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Abstract For propagation of Rayleigh surface waves in a transversely isotropic graded piezoelectric half-
space with material properties varying continuously along depth direction, the Wentzel–Kramers–Brillouin
(WKB) technique is employed for the asymptotic analytical derivations. The phase velocity equations for both
the electrically open and shorted cases at the free surface are obtained. Influences of piezoelectric material
parameters graded variations on Rayleigh wave dispersion relations, particles’ displacements magnitude and
corresponding decay properties are discussed. Results obtained indicate that coupled Rayleigh waves can
propagate at the surface of the graded piezoelectric half-space, and their dispersion relations and the particles
displacements ellipticity at the free surface are dependent upon the graded variation tendency of the mater-
ial parameters. By the Rayleigh surface waves phase velocities relative changing values combined with the
relationship between the wave number and the material graded coefficient, a theoretical foundation can be
provided for the graded material characterization by experimental measurement.

1 Introduction

Early in the 1980s, a new-type material called functionally graded material (FGM) was proposed to solve
problems in the thermal-protection systems of aerospace structures. Since then, FGM has attracted interest of
researchers from many engineering fields. Nowadays, it is known that FGM can be used not only in thermal-
protection systems but also in electronics and many other fields. The results obtained for the FGM structures
lead us to consider that FGM may be applicable to surface acoustic wave (SAW) devices on condition that
functionally graded piezoelectric materials (FGPMs) can be properly manufactured, as known from recent
techniques for fabricating FGPMs [1].

It is known that surface acoustic waves have been applied successfully in electronics for signal processing.
With the development of material technology, FGPMs can be manufactured and also can be used in surface
wave devices to improve their efficiency and other features. The demands from the ultrasonic technology and
nondestructive evaluation (NDE) fields make the research of wave propagation behaviors and characteristics
in FGPMs to be a topic of practical importance [2–8].

To study the wave propagation behavior in inhomogeneous media with material parameters varying contin-
uously, analytical solutions can be obtained only for some special cases due to the complexity of the governing
equations. Some numerical solutions undertaken are to divide an inhomogeneous medium into a multi-layer
model, and within each layer a material parameters homogeneous assumption is adopted for the analysis by
virtue of finite element method [2–6]. Some reports on the asymptotic analysis of wave propagation in inhomo-
geneous media also can be found: Love wave propagation in a functionally graded piezoelectric layer/substrate
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system [9], Rayleigh surface waves propagating along curved surfaces [10]. In reference [11], dispersion
relations of a Rayleigh wave in a functionally graded piezoelectric half-space are studied by the perturbation
technique.

In the present contribution, a Rayleigh surface wave in a transversely isotropic functionally graded piezo-
electric half-space with material parameters varying continuously along the depth direction is taken into
account. The coupled second-order governing equations with three variables are first converted into a sixth-
order equation with variable coefficients containing one variable, and then the WKB technique is employed
for the wave functions solutions for both the electrically open and shorted cases. For the case of material
parameters varying exponentially along the depth direction, influences of each piezoelectric parameter graded
variation on Rayleigh wave dispersion relations, magnitudes and decay properties of particles’ displacements
at the free surfaces are investigated. A theoretical foundation is also provided for the characterization of the
material graded coefficient by experimental measurement of Rayleigh waves.

2 Statement of the problem

Rayleigh surface wave propagation behavior at the surface of a transversely isotropic functionally graded
piezoelectric material (FGPM) half-space, as shown in Fig. 1, is taken into account. The surface of the FGPM
half-space is traction free and the poling direction of the piezoelectricity is along the z-axis. The material
coefficients, say, elastic coefficients ci jkl(z), piezoelectric coefficients eki j (z) and dielectric coefficients ε jk(z)
vary continuously along the depth direction, namely, they are the functions of the z-axis.

The constitutive equations of the piezoelectric medium can be expressed in the following forms:

σi j = ci jkl Skl − eki j Ek,

D j = e jkl Skl + ε jk Ek,
(1)

in which σi j , Skl , D j , and Ek are the stress, strain, electrical displacement, and electrical intensity components,
respectively.

The motion equation and the electrical displacement equilibrium equations possess the following
expressions:

σi j, j = ρüi ,

Di,i = 0,
(2)

where ρ is the mass density of the piezoelectric medium, ui the mechanical displacement components in the i th
direction, a comma followed by the subscript i indicates space differentiation with respect to the corresponding
coordinate xi and the dot “•” denotes time differentiation. Also, the repeated index in the subscript implies
summation with respect to that index.

The relationship between the mechanical displacement and the strain components is

Si j = 1

2

(
ui, j + u j,i

)
. (3)
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Fig. 1 The functionally graded piezoelectric material half-space and coordinate system
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According to the quasi-static Maxwell’s equation, the relationship between the electrical intensity and the
electrical potential is

Ei = − ∂ϕ

∂xi
. (4)

To investigate the propagation behavior of the coupled Rayleigh wave in the above FGPM half-space, it is
assumed that the wave is propagating in the positive direction of the x-axis, so the motion mode of Rayleigh
wave is:

u = u(x, z, t), v = 0, w = w(x, z, t), ϕ = ϕ(x, z, t). (5)

Substitution of Eq. (5) into Eqs. (1), (3), and (4) together with Eq. (2) leads to the following governing
equations for Rayleigh wave propagation:

c11
∂2u
∂x2 + c13

∂2w
∂x∂z + e31

∂2ϕ
∂x∂z + c44

(
∂2w
∂x∂z + ∂2u

∂z2

)
+ e15

∂2ϕ
∂x∂z + c′

44

(
∂w
∂x + ∂u

∂z

)
+ e′

15
∂ϕ
∂x = ρ ∂

2u
∂t2 ,

c33
∂2w
∂z2 + c13

∂2u
∂x∂z + e33

∂2ϕ

∂z2 + c44

(
∂2w
∂x2 + ∂2u

∂x∂z

)
+ e15

∂2ϕ

∂x2 + c′
13
∂u
∂x + c′

33
∂w
∂z + e′

33
∂ϕ
∂z = ρ ∂

2w
∂t2 ,

e15

(
∂2w
∂x2 + ∂2u

∂x∂z

)
− ε11

∂2ϕ

∂x2 + e31
∂2u
∂x∂z + e33

∂2w
∂z2 − ε33

∂2ϕ

∂z2 + e′
31
∂u
∂x + e′

33
∂w
∂z − ε′33

∂ϕ
∂z = 0,

(6)

in which superscript “ ′ ” indicate space differentiation with respect to coordinate z.
The electrical potential ϕ1(x, z, t) in the air above the surface of the half-space (z < 0) should satisfy the

following equation:

∂2ϕ1

∂x2 + ∂2ϕ1

∂z2 = 0. (7)

The electrical boundary conditions at the free surface can be described as:
For electrically open case:

σz(0, x) = 0,
τxz(0, x) = 0,
ϕ(0, x) = ϕ1(0, x),
D (0, x) = D1(0, x).

(8)

For electrically shorted case:

σz(0, x) = 0,
τxz(0, x) = 0,
ϕ(0, x) = 0.

(9)

Up to this stage, the problem of Rayleigh wave propagation in the FGPM half-space becomes the solution
of the governing differential Eqs. (6)–(7) under boundary conditions (8)–(9).

3 Solutions of the problem

The solutions of Eq. (6) can be assumed to possess the following forms [12]:

u(x, z, t) = Zu exp[ik(x − ct)],
w(x, z, t) = Zw exp[ik(x − ct)],
ϕ(x, z, t) = Zϕ exp[ik(x − ct)],

(10)

where k is the wave number, c the phase velocity and Zu, Zw, Zϕ are undetermined functions with respect to
the z-axis.
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Substitution of Eq. (10) into Eq. (6) provides:

c44 Z ′′
u + c′

44 Z ′
u + (

ρc2 − c11
)

k2 Zu + [
(c13 + c44) ik Z ′

w + (e31 + e15) ik Z ′
ϕ + c′

44ik Zw + e′
15ik Zϕ

] = 0,

c33 Z ′′
w + c′

33 Z ′
w + (

ρc2 − c44
)

k2 Zw + [
(c13 + c44) ik Z ′

u + e33 Z ′′
ϕ − e15k2 Zϕ + c′

13ik Zu + e′
33 Z ′

ϕ

] = 0,

ε33 Z ′′
ϕ + ε′33 Z ′

ϕ − ε11k2 Zϕ + [
e15k2 Zw − (e31 + e15) ik Z ′

u − e33 Z ′′
w − e′

31ik Zu − e′
33 Z ′

w

] = 0,

(11)

Equations (11) are second-order equations with variable coefficients with respect to Zu, Zw, and Zϕ .
Usually, it is difficult to solve the equations directly. In the present contribution, Eq. (11) can be converted into
a sixth-order differential equation with variable coefficients containing only one undetermined function, and
an asymptotic analytical solution can be obtained by virtue of WKB technique.

Considering the fact that Eqs. (11) can be regarded as linear equations with respect to Z ′′
ϕ, Z ′

ϕ, Zϕ , we can
obtain:

Zϕ = F0
(
Z ′′

u , Z ′
u, Zu, Z ′′

w, Z ′
w, Zw

)
,

Z ′
ϕ = F1

(
Z ′′

u , Z ′
u, Zu, Z ′′

w, Z ′
w, Zw

)
,

Z ′′
ϕ = F2

(
Z ′′

u , Z ′
u, Zu, Z ′′

w, Z ′
w, Zw

)
.

(12)

Due to the fact that F ′
0 = F1, F ′

1 = F2, the following two equations can be obtained with respect to
Z ′′′

u , Z ′′
u , Z ′

u, Zu, Z ′′′
w , Z ′′

w, Z ′
w, Zw:

Z ′′′
u + a1 Z ′′

u + a2 Z ′
u + a3 Zu + a4 Z ′′′

w + a5 Z ′′
w + a6 Z ′

w + a7 Zw = 0,

Z ′′′
w + b1 Z ′′

w + b2 Z ′
w + b3 Zw + b4 Z ′′′

u + b5 Z ′′
u + b6 Z ′

u + b7 Zu = 0.
(13)

Expressions ai , bi (i = 1 ∼ 7) are very complicated, but on condition that the material parameters are
varying slowly and for high-frequency short waves (i.e., wave number k � 1), the high order terms containing
1
/

k2 in ai , bi can be omitted, thus Eq. (12) can be rewritten as:

G1 = Z ′′′
u + a10 Z ′′

u + a20k2 Z ′
u + a30k2 Zu + a40

/
k Z ′′′

w + a50k Z ′′
w + a60k Z ′

w + a70k3 Zw = 0,

G2 = Z ′′′
w + b10 Z ′′

w + b20k2 Z ′
w + b30k2 Zw + b40

/
k Z ′′′

u + b50k Z ′′
u + b60k Z ′

u + b70k3 Zu = 0
(14)

in which ai0 (i = 1 ∼ 7) are independent of the wave number k.
Undetermined coefficients li0(i = 1 ∼ 7) are introduced into the analysis to eliminate Zw and its corre-

sponding first to third differentials, and the summation is:

H0 = G ′′′
1 + l10G ′′

1 + l20k2G ′
1 + l30k2G1 + l40

/
kG ′′′

2 + l50kG ′′
2 + l60kG ′

2 + l70k3G2. (15)

Let the coefficients of Zw and its first to sixth-order differentials in the above equation be zero, from H0 = 0
and the high order terms containing 1

/
k2 are omitted also, an equation with respect to Zu can be obtained as

follows:

Z (6)u + A5 Z (5)u + A4k2 Z (4)u + A3k2 Z ′′′
u + A2k4 Z ′′

u + A1k4 Z ′
u + A0k6 Zu = 0 (16)

in which

A5 = a10 + l10 + l40b50 + l50b40, A4 = a20 + l20 + l50b50, A0 = l70b70,

A3 = 3a′
20 + a30 + l1a20 + l20a10 + l30 + l40b70 + l50

(
3b′

50 + b60
) + l60b50 + l70b40,

A2 = l20a20 + l50b70 + l70b50, A1 = l20
(
a′

20 + a30
) + l30a20 + 2l50b′

70 + l60b70 + l70b60

and

l40 = −a40, l50 = −a50, l70 = −a70, l20 = b20, l30 = −(
b20a′

70 − a70b30
)/

a70,

l60 = a70a50
(
a60b20 + b20a′

50 + 3a50a′
70 − 2a2

50b′
20

) − a2
70

(
a60 + 3a′

50

) − a2
50b20a′

70

a70 (a70 − a50b20)
,

l10 = a70
(
2a′

50b20 + 2a50b′
20 − 3a′

70 − a50b20b10
) + a2

70b10 + a50b20a′
70

a70 (a70 − a50b20)
.
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Equation (16) is a sixth-order differential equation with variable coefficients. It can be proved that the
coefficients Ai are independent of the wave number k. Now the WKB [13] technique is employed for the
asymptotic analytical solution by converting Eq. (16) into a nonlinear equation.

By introducing Zu = exp
(∫
ψ(z)dz

)
, Eq. (16) can be transformed into the following form:

[
ψ6 + 15ψ4ψ ′ + 20ψ3ψ ′′ + 45ψ2ψ ′2 + 15ψ2ψ ′′′ + 60ψψ ′ψ ′′ + 5ψ

′′2 + 15ψ ′ψ ′′′ + 6ψψ(4) + ψ(5)
]

+ A5

[
ψ5 + 10ψ3ψ ′ + 10ψ2ψ ′′ + 15ψψ

′2 + 5ψψ ′′′ + 10ψ ′ψ ′′ + ψ(4)
]

+ A4
(
ψ4 + 6ψ2ψ ′ + 4ψψ ′′

+ 3ψ
′2 + ψ ′′′

)
k2 + A3

(
ψ3 + 3ψψ ′ + ψ ′′) k2 + A2

(
ψ2 + ψ ′) k4 + A1ψk4 + A0k6 = 0.

(17)

To solve Eq. (17), we seek an expansion of ψ(z) in inverse powers of k, that is to say, we can write

ψ(z) = ψ0(z)k + ψ1(z)+ ψ2(z)k
−1 + · · · (18)

Substituting Eq. (18) into (17) and equating the coefficients of each power of k to zero, we can get an
infinite number of equations:

ψ6
0 + A4ψ

4
0 + A2ψ

2
0 + A0 = 0, (19.1)

6ψ5
0ψ1 + 15ψ4

0ψ
′
0 + A5ψ

5
0 + A4

(
4ψ3

0ψ1+6ψ2
0ψ

′
0

) + A3ψ
3
0 + A2

(
2ψ0ψ1 + ψ ′

0

)+ A1ψ0 = 0 (19.2)

· · · · · ·

Six roots for Eq. (19.1) can be obtained, considering the decay property of the Rayleigh wave, we
use ψ01, ψ02, ψ03 to denote three roots whose real part are less than zero. From (19.2), we can get roots
ψ11, ψ12, ψ13 corresponding to ψ01, ψ02, ψ03, and meanwhile ψ11, ψ12, ψ13 should satisfy the following
condition:

ψ1i = −15ψ4
0iψ

′
0i + A5ψ

5
0i + A46ψ2

0iψ
′
0i + A3ψ

3
0i + A2ψ

′
0i + A1ψ0i

6ψ5
0i + 4A4ψ

3
0i + 2A2ψ0i

(i = 1 ∼ 3). (20)

Thus Zu can be expressed as:

Zu = c1 exp

(
k

∫
ψ01dz +

∫
ψ11dz

)
+ c2 exp

(
k

∫
ψ02dz +

∫
ψ12dz

)

+ c3 exp

(
k

∫
ψ03dz +

∫
ψ13dz

)
(21)

in which c1, c2, c3 are undetermined constants.
Similarly, to obtain an equation only containing Zw and its corresponding differentials, undetermined

coefficients mi (i = 1 ∼ 5) are introduced into the analysis to construct the summation:

H1 = G ′′
1 + m1G ′

1 + m2G1 + m3G ′′
2 + m4G ′

2 + m5G2. (22)

Let the coefficients of Zw and its corresponding first to fifth-order differentials be zero, then from H1 = 0
and the high order terms containing 1/k2 omitting also, the following equation can be obtained:

k5 Zw = B5 Z (5)u + B4 Z (4)u + B3k2 Z ′′′
u + B2k2 Z ′′

u + B1k4 Z ′
u + B0k4 Zu . (23)

It can be assumed that Zw = g(z)Zu, in which g(z) = g0(z)k + g1(z)+ g2(z)k−1 + · · · . Substituting this
equation into (23) and equating the coefficients of each power of k to zero, we can get the following equations:

g0 (z) = 0, (24.1)

g1 (z) = B5ψ
5
0 + B3ψ

3
0 + B1ψ0. (24.2)
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From these two equations, we can obtain three roots g11 (z) , g12 (z), and g13 (z) corresponding toψ01, ψ02,
and ψ03. Thus the solution of Zw can be expressed as:

Zw = c1g11 (z) exp

(
k

∫
ψ01dz +

∫
ψ11dz

)
+ c2g12 (z) exp

(
k

∫
ψ02dz +

∫
ψ12dz

)

+ c3g13 (z) exp

(
k

∫
ψ03dz +

∫
ψ13dz

)
. (25)

Equation (11) also can be expressed in the following form:

C0 Zϕk3 = C1 Z ′′
u + C2k Z ′′

w + C3k2 Z ′
u + C4k Z ′

w + C5 Zuk2 + C6k3 Zw, (26)

The solutions of Zu (Eq. (21)) and Zw (Eq. (25)) are substituted into Eq. (26) and the high order terms are
omitted, hence the solution of Zϕ can be expressed as follows:

Zϕ = c1h11 (z) exp

(
k

∫
ψ01dz +

∫
ψ11dz

)
+ c2h12 (z) exp

(
k

∫
ψ02dz +

∫
ψ12dz

)

+ c3h13 (z) exp

(
k

∫
ψ03dz +

∫
ψ13dz

)
(27)

in which h1i satisfy:

h1i = (
C2g1iψ

2
0i + C3ψ0i + C6g1i

)/
C0.

As to Eq. (7), the solution of ϕ1 can be expressed as follows:

ϕ1 (x, z, t) = Zϕ1 exp (kx − iωt) . (28)

Substituting Eq. (28) into Eq. (7), and considering the attenuation condition z → −∞, ϕ1 → 0, we can
obtain the solution of Zϕ1 as follows:

Zϕ1 = c4ekz, (29)

where c4 is an undetermined constant.
The electrically shorted boundary conditions described in Eq. (8) also can be expressed as:

c13 Zuik + c33d Zw
/

dz + e33d Zϕ
/

dz = 0,

c44
(
Zwik + d Zu

/
dz

) + e15 Zϕik = 0,

Zϕ = 0.

(30)

Substituting Eqs. (21), (25) and (27) into Eq. (30), equations with respect to c1, c2, and c3 can be obtained,
from the sufficient and necessary condition of the non-trivial solution to exist, the determinant of the coefficient
matrix has to vanish, which leads to the following dispersion relation for the Rayleigh wave:

∣
∣Pi j

∣
∣ = 0, (31)

where

P11 = c13ik + c33
[
g′

11 + g11 (kψ01 + ψ11)
] + e33

[
h′

11 + h11 (kψ01 + ψ11)
]∣∣

z=0 ,

P12 = c13ik + c33
[
g′

12 + g12 (kψ02 + ψ12)
] + e33

[
h′

12 + h12 (kψ02 + ψ12)
]∣∣

z=0 ,

P13 = c13ik + c33
[
g′

13 + g13 (kψ03 + ψ13)
] + e33

[
h′

13 + h13 (kψ03 + ψ13)
]∣∣

z=0 ,

P21 = ikg11 + kψ01 + ψ11|z=0 , P22 = ikg12 + kψ02 + ψ12|z=0 , P23 = ikg13 + kψ 03 + ψ13|z=0 ,

P31 = h11|z=0 , P32 = h12|z=0 , P33 = h13|z=0 .
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The electrically open boundary condition described in Eq. (9) also can be expressed as:

c13 Zuik + c33d Zw
/

dz + e33d Zϕ
/

dz = 0,

c44
(
Zwik + d Zu

/
dz

) + e15 Zϕik = 0,

Zϕ = Zϕ1,

e31 Zuik + e33d Zw
/

dz − ε33d Zϕ
/

dz = −ε0d Zϕ1
/

dz.

(32)

Similarly, the dispersion relation of the Rayleigh wave for the electrically open case can be obtained as:
∣∣Qi j

∣∣ = 0, (33)

where

Q11 = P11, Q12 = P12, Q13 = P13, Q14 = 0,

Q21 = P21, Q22 = P22, Q23 = P23, Q14 = e15ik
/

c44
∣
∣
z=0 ,

Q31 = P31, Q32 = P32, Q33 = P33, Q34 = −1,

Q41 = e31ik + e33
[
g′

11 + g11 (kψ01 + ψ11)
] − ε33

[
h′

11 + h11 (kψ01 + ψ11)
]∣∣

z=0 ,

Q42 = e31ik + e33
[
g′

12 + g12 (kψ02 + ψ12)
] − ε33

[
h′

12 + h12 (kψ02 + ψ12)
]∣∣

z=0 ,

Q43 = e31ik + e33
[
g′

13 + g11 (kψ03 + ψ13)
] − ε33

[
h′

13 + h13 (kψ03 + ψ13)
]∣∣

z=0 ,

Q44 = ε0k.

4 Numerical results

Now the numerical analysis results will be given to show the basic properties of Rayleigh surface waves
propagating at the free surface of an FGPM half-space. The FGPM parameters are chosen to possess the
exponential patterns for the calculation of dispersion relations, for both electrically open and shorted cases.

FGPM parameters are assumed to possess the following form [14]:

f (z) = f∞ + ( f0 − f∞) exp (−αz)

in which α is the graded coefficient, f0 and f∞ stand for the material parameters at z = 0 and z → ∞,
respectively. In the following calculation, the values of parameters f0 are chosen to be [15]:

c11 = 135 GPa, c13 = 67.9 GPa, c44 = 22.2 GPa, c33 = 113 GPa, c12 = 68.1 GPa,
ρ = 7.5 × 103 kg/m3,

e15 = 9.8 C/m2, e33 = 9.0 C/m2, e31 = −1.9 C/m2, ε11 = 990ε0, ε33 = 450ε0,

ε0 = 8.854 × 10−12 F/m

in which ε0 is the dielectric constant in the air.
In the following numerical analysis, a relative variation coefficient of material parameters is introduced:

δ = ( f∞ − f0)
/

f0.

4.1 Influence of material inhomogeneous character on dispersion relations

To reveal the influence of the inhomogeneous character of the FGPMs on the dispersion relations, a simplified
scheme is adopted: only one of the material parameters is varied and other parameters keep constants. Influences
of variations of different material parameters on the dispersion relations are shown in Figs. 2–10. In the
numerical analysis, the relative variation of material parameters is chosen to be δ = ±0.1, and the graded
coefficient α is chosen to be 1, 3 and 5. In these figures, c is the phase velocity, k is the wave number, and cRs
and cRo are phase velocities of the Rayleigh wave in transversely isotropic PZT-1 half-space for electrically
shorted and open cases, respectively.
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Fig. 2 Influence of different c11 on dispersion relations; a electrically shorted; b electrically open
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Fig. 3 Influence of different c13 on dispersion relations; a electrically shorted; b electrically open
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Fig. 4 Influence of different c33 on dispersion relations; a electrically shorted; b electrically open
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Fig. 5 Influence of different c44 on dispersion relations; a electrically shorted; b electrically open
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Fig. 6 Influence of different e15 on dispersion relations; a electrically shorted; b electrically open
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Fig. 7 Influence of different e31 on dispersion relations; a electrically shorted; b electrically open



On dispersion relations of Rayleigh waves in a functionally graded piezoelectric material (FGPM) half-space 257

4

2

50 500 1000

0

-2

-4

4

2

0

-2

-4

k

50 500 1000
k

(C
-C

R
S)

 /C
R

S

a

(C
-C

R
O

) 
/C

R
O

b

d = −0.1

d = 0.1

d = −0.1

d = 0.1

a = 5

a = 3

a = 1

a = 5

a = 3

a = 1

‰

‰

Fig. 8 Influence of different e33 on dispersion relations; a electrically shorted; b electrically open
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Fig. 9 Influence of different ε11 on dispersion relations; a electrically shorted; b electrically open
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Fig. 10 Influence of different ε33 on dispersion relations; a electrically shorted; b electrically open

The above results indicate that, whether for the case of material parameters increasing along the depth
direction (δ = 0.1), or for the case of material parameters decreasing along the depth direction (δ = −0.1),
coupled Rayleigh surface waves can propagate at the free surface of the FGPM half-space. For both the
electrically open and shorted cases, the influence of the graded coefficient α on the wave phase velocity shows
a similar tendency. With the increase of α, the variation of the phase velocity also increases, but such kind of the
influence is only obvious for the wave number less than 500. To further investigate the dispersion properties,
the group velocity of the wave propagation, which is defined as cg = c+kdc/dk, is introduced in our analysis.
It can be found that, when the parameters c13, c44, e15, and ε33 increase with the depth, or when the parameters
c11, c33, e31, e33, and ε11 decrease with the depth, there exist dc/dk < 0, which means cg < c, the Rayleigh
wave is normal dispersion; on the other hand, when the parameters c13, c44, e15, and ε33 decrease with the
depth, or when the parameters c11, c33, e31, e33 , and ε11 increase with the depth, there exist dc/dk > 0, which
means cg > c, the Rayleigh wave is anomalous dispersion.

From Figs. 2– 10, it also can be learned that for the same variation of material parameters variations of the
elastic parameters c13, c44, c11, and c33, piezoelectric parameter e15 and dielectric ε11 significantly affect the
phase velocity, the variation of piezoelectric parameter e33 affects the phase velocity little less, and variations
of the piezoelectric parameter e31 and the dielectric parameter ε33 do almost not affect the phase velocity.

4.2 Influence of graded variation on the displacement components

The criterion for Rayleigh waves is that the mechanical displacement decays exponentially with the distance
from the free surface. For the case of only the elastic parameter c44 variation, variations of the displacement
components with depth for the electrically shorted case are shown in Fig. 11 by choosing the relative variation
δ = ±0.1, graded coefficient α = 5 and wave number k = 100. It can be found that the displacements’ decay
character is similar to that in an isotropic medium. As to the influences of other parameters’ variation on the
mechanical displacement components, similar conclusions can be obtained.
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Table 1 Ellipticity of particles’ trajectories for different material parameters variation

δ k = 100, α = 5 c33 e33 c11 e15 c13 c44 e31 ε11 ε33

0.1 Electrically shorted 1.928 1.907 1.957 1.835 1.854 1.818 1.902 1.922 1.903
Electrically open 1.626 1.608 1.647 1.554 1.569 1.543 1.604 1.621 1.605

−0.1 Electrically shorted 1.873 1.893 1.844 1.956 1.947 1.973 1.899 1.876 1.898
Electrically open 1.581 1.589 1.562 1.646 1.639 1.657 1.602 1.584 1.602

Table 2 Phase velocity variations (0/00) for variation of material parameters

δ k/α = 50 c33 e33 c11 e15 c13 c44 e31 ε11 ε33

0.1 Electrically shorted −1.70 −0.58 −3.19 4.29 2.66 4.85 −0.12 −1.86 0.11
Electrically open −1.52 −0.48 −2.76 4.19 2.32 4.67 −0.11 −1.88 0.14

−0.1 Electrically shorted 1.67 0.57 3.10 −4.20 −2.73 −4.77 0.12 1.89 −0.11
Electrically open 1.49 0.48 2.68 −4.05 −2.39 −4.53 0.11 1.91 −0.15

When Rayleigh surface wave propagate, the trajectories of the particles are ellipses. For the coordinate axes
of Fig. 1 the motion is counter-clockwise at the free surface. To discuss the influence of graded variation on the
displacement components, denote the ellipticity of particles’ trajectories by γ = |w0|/|u0|, in which |w0| and
|u0| are the particles’ displacement amplitudes at the free surface (z = 0). Ellipticity of particles’ trajectories
for different material parameters variation is shown in Table 1, in which the wave number k = 100 and the
graded coefficient α = 5. For an isotropic piezoelectric medium, the ellipticity is 1.900 for the electrically
open case and 1.603 for the electrically shorted case, respectively.

When parameters c13, c44, e15 , and ε33 increase with the depth, or c11, c33, e31, e33 , and ε11 decrease
with the depth, the ellipticity of the particles’ motion trajectories increases also. On the contrary, decreasing
of parameters c13, c44, e15 , and ε33 with the depth or the increasing of parameters c11, c33, e31, e33 , and ε11
with the depth lead to the decrease of ellipticity.

4.3 Determination of FGPMs graded coefficient α

The analysis indicates that for the case of a single material parameter variation the wave number of the Rayleigh
wave is proportional to the material graded parameter for the same phase velocities. The quantitative relations
for the material parameters’ variation with phase velocity relative variations are shown in Table 2 (k/α = 50).

Table 2 indicates that on condition that the variation of a material parameter is given, it can be obtained
the phase velocity and the corresponding phase velocity relative value by numerical calculation for a special
value of k/α. By experimental measurement, the frequency of the Rayleigh surface wave can be got at this
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phase velocity and then the wave number k is known, and the material graded coefficient α can be determined
accordingly.

The method can be extended to the case of variations of all the material parameters. On condition of the
slowly varying assumption, for the case of the variation of all the elastic parameters δ1 = 0.1 and electrical
parameters keeping constants, the dispersion relation of the Rayleigh waves is shown in Fig. 12 for the
electrically shorted case. At the same value of k/α, the relative changing value of the phase velocity is the
same. For example, at the value of k/α = 50, the phase velocity relative changing value is 2.760/00.

Therefore, it is possible to determine the graded coefficient α of FGPMs by means of the experimental
measurement of Rayleigh surface waves.

5 Conclusions

Dispersion characters of Rayleigh surface waves propagating along the free surface of a FGPM half-space are
investigated by virtue of the WKB technique. The following conclusions can be drawn:

Coupled Rayleigh surface waves can propagate at the surface of a functionally graded piezoelectric material
(FGPM) half-space. The dispersion relations of the Rayleigh wave and the particles’ displacements at the free
surface are dependent upon the graded variation tendency of the FGPM parameters. By the Rayleigh surface
waves phase velocities relative changing values combined with the relationship between the wave number and
the material graded coefficient, a theoretical foundation can be provided for the graded material characterization
by experimental measurement.
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