

dk j = βk j E
[

X6k Ẋ 6 j+2
]/

E
[

X8k Ẋ 8 j+2
]
. (8)
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Anh and Di Paola [3] then replaced higher-order non-linear terms into the original non-linear terms

ck j Ẋ 4k X4 j+1 → qk j Ẋ 2k X 2 j+1, (9)

dk j X4k Ẋ 4 j+1 → bk j X2k Ẋ 2 j+1 (10)

where

bk j = dk j E
[

X6k Ẋ 6 j+2
]/

E
[

X4k Ẋ 4 j+2
]
, (11)

qk j = ck j E
[

Ẋ 6k X 6 j+2
]/

E
[

Ẋ 4k X 4 j+2
]
. (12)

This step is followed by the conventional replacement

bk j X2k Ẋ 2 j+1 → hk j Ẋ , (13)

qk j Ẋ 2k X2 j+1 → lk j X (14)

where

hk j = bk j E
[

X2k Ẋ 2 j+2
]/

E
[
Ẋ 2], (15)

lk j = qk j E
[

Ẋ 2k X2 j+2
]/

E
[
X2]. (16)

3 Modified stochastic linearization

Let us show that the procedure by Anh and Di Paola [3] can be directly obtained via modified stochastic
linearization technique. Indeed, we demand statistical orthogonality of the difference of the left and right hand
sides in Eq. (6):

e1 = βk j X2k Ẋ 2 j+1 − dk j X4k Ẋ 4 j+1 (17)

with Ẋ 4k X4 j+1, i.e. we require
(

e1, Ẋ 4k X4 j+1
)

= 0 (18)

where (. , .) is the inner product defined as

(ϕ, ψ) = E [ϕ,ψ] . (19)

Thus, Eq. (18) becomes:

E
[(
βk j X2k Ẋ 2 j+1 − dk j X4k Ẋ 4 j+1

)
Ẋ 4k X4 j+1

]
= 0, (20)

yielding the expression (8) for dk j . Analogously, the orthogonality requirement
(

e2, Ẋ 4k X4 j+1
)

= 0 (21)

where e2 is the difference between the left and right hand sides in Eq. (5),

e2 = αk j Ẋ 2k X2 j+1 − ck j Ẋ 4k X4 j+1, (22)

yields Eq. (8).
The result of the second step is likewise deducible from the requirements

(
e3, X2k Ẋ 2 j+1

)
= 0, (23)

(
e4, Ẋ 2k X2 j+1

)
= 0 (24)
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where e3 is the difference between the left and the right sides of Eq. (10):

e3 = dk j X4k Ẋ 4 j+1 − bk j X2k Ẋ 2 j+1 (25)

and e4 is the difference between the left and the right hand sides of Eq. (9):

e4 = ck j Ẋ 4k X4 j+1 − qk j Ẋ 2k X2 j+1. (26)

Equations (23) and (24) lead to Eqs. (11) and (12), respectively. In perfect analogy, Eqs. (15) and (10) are
obtained by postulating the following conditions:

(
e5, Ẋ

) = 0, (27)

(e6, X) = 0 (28)

where

e5 = bk j x2k Ẋ 2 j+1 − hk j Ẋ , (29)

e6 = qk j Ẋ 2k X2 j+1 − lk j X. (30)

As is seen, Eqs. (11), (12), (15) and (16) are obtained by stochastic Galerkin-type orthogonality conditions.
As a result, the final, linear replacement takes place:

g
(
X, Ẋ

) =
N∑

k=0

N∑

j=0

(
hk j Ẋ + lk j X

)
(31)

where

hk j = E
[
X2k Ẋ 2 j+2

]

E[Ẋ 2]
E

[
X6k Ẋ 6 j+2

]

E
[
X4k Ẋ 4 j+2

]
E

[
X6k Ẋ 6 j+2

]

E
[
X8k Ẋ 8 j+2

]βk j , (32)

lk j = E
[
Ẋ 2k X2 j+2

]

E[X2]
E

[
Ẋ 6k X6 j+2

]

E
[
Ẋ 4k X4 j+2

]
E

[
Ẋ 6k X6 j+2

]

E
[
Ẋ 8k X8 j+2

]αk j . (33)

Anh and Di Paola [3] evaluated by their method several oscillators. For the Duffing oscillator in the
investigated numerical range, the numerical results led to roughly half the percentagewise error than that
resulting by the conventional stochastic linearization technique, i.e. without recourse to amending the original
system by the higher non-linearity degree. As noted before, Anh and Di Paola [3] call their method “a regulated
Gaussian equivalent linearization (RGEL).” As is seen, RGEL can be interpreted as a multiple orthogonalization
technique.

4 Atalik and Utku oscillator

Consider the following nonlinear system:

Ẍ(t)+ β Ẋ(t)+ α X3(t) = F(t) (34)

where β is the damping constant, α is the nonlinear stiffness constant and F(t) is a Gaussian white noise
process with

E[F(t)] = 0, E[F(t)F (t + τ)] = 2dβδ (τ) . (35)

The exact stationary probability density function of the above system, obtained by the Fokker–Planck
approach, is

p (x) = p0 exp
(
− α

4d
x4

)
(36)



Application and extension of the stochastic linearization 93

where p0 is the normalization constant. To obtain the exact mean square displacement,

σ 2
x = E[X2] =

+∞∫

−∞
x2 p (x) dx, (37)

we use the integration formula

+∞∫

0

xs−1 exp
(
−axh

)
dx = (

h−1)
(

a−s/h
)
� (s/h) (38)

where � (•) is the Gamma function. The mean square displacement becomes

σ 2
x =

(
1
/

4
)
(α/4d)−3/4 �

(
3
/

4
)

(
1
/

4
)
(α/4d)−1/4 �

(
1
/

4
) ≈ 0.6760 (d/α)1/2 . (39)

The equivalent linear system to Eq. (34) can be written as

Ẍ(t)+ β Ẋ(t)+ keq X (t) = F(t) (40)

where the equivalent linear spring constant keq is found by processing the conventional linearization as equal
to

keq = E

[
d

dx
(αX3)

]
= 3αE

[
X2] . (41)

The mean-square value of the displacement of the linearized system is

E[X2] = d/keq . (42)

Thus, we obtain the approximate solution as

σ 2
xe

= (d/3α)1/2 ≈ 0.5776 (d/α)1/2 . (43)

The percentagewise error committed by using the classical equivalent linearization technique in evaluating
the mean-square displacement is

(0.6760 − 0.5776) /0.6760 = 14.6%. (44)

Let us apply the RGEL method, proposed by Anh and Di Paola. The scheme of the process can be read as
follows:

α X3(t) → k1 X5(t) → k2 X3(t) → keqI X (t). (45)

We can readily utilize the results obtained by Anh and Di Paola for the Duffing oscillator of which the
Atalik and Utku oscillator is a particular case:

αX3(t) → α

9E[X2(t)] X5(t) → 7α

9
X3(t) → 7α

3
X (t). (46)

One gets the equivalent linearized equation

Ẍ(t)+ β Ẋ(t)+ 7

3
α E[X2(t)] X (t) = F(t). (47)

The mean-square value of X (t) is evaluated by the following expression:

E[X2(t)] =
√

3d

7α
≈ 0.6546

(
d

α

)1/2

. (48)
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Now, the percentagewise error found by using the RGEL linearization technique to calculate the mean-
square displacement is

(0.6760 − 0.6546) /0.6760 = 3.17%. (49)

We note a significant, over four-fold improvement, which demonstrates the extreme efficiency of the RGEL
method. Naturally, the question of continuing the process to greater order arises. However, calculation of such
process beyond the first step in Eq. (45), namely,

αX3(t) → α

9E[X2(t)] X5(t) → α

117σ 2
x E[X2(t)] X7(t)

→ 11 α

117E[X2(t)] X5(t) → 77 α

117
X3(t) → 77 α

39
E[X2(t)] X (t), (50)

leads to numerically worse results than the one previously found in Eq. (48). Hence, for the Atalik and Utku
oscillator, the optimum number of regulation steps is unity. It is important to note that the evaluation of the
two steps in the Duffing oscillator leads to the same conclusion. It should be emphasized that the study of
a half-degree-of-freedom oscillator with a cubic spring, rather than a single-degree-of-freedom oscillator in
Eq. (34), would have been more instructive to demonstrate the power of the Anh/Di Paola method. This idea
was kindly suggested by the reviewer. Such a system will be addressed in the next section. An additional
question arises if there is an oscillator where the optimum number of regulation steps is greater than one. The
reply to this question is shown in the next section to be affirmative.

5 Lutes and Sarkani oscillator: exact solution

Consider the nonlinear oscillator by [6]

Ẋ(t)+ k |X (t)|a sgn[X (t)] = F(t) (51)

where a is a real number, F(t) is a zero-mean, stationary Gaussian white noise with spectral density S0. [6]
derives the exact probability density of the response

pX (t) = A exp

[
− k ua+1

(a + 1) π S0

]
(52)

where

A =
(

k

(a + 1) π S0

) 1
a+1

(
a + 1

2

) [
�

(
1

a + 1

)]−1

. (53)

The variance of the response

σ 2
X = 2A

∞∫

0

u2 exp

[
− k ua+1

(a + 1) π S0

]
du (54)

is obtained exactly,

σ 2
X,exact =

(
π S0

k

) 2
a+1

(a + 1)
2

a+1 �

(
3

a + 1

) [
�

(
1

a + 1

)]−1

. (55)

[6] also derived the approximate response via the classical stochastic linearization technique as follows:

σ 2
X,approx =

(
π S0

k

) 2
a+1

[
(2π)1/2

2a/2a� (a/2)

] 2
a+1

. (56)
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Table 1 Error incurred by using a single-step in the Anh and Di Paola regulation

a σ 2
X,exact σ 2

classical X,approx Error, % E[X2
regulated(t)]I Error, %

1 1 1 0 1 0
2 0.7765 0.7323 5.6877 0.7824 0.7713
3 0.6760 0.5774 14.5904 0.6547 3.1546
4 0.6175 0.4764 22.8490 0.5620 8.9861
5 0.5786 0.4055 29.9225 0.4917 15.0206
6 0.5505 0.3529 35.8981 0.4367 20.6846
7 0.5291 0.3124 40.9630 0.3925 25.8224

The error η between exact and approximate solutions defined as

η = |σ 2
X,exactx − σ 2

X,approx|
σ 2

X,exactx

× 100% (57)

is shown in Table 1. [6] concluded that “the statistical linearization gives a good approximation of the response
variance only when a is relatively near unity.” Indeed, for a = 1 the error equals zero. For a = 2, the error
constitutes η = 5.7%; for a = 3, the error equals η = 14.6%; for a = 4, the error is η = 22.8%; for a = 5,
the error reaches η = 29.9%. It appears to be of interest to investigate this oscillator via the modified Anh and
Di Paola [3] approach.

6 Application of Anh and Di Paola approach to the Lutes–Sarkani oscillator

For simplicity we will limit ourselves by considering the case when a is a positive integer. We intend to
replace the power oscillator containing a nonlinear term |X (t)|a sgn[X (t)] by a linear oscillator with the term
keq X (t) = keq |X (t)| sgn [X (t)], the difference of powers of |X (t)| being a − 1. During the “regulation”
procedure by Anh and Di Paola [3] we are recommended to “increase” the nonlinearity, i.e. power a by
original power plus the increment a − 1, i.e. to use the new regulation power of a + (a − 1) = 2a − 1. Hence
the procedure can be represented schematically as follows:

k |X (t)|a → k1 |X (t)|2a−1 → k2 |X (t)|a → keq X (t). (58)

We form a difference k |X (t)|a − k1 |X (t)|2a−1
and demand the statistical orthogonality of this expression

to |X (t)|2a−1
,

E
{(

k |X (t)|a − k1 |X (t)|2a−1) |X (t)|2a−1} = 0, (59)

which leads to

k1 = k
E[|X (t)|3a−1]
E[|X (t)|4a−2] . (60)

The general expression for E[|X (t)|a] is:

E
[ |X (t)|a] = σ a

X

∞∫

−∞

|ξ |a√
2π

exp
(−ξ2/2

)
dξ. (61)

We obtain the coefficient of regulation k1 as follows:

k1 = k σ 1−a
X

∫ ∞
−∞ |ξ |3a−1 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |4a−2 exp

(−ξ2
/

2
)

dξ
. (62)

Proceeding in perfect analogy we obtain the following coefficient of regulation:

k2 = k

(∫ ∞
−∞ |ξ |3a−1 exp

(−ξ2
/

2
)

dξ
)2

∫ ∞
−∞ |ξ |4a−2 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |2a exp

(−ξ2
/

2
)

dξ
(63)
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as well as keq ,

keq = k
σ a+1

X

E[X2(t)]
1√
2π

(∫ ∞
−∞ |ξ |3a−1 exp

(−ξ2
/

2
)

dξ
)2 ∫ ∞

−∞ |ξ |a+1 exp
(−ξ2

/
2
)

dξ
∫ ∞
−∞ |ξ |4a−2 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |2a exp

(−ξ2
/

2
)

dξ
(64)

= k E
[
X2(t)

] a−1
2

R
(65)

where

R = √
2π

∫ ∞
−∞ |ξ |4a−2 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |2a exp

(−ξ2
/

2
)

dξ
(∫ ∞

−∞ |ξ |3a−1 exp
(−ξ2

/
2
)

dξ
)2 ∫ ∞

−∞ |ξ |a+1 exp
(−ξ2

/
2
)

dξ
. (66)

The equation of motion becomes

Ẋ(t)+ k E
[
X2(t)

] a−1
2

R
X (t) = F(t). (67)

We deduce the mean-square displacement of the latter oscillator,

E
[

X2
regulated(t)

]

I
=

(
π S0

k

) 2
a+1

R
2

a+1 . (68)

In order to express R as a function of Gamma-functions, note that
∞∫

−∞
|ξ |2a exp

(−ξ2/2
)

dξ = 2

∞∫

0

|ξ |2a exp
(−ξ2/2

)
dξ. (69)

Then we make a change in the variable η = ξ2
/

2, to get

∞∫

−∞
|ξ |2a exp

(−ξ2/2
)

dξ = 2a+ 1
2

∞∫

0

ηa− 1
2 exp (−η) dη. (70)

According to the definition of the Gamma-function,

�(z) =
∞∫

0

t z−1 exp (−t) dt, (71)

we finally obtain
∞∫

−∞
|ξ |2a exp

(−ξ2/2
)

dξ = 2a+ 1
2�

(
a + 1

2

)
. (72)

By applying this process to the other integrals, we get:

E
[

X2
regulated(t)

]

I
=

(
π S0

k

) 2
a+1

[
√
π2− a+1

2
�

( 4a−1
2

)
�

( 2a+1
2

)

�
( 3a

2

)2
�

( a+2
2

)

] 2
a+1

. (73)

Table 1 below presents the percentagewise error due to the approximate nature of the solutions (with both
conventional linearization and RGEL method) in comparison to the exact solution provided by Eq. (55), for
different integer values of a.

We can observe that there is an important improvement in the performance of the stochastic linearization
when we utilize the RGEL method. Namely, whereas for a = 2, the classical linearization is in error of about
5.69%, the regulated linearization has an error which is over 7 times less, namely 0.77%. For large value of a
namely, a = 5, the regulated linearization has about half the error of that classical linearization namely 15%
versus 29.9%. For even larger values of a, the error is much less than that in the classical scheme but still
quite large: for a = 7, the Anh and Di Paola approach leads to 25.8% error, whereas the classical approach is
associated with an error of about 41%. Still, the regulation reduces the error in this case by about 15%.



Application and extension of the stochastic linearization 97

7 Extension of Anh and Di Paola method: two-step regulation

A natural question arises: What is the effect of additional steps in regulation? Anh and Di Paola [3] considered
only a single-step regulation. Here, the two step regulation is performed, as illustrated schematically below:

k Xa(t) → k1 X2a−1(t) → k2 X3a−2(t) → k3 X2a−1(t) → k4 Xa(t) → keq,II X (t). (74)

Proceeding in perfect analogy with a single step procedure, we get

k1 = k σ 1−a
X

∫ ∞
−∞ |ξ |3a−1 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |4a−1 exp

(−ξ2
/

2
)

dξ
, (75)

k2 = k1 σ
1−a
X

∫ ∞
−∞ |ξ |5a−3 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |6a−4 exp

(−ξ2
/

2
)

dξ
, (76)

k3 = k2 σ
a−1
X

∫ ∞
−∞ |ξ |5a−3 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |4a−2 exp

(−ξ2
/

2
)

dξ
, (77)

k4 = k3 σ
a−1
X

∫ ∞
−∞ |ξ |3a−1 exp

(−ξ2
/

2
)

dξ
∫ ∞
−∞ |ξ |2a exp

(−ξ2
/

2
)

dξ
, (78)

keq,II = k4 σ
a+1
X

∫ ∞
−∞ |ξ |a+1 exp

(−ξ2
/

2
)

dξ√
2π E[X2(t)] . (79)

After expressing keq,I I via k, the initial equation of motion is replaced by

Ẋ(t)+ k E
[
X2(t)

] a−1
2

Q
X (t) = F(t) (80)

where

Q = √
2π

(∫ ∞
−∞ |ξ |4a−2 exp

(−ξ2
/

2
)

dξ
)2 ∫ ∞

−∞ |ξ |6a−4 exp
(−ξ2

/
2
)

dξ
∫ ∞
−∞ |ξ |2a exp

(−ξ2
/

2
)

dξ
(∫ ∞

−∞ |ξ |5a−3 exp
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(81)

We arrive at the mean-square displacement

E
[

X2
regulated(t)

]

II
=

(
π S0

k

) 2
a+1

Q
2

a+1 (82)

or, via the Gamma-functions,

E[X2
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k

) 2
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⎡
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⎤

⎥
⎦

2
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. (83)

The Roman subscript II indicates that the result is obtained in the second step of the regulation process.
Table 2 presents a comparison of the two-step procedure with the exact solution on one hand, a single-step
procedure, and classical stochastic linearization.

We note that two-step regulation provides an additional improvement in comparison to the single-step
regulation; for the moderate value of a = 4, the classical stochastic linearization is associated with the error
of about 23%; the single-step regulation results in an error of about 9% whereas the two-step regulation leads
to the error of 1.23%. Thus, the error in two-step regulation is about 18 times less than in the classical scheme,
and about 7 times less than in a single-step regulation. For larger values of a, though still much better than
the classical single-step regulation linearization, the two-step regulation reduces the error by about additional
10% in comparison with a single-step regulation: The classical linearization yields about 41% for a = 7; the
single-step regulation leads to 26% whereas the two-step regulation results in 14.6% of error. We should note
that the two-step regulation turns out to be the optimal one for the Lutes and Sarkani oscillator, since it turns
that the three-step regulation yields larger errors out than the two-step version. The optimum number of steps
needed should be established for each oscillator at hand.
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Table 2 Error incurred by using an extended two-step regulation

a σ 2
X,exact E[X2

regulated(t)]I Error, % E[X2
regulated(t)]I I Error, %

1 1 1.0000 0 1 0
2 0.7765 0.7824 0.7713 0.8205 5.6693
3 0.6760 0.6547 3.1546 0.7117 5.2820
4 0.6175 0.5620 8.9861 0.6251 1.2229
5 0.5786 0.4917 15.0206 0.5554 4.0131
6 0.5505 0.4367 20.6846 0.4988 9.4038
7 0.5291 0.3925 25.8224 0.4521 14.5548

8 Conclusion

In this study, authors first apply the Anh and Di Paola approach to the Atalik and Utku oscillator with dramatic
reduction of the error in comparison to the classical stochastic linearization (3% vs. 14%). Then authors next
extend the Anh and Di Paola approach to include the two-step regulation, which turns out to be the optimal one
for the Lutes and Sarkani oscillator, providing considerable reduction in the error. It appears that the method
has a large potential and it ought to be explored for wider classes of oscillators.
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