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Summary. In the most general case, composites composed of two materials, exhibiting a matrix-inclusion

morphology, can be described by three phases: the matrix phase, the inclusion phase, and the interface between

the inclusion and the matrix. In order to relate effective material properties to the matrix-inclusion behavior and

the morphology, i.e., to the arrangement of the inclusions within the matrix phase, analytical and/or numerical

schemes may be employed. Regarding effective strength properties, averaging schemes used, e.g., for upscaling

elastic and viscoelastic properties are not able to capture the localized mode of material failure and do not

provide information about the failure modes within the material. In this paper, the application of limit analysis to

two-phase materials subjected to uniaxial/biaxial loading is proposed, giving access to the respective material

strength and the corresponding failure modes. Based on a discretized form of limit analysis, different strength

properties are assigned to the matrix, the inclusion, and the interface. The solution of the underlying

optimization problem arising from the respective upper- and lower-bound formulation is based on second-order-

cone-programming (SOCP). The presented upscaling scheme is used to illustrate the finer-scale origin of

frequently observed failure and degradation scenaria in matrix-inclusion materials, highlighting the effect of

strength properties, morphology, and interface degradation on the effective strength of the composite material.

1 Introduction

In order to explain and, finally, predict the strength-determining processes in composite materials,

appropriate methods for relating the effective strength to its finer-scale origin are required.

Depending on the microstructure of the material (regular or randomly distributed), two modes of

establishing this relation (also referred to as ‘‘upscaling’’) may be distinguished:

• Unit-cell approach: if the material microstructure is characterized by the spatial variation of

physical quantities which can be represented by a combination of local fluctuations at the level of the

elementary cell and a drift of this elementary cell, the periodic media theory may be employed.
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• RVE approach: the effective media theory, on the other hand, is based on the introduction of a

representative volume element (RVE), stipulating the separation of observation scales. The size

of an RVE must be (i) considerably larger than the characteristic dimension of the material

phases forming the material at the considered scale and (ii) significantly smaller than the material

or material phase built up by the RVE.

For most materials exhibiting a matrix-inclusion morphology, which are in general obtained by

mixing, pouring and, if necessary, compaction/densification, the irregular arrangement of the

microstructure renders the RVE approach as appropriate. Hereby, the response of the considered

RVE may be computed numerically or analytically. As regards the latter, averaging schemes, such

as, e.g., schemes developed within the framework of continuum micromechanics, may be employed

for upscaling of elastic and viscoelastic properties (see, e.g., [1], [2]). Recently, the range of

application of averaging schemes was extended towards upscaling of strength properties,

representing the elasto-plastic behavior of the material by a secant-elastic law [3]–[5]. Hereby,

failure of the entire RVE is assumed. In general, however, material failure is characterized by the

development of a localized failure zone, introducing a new length scale in the RVE (see Fig. 1).

Moreover, localized failure results in the violation of the continuous boundary field enforced in

averaging schemes. Compared to analytical methods, the finite element method (FEM) is able to take

localized material failure into account. However, in case of upscaling by means of the FEM, the

complete load history must be considered. Moreover, in order to predict the correct failure

mechanism, softening and, thus, suitable regularization techniques must be incorporated into the

FEM approach.

The discretized version of limit analysis, on the other hand, concentrates on the instant of material

failure. First publications on limit analysis dealing with efficient non-linear solution algorithm date

back to 1993 [6].

In the following section, the discrete formulation of limit analysis for determination of lower and

upper bounds for failure loads will be briefly assessed, following [7] and [8] as well as the

formulation of the underlying optimization problem as a second-order-cone-programming (SOCP)

problem. The performance of the proposed upscaling approach for the case of uniaxial loading states

will be investigated in Sect. 3. The appropriate choice for the RVE for the case of material failure in

matrix-inclusion morphologies will be discussed. Finally, the influence of the material morphology

and of degradation processes in matrix-inclusion materials on strength properties (uniaxial tensile

and compressive strength) as well as on effective failure criteria will be investigated, providing new

insight into the microstructure-triggered failure mechanisms of composite materials.
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Fig. 1. Separation of scales within the

RVE approach: a appropriate and

b inappropriate configuration for

upscaling by means of averaging

schemes

186 J. Füssl et al.



2 Discretized form of limit analysis

Originally, the objective of limit analysis was determination of the load-bearing capacity of

structures exhibiting elastoplastic material response. At collapse, the capacity of structures to store

additional external work as recoverable energy is exhausted. For a given macroscopic strain-rate

field and a prescribed macroscopic stress field defining the loading situation, limit analysis

concentrates on the critical work rate at failure of structures or, as in the present case, of composite

materials. The problem may be stated as follows: find the admissible velocity field, which minimizes

the internal dissipated energy over the set of all statically admissible stress fields, which maximize

the internal dissipated energy. Unfortunately, the so-obtained saddle-point problem can be solved

only for simple geometric and loading situations, and simple material behavior. For the case of more

complex situations, the plastic-flow compatibility in the so-called static principle, on the one hand, or

the static equilibrium and the plastic admissiblity in the so-called kinematic principle, on the other

hand, may be relaxed, providing access to lower and upper bounds for the applied macroscopic stress

field.

2.1 The kinematic approach – the upper-bound formulation

For the numerical upper-bound (UB) formulation, triangular elements with linear shape functions for

the interpolation of the unknown velocity field are used. In order to consider velocity discontinuities,

unlike as in standard discretization methods such as the FEM, each node is assigned to one element

only [9]. For the stress field, on the other hand, a constant stress distribution is assumed within each

element. To enforce the admissibility of the velocity field solution within the UB formulation, the

following conditions are imposed:

• Within each element, the strain rate must follow an associative flow rule

_e ¼ _k
of

or
; ð1Þ

where _e represents the strain-rate tensor, and _k is the plastic multiplier, satisfying _k� 0:

• Normal and tangential velocity jumps, un½ � and ut½ �; across each discontinuity must satisfy the

flow rule

un½ �½ � ¼ ut½ �½ �j j tan u; ð2Þ

where u denotes the angle of internal friction.

• The velocity must satisfy the boundary conditions u ¼ �u on the boundary Au, on which

velocities are prescribed.

• Moreover, the rate of flow of material through the boundary A is set to a prescribed value.

Under these conditions, the internal rate of work

_W
int ¼

Xne

e¼1

_k
of

orT
r

� �e

þ
Xni

i¼1

cT _c
� �i ð3Þ

is minimized. In Eq. (3), the first part considers the contribution to _W
int

within the elements and

ðcT _cÞi ¼
R

li
ci u½ �idl is the contribution of the ith discontinuity with u½ �i as the velocity jump in

the discontinuity i. Hereby, ci is the cohesion and _c the plastic multiplier associated with the ith

discontinuity.
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2.2 The static approach – lower-bound formulation

For the numerical lower-bound (LB) formulation, the finite elements used in the UB formulation are

employed. However, in the LB formulation, the nodal unknowns are the stress tensors, allowing

jumps of the tangential stress component along element edges [10]. To enforce equilibrium and to

render the stress-field solution admissible, the following conditions are imposed:

• Within each element, equilibrium is enforced by div rðxÞ½ � ¼ g; where g are prescribed body

forces.

• At discontinuites, continuity of normal- and shear-stress components is enforced.

• The stress field must satisfy the boundary conditions rðxÞ � nðxÞ ¼ a�t on the boundary At,

on which surface tractions �t are prescribed. n(x) denotes the outward normal unity vector

on At.

• Moreover, the stress field associated with plastic collapse has to satisfy f ðx; rðxÞÞ� 0; where f

denotes the yield function. Because of the linear interpolation of the nodal stresses qr, the yield

function is satisfied everywhere in the element if it is satisfied at its nodes.

Under these conditions, the external rate of work _W
ext ¼ a is maximized.

Considering a dual form of the UB optimization problem [7], formulated in terms of stresses, a

form of the UB and LB optimization problem may be obtained, that is mathematically similar, and

reads

max af g; ð4Þ

with linear constraints of the form

A1x1 ¼ b1 and A2x2�b2; ð5Þ

enforcing the aforementioned conditions for kinematic admissibility and static equilibrium in the UB

and LB formulation, respectively. In both the stress-based UB and LB optimization problem, the

stress state is constrained by the yield function, i.e.,

f ðqrÞ�0: ð6Þ

Because of the similarity of the UB and LB formulation, the same solution algorithm can be

applied.

2.3 Failure criteria and solution of optimization problem

The optimization problem (4) to (6) is non-linear, with the non-linearity introduced by the yield

functions f (qr). Thus, if all yield functions are convex, the optimization problem itself will be

convex. In this case, only one optimum exists. It is the global optimum. In recent years, different

non-linear-convex optimization strategies were applied to limit-analysis problems: in [10], a two-

stage-quasi-Newton algorithm is employed. It consists of linearizing the optimality conditions

and solving the resulting linear system iteratively. In [11], another interior point method, based on

the logarithmic barrier function, is used. Furthermore, a sequential-quadratic-programming

scheme may be used to solve the underlying quadratic optimization problem by the primal-dual

interior point solver described in [12]. In case of yield surfaces exhibiting corners and edges, and

thus becoming non-differentiable, smoothing of the yield surface was proposed in [13]. In case of

cone-shaped yield criteria (such as, e.g., the Mohr–Coulomb criterion in plane strain and the

Drucker–Prager criterion in 2D and 3D condition), SOCP was used in [8], [14] and [15]. Hereby,
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the conic optimization problem1 is solved efficiently by an interior point method. In this paper,

the SOCP algorithm outlined in [17], which was implemented into the optimizer MOSEK [18], is

used. Hereby, yield criteria having the form

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT

r Mqr

q
þmTqr � k� 0; ð11Þ

or, equivalently,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT

r Mqr

q
� k�mTqr; ð12Þ

where M is at least positive semi-definite, are used for constraining stress states. The cone

formulation of Eq. (12) is obtained by introducing [16]

M ¼ LTL; y ¼ Lqr; and z ¼ k�mTqr; ð13Þ

giving
ffiffiffiffiffiffiffiffi
yTy

p
� z; ð14Þ

where L [ R
h � d (h ¼ rank(M), d ¼ dimension of qr) and y and z are auxiliary variables. The cone

formulation (13) and (14) for the employed Mohr–Coulomb criterion for plane strain and plane stress

is given in the Appendix.

3 Effect of arrangement and size of inclusions on uniaxial tensile strength
and failure mode

In this section, limit analysis is applied to composite material systems subjected to uniaxial tensile

loading. Hereby, different matrix-inclusion morphologies are discretized (see, e.g., Fig. 2) and

different strength properties are assigned to the matrix, the inclusion, and the interfaces. By means of

limit analysis, bounds for the uniaxial tensile strength are computed. All material systems are

discretized with approximately 5,000 2D elements. The matrix and the particles (if present) obey the

Tresca failure criterion with a cohesion ratio cp=cm of the particles and the matrix equal to 10. In

1 A general conic optimization problem consists of a linear objective function

min cTx
� �

; with x 2 Rn; ð7Þ

subjected to (i) a set of linear constraints Ax ¼ b and (ii) the conic constraints x 2 C; where C is a closed convex

pointed cone. A set C is called a cone if 8x 2 C and k C 0, kx 2 C: Examples of such cones are

• the non-negative orthant

C ¼ Rþ ¼ x : x� 0f g; ð8Þ

• the second-order (or ice-cream) cone

C ¼ x 2 Rm :

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼2

x2
i

s
�x1; x1� 0

( )
; ð9Þ

• and the rotated quadratic cone

C ¼ x 2 Rm :
Xm

i¼3

x2
i � 2x1x2; x1� 0; x2� 0

( )
: ð10Þ
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order to investigate the effect of the arrangement of inclusions on the tensile strength, the angle b
between the line connecting two inclusions (in a first step, only two inclusions are considered in this

study) and the direction of loading was varied. Three different types of material systems were

investigated:

1. Effect of arrangement of air voids: Fig. 3a shows the influence of b on the upper and lower

bound of the tensile strength of a material with two air voids (see Fig. 3b). For all three air-void

contents f a considered in this study, the largest values for the tensile strength are obtained for

particle
air void

matrix

interface

discretization

Fig. 2. Illustration of the discretization of a heterogeneous material for the application of limit analysis
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Fig. 3. a Influence of b on the upper and lower bound of the tensile strength of a material with two air voids;

b plastic failure zones obtained from upper-bound calculations for f a = 22% (f a, air-void content; f t, tensile

strength of composite material; f t
m, tensile strength of matrix material)

190 J. Füssl et al.



b ¼ 0� and the smallest ones for b ¼ 90�. The difference between the tensile strength obtained

from the LB and UB formulation, referred to as ‘‘bound gap’’, increases with increasing air-void

content f a. The influence of the air-void arrangement on the estimated tensile strength of the

porous material is up to 50%.

2. Effect of arrangement of particles: for the same matrix material reinforced with two particles,

the tensile strength obtained from the UB formulation is illustrated in Fig. 4a. In contrast to

the situation with air voids, the smallest value for the tensile strength is obtained for

25� < b < 45�. This range of b corresponds with the orientation of slip lines for tensile

failure modeled by the Tresca criterion (45�). An arrangement of particles in this range

provides a proper path for the failure mode through the reinforcing particles, explaining the

small values for the tensile strength. Again, a great influence of the arrangement of the

inclusions on the tensile strength is observed. Three failure modes, explaining this influence,

are shown in Fig. 4b.

3. Effect of arrangement of particles with degraded interfaces: for the case of degraded interfaces

between the matrix and the particles, the influence of b on the tensile strength is illustrated in

Fig. 5a. Failure of interfaces is modeled by the Mohr–Coulomb criterion with a cohesion of

cI ¼ cm=10 and a friction angle of 20�. Based on the obtained results, weakening of the

interfaces compensates the reinforcing effect of particles. Thus, the dependence of the tensile

strength on b is similar to the situation of a material containing air voids (see Fig. 3). Even the

failure mechanisms for air voids and particles with degraded interfaces are similar (compare

Figs. 3b, 5b). The presented results show a considerable influence of the choice of the RVE,

defined by arrangement of the inclusions, on the tensile strength of the composite. This was the
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motivation for the investigation of more complex material microstructures, focusing on the

influence of the arrangement of air voids and inclusions and the size of the RVE on the effective

strength. In the following study, only material microstructures with a volume fraction of

f a ¼ 25% and f p ¼ 25%, respectively, are considered. However, they are represented by

different numbers of inclusions, ranging from 2 to 50. For each number of inclusions, ten

different arrangements are considered and the corresponding upper and lower bounds for the

tensile strengths are computed.

• Figure 6 shows the result for a material with air voids with an air-void content of f a ¼ 25%.

Independent of the number of air voids, the average effective strength is nearly constant.

However, the scatter resulting from different arrangements of air voids considered in this

study becomes smaller with increasing number of voids and, thus, with increasing RVE-size/

void-size ratio. In contrast to upscaling of elastic properties, because of the highly localized

failure modes which depend on the arrangement of air voids, upscaling of strength seems to

depend less on the RVE-size/void-size ratio, whereas the particle arrangement results in a

significant scatter.

• The same study was conducted for a material reinforced with particles (see Fig. 7). The

observed scatter of the upper bound for the tensile strength decreases with increasing number

of inclusions, with a maximal scatter of 6% if the number of particles is greater than 35.

Additionally, the average tensile strength slightly increases, which is explained by the

increased probability of particles obstructing the development of the failure mechanism. The
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lower bounds are close to the tensile strength of the matrix, with the failure mode developing

close to the loading platen. As a remedy, additional particles may be placed at the loaded

boundary of the RVE. The RVE considered in the lower-bound formulation is not able to

capture the strengthening effect of the particles appropriately.

• In the previous study, the same strength properties were assigned to the matrix material and

the interface between the matrix and the particles. Introducing degraded interfaces, with

cI ¼ cm=10 and uI ¼ 20�, leads to the results shown in Fig. 8. Compared to the results in

Fig. 7, a considerable decrease of the macroscopic strength is obtained. The scatter of results

and the increase of the tensile strength with increasing number of particles is similar to the

situation in the previous study.

4 Application to selected material microstructures

In summary, the scatter of the estimated tensile strength of the composite material in consequence of

the arrangement of the inclusions was greater than the influence of the RVE-size/inclusion-size ratio.

In fact, marginal changes of the tensile strength for an RVE-size/inclusion-size ratio greater than five

were observed. Accordingly, for the studies reported in this section, which are characterized by

inclusions of varying size, the size of the RVE was adopted according to the result from the previous

study.
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4.1 Uniaxial loading situation

Figure 9a illustrates the decrease of the tensile strength as a function of the volume fraction f a of the

air voids. Failure of the matrix material is described by the Tresca criterion. The so-called bound

gap, defined as the difference between the upper- and the lower-bound of the collapse load, is about

19%, and, therefore, compared to the scatter observed in the experimental results, of acceptable

magnitude. The largest influence of the air void configuration (about 15%) is obtained for a volume

fraction between 10 and 20%. Figure 9b shows the plastic zones corresponding to the lower-bound,

and Fig. 9c the plastic zones and the failure mechanism obtained from the upper-bound formulation.

The principal collapse mechanism develops along the most weakened path through the material

system by connecting air voids in order to form the failure zones. For an air-void content of 20%, the

decrease of the tensile strength is already 50% compared to the tensile strength of the matrix.

Figure 10a illustrates the influence of the volume fraction of particles and the effect of the

displacement boundary condition (horizontal displacement at the top boundary) on the upper bound

of the tensile strength. For the description of failure of both material phases, the Tresca criterion is

employed, with a cohesion ratio of cp=cm ¼ 10. If the horizontal movement of the loaded boundary

is restrained (see Fig. 10c), the flexibility of the material microstructure is reduced and, thus, the

failure mechanism is located at the middle of the RVE. This results in an increase of the collapse

load of about 5%. Figure 11a contains upper bounds of the tensile strength as a function of the

cohesion ratio cp=cm, ranging from one to three, and for three different particle contents. The

obtained results show that up to a strength ratio of 2.8, the failure mode is associated with failure of

both matrix and particles (see Fig. 11b, c). For a strength ratio cp=cm greater than 2.8 (see Fig. 11a),
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failure occurs exclusively in the matrix phase. Thus, no further increase of the tensile strength is

observed for an increasing particle strength cp. Figure 12 illustrates upper bounds of the compressive

strength as a function of the friction angle uI of the interfaces. Similar to a previous study, two

different boundary conditions are investigated. Again, restraining the horizontal displacement at the
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top boundary leads to a higher strength of the composite material (approximately 5%). Temperature

changes in matrix/particle-composites, characterized by different thermal-dilation behavior for the

matrix and the particles, may result in eigenstresses leading to debonding effects at the particle/

matrix-interface. Figure 13b and c show upper-bound results for matrix/particle-composites with

material interfaces weakened by a reduction of the cohesion, with cp=cI ¼ 10, considering increased

values for the friction angle at the interfaces. Figure 13a shows the decrease of the tensile strength as

a function of the friction angle of the interfaces. With increasing volume fraction of the particles,

resulting in a greater number of interfaces to be incorporated into the failure mechanism, the tensile

strength of the composite material decreases. The possibility of reducing the strength properties of

the interfaces allows consideration of debonding between particles and the matrix during upscaling.

Figure 14a shows upper-bound results for the tensile strength for different crack densities, defined by

the dimensionless parameter d ¼
P

Ncracks
(crack length)2/area. Hereby, the failure mechanism is

composed by plastic failure zones developing between the existing microcracks, with the latter

strongly affecting the failure mechanism. For example, both a diffuse failure (Fig. 14b) and a distinct
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failure surface (Fig. 14c) were obtained for the same crack density. For great crack densities, the

influence of the crack pattern leads to a scatter of the tensile strength of about 25%.

4.2 Two-dimensional loading situation

In this subsection, the proposed upscaling scheme is applied to biaxial-loading situations. In order to

enable the formation of proper failure modes, tangential velocity jumps are allowed at each point of

the boundary of the RVE. Thus, the condition E ¼ eh iV (E is the macroscopic strain and eh iV
denotes the average of the microscopic strains over the body V), which is essential if averaging

techniques are used, is not enforced anymore. The obtained results are plotted in the principle-stress

(R1=R2)-plane, giving upper and lower bounds for the effective failure surface:

• In Fig. 15, an upper and a lower bound of the effective failure surface of a porous material, with

an air-void content of f a ¼ 27%, is given. Hereby, the Tresca criterion for plane strain, with a

uniaxial strength equal to 2c, is assigned to the matrix. The presence of air voids allows for

dilation and compaction of the RVE, giving a yield surface bounding the space of admissible

stress states for every biaxial loading situation. On the contrary, the Tresca criterion (plane

strain) for a homogeneous material (dashed line) is unbounded for R1 ¼ R2, resulting from the

restriction to in-plane failure modes in case of plane strain.

• Figure 16 shows an upper and a lower bound of the effective failure surface for the plane-

stress case of the same material system as before. In contrast to the plane-strain situation, the

material system becomes more flexible, yielding a larger reduction of the effective strength of

the porous composite. The aforementioned greater flexibility of the material system is evident

for the failure modes for R1 & R2. In contrast to the failure mode obtained for the plane-strain

study (Fig. 15), the width of the failure mode is significantly smaller in the plane-stress

situation (Fig. 16).
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• As mentioned in the previous subsection, failure of matrix–particle materials is often influenced

by degraded interfaces between the matrix and the particles. In Fig. 17, upper bounds of effective

failure surfaces for (a) the plane-strain and (b) the plane-stress situation are given for a weakened

matrix–particle material. Hereby, failure at the interface is described by the Mohr–Coulomb

criterion, with cm=cI ¼ 10 and uI ¼ 20�. Both the matrix and the particles obey the Tresca

criterion with cp=cm ¼ 10. The grey-shaded areas in the principal-stress planes show the

decrease of strength as a consequence of interface degradation.

5 Conclusions and outlook

In contrast to upscaling of elastic properties of composites characterized by a randomly-distributed

microstructure, where a smooth displacement field is assumed within the representative volume

element (RVE), upscaling of material failure is associated with a highly localized collapse

mechanism affecting both the bulk and the boundary deformations of the RVE. Accordingly,

standard mean-field techniques used in homogenization of elastic and viscoelastic properties cannot

be transferred to homogenization of strength properties.

In this paper, numerical limit-analysis was proposed for upscaling of material failure, suitable for

capturing complex mechanisms as observed in matrix-inclusion materials. The performance of the

proposed upscaling technique was illustrated by different investigations, focusing on the effect of air

voids and particles, degradation of interface properties, and of microcracks on the material strength.

Based on the obtained results, the following conclusions can be drawn:

• As regards the size of the RVE employed in limit analysis, the RVE-size/inclusion-size ratio

appeared to have only little influence on the strength of the composite material.

• On the other hand, the arrangement of the inclusions has a significant influence on the material

strength. This was reflected by the large scatter of the numerical results obtained for the tensile

strength of the composite material. However, this scatter decreased with increasing RVE-size/

inclusion-size ratio.
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• In case of intact interfaces between particles and the matrix, the presence of particles leads to an

improvement of strength properties of the composite material. Interestingly, this improvement,

which is greater for increasing strength properties of the particles, remains constant for a particle

strength 2.8-times greater than the strength of the matrix material. In fact, for strength ratios

greater than 2.8, failure occurs exclusively in the matrix phase.

• The degradation of strength properties at the interface between the particles and the matrix,

which is often observed in matrix–particle materials, resulted in a significant decrease of the

strength of the composite material. The aforementioned improvement of strength properties in

consequence of the presence of particles was compensated by the degradation process, with the

particles acting as air voids rather than as reinforcement. This fact led to similar failure modes as

observed for the material with air voids.

• The strength of a material damaged by microcracks was found to be influenced by both the

number and length of cracks, giving the crack density d, and the arrangement of the microcracks.

As a function of the latter, either diffuse failure or the development of localized failure surfaces

was observed.

Finally, the developed upscaling scheme was employed for determination of microstructure failure

surfaces, considering plane-stress and plane-strain situations. In this context, current research work is

devoted to the extension of the presented upscaling scheme to 3D microstructures, considering up to

30,000 higher-order elements [19]. Moreover, an extension of the 2D approach, considering up to

60,000 elements, will lead to bound gaps of approximately 3–5%. This extensions allow to assess

the quality of different upscaling schemes based, e.g., on averaging techniques.
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Appendix

Second-order-cone formulation of the Mohr–Coulomb criterion

• Mohr–Coulomb criterion (plane strain): the Mohr–Coulomb failure criterion for the plane-

strain situation reads

fMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryyð Þ2þ4r2

xy

q
þ rxx þ ryyð Þ sin u� 2c cos u� 0; ðA:1Þ

where c denotes the cohesion and u the friction angle. Considering

rm ¼
1

2
rxx þ ryyð Þ and sij ¼ rij � rmdij; ðA:2Þ

where dij is Kronecker’s d, the yield criterion (A.1) may be rewritten as

fMC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

xx þ s2
xy

q
þ rm sin u� c cos u� 0: ðA:3Þ

Based on the yield criterion (A.3), the quantities of the respective cone formulation read

L ¼ 1 0
0 1

� 	
; y ¼ y1

y2


 �
; qr ¼

sxx

sxy


 �
and z ¼ c cos u� rm sin u: ðA:4Þ

• Mohr–Coulomb criterion (plane stress): for the plane-stress situation, in addition to (A.3) the

stress state is constrained by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

xx þ s2
xy

q
þ rm �

2c cos u
1þ sin u

� 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

xx þ s2
xy

q
� rm �

2c cos u
1� sin u

� 0: ðA:5Þ

Accordingly, three constraint conditions represented by three cones are used within SOCP (see

Fig. 18). Each cone is formulated by means of its own stress tensor, i.e., rI ; rII ; and rIII for Cone I,

Cone II, and Cone III, respectively, giving three stress tensors for each material point. Finally, a
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Fig. 18. Mohr–Coulomb failure surface for plane-stress situation and corresponding SOCP formulation (r1,

r2: principle stresses)
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unique solution for the stress tensor is enforced by additional equality constraints. The quantities for

the respective cone formulation are given by

Cone I : zI ¼ c cos u� sin urI
m; ðA:6Þ

Cone II : zII ¼ 2c cos u
1þ sin u

� rII
m; ðA:7Þ

Cone III : zIII ¼ 2c cos u
1� sin u

þ rIII
m; ðA:8Þ

and L, y, and qr according to Eq. (A.4), with qI
r ¼ sI

xx; s
I
xy

j kT

;qII
r ¼ sII

xx; s
II
xy

j kT

and

qIII
r ¼ sIII

xx; s
III
xy

j kT

:
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