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Summary. The classical solution of the steady-state creep problem for a pressurized thick-walled cylinder is

based on the power law constitutive equation. Several heat resistant steels show, however, the linear dependence

of the creep rate on the applied stress within a certain stress range. In this paper we apply an extended

constitutive equation which includes both the linear and the power law stress dependencies. The material

constants are identified for the 9Cr1MoVNb steel at 600 �C. We recall the boundary value problem of steady-

state creep for the thick cylinder under the plane strain condition. We present an approximate solution

illustrating the stress redistributions as a result of the creep process. The analysis shows that for the certain range

of the internal pressure both the linear and the power law creep must be taken into account. In this case the

results according to the extended constitutive model essentially differ from the classical ones. The obtained

solution is also applied to verify the developed user-defined creep material subroutine inside a commercial finite

element code.

1 Introduction

Many components of power generation equipment are subjected to high temperature environment

and complex loading conditions over a long time. Design procedures and residual life assessments

for pipe systems, rotors, turbine blades, turbine and valve casings, etc., require the accounting for

creep and damage processes. The aim of ‘‘creep modeling for structural analysis’’ is the development

of methods to predict time-dependent changes of stress and strain states in engineering structures up

to the critical stage of creep rupture, see, e.g., [1], [2]. Structural analysis under creep conditions

requires a reliable constitutive model which reflects time-dependent creep deformations and

processes accompanying creep like hardening/recovery and damage. An important feature of the

creep constitutive equation is the response function of the applied stress which should extrapolate the

creep data usually obtained under increased stress in the laboratory to the in-service loading

conditions. A typical example is the power law which often finds application because of smaller

effort in identification of material constants and simplicity in structural analysis. However, it is

known from the materials science that the ‘‘power law creep mechanism’’ operates only for a specific
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stress range and may change to the linear, e.g. diffusion type mechanism for the low stress values [3].

Furthermore, as shown in the recently published experimental data [4], [5], advanced heat resistant

steels may exhibit the transition from the linear to the power law creep at the stress levels, relevant

for engineering applications.

In this paper we address the creep analysis of heat resistant steels and thick-walled structural

components for a wide stress range including low and moderate stress values. Based on the available

experimental data the creep constitutive equation which describes both the linear and the power law

creep is discussed. As an example for the structural mechanics application we recall the classical

problem of a pressurized thick cylinder under plane strain conditions. This problem is widely

discussed in textbooks on creep mechanics, e.g., [1], [6], [7], and usually applied as a benchmark

problem to verify the finite element solutions, e.g., [8]. However, the available results are only valid

for either the linear or the power law creep ranges. We present an extended solution by including the

transition from the linear to the power law creep. Based on the results we discuss the validity range

of the classical approach.

2 Constitutive model

Within the phenomenological approach to the creep modeling one usually starts with the constitutive

equation for the minimum (secondary) creep rate. To characterize the hardening/recovery and

damage processes this equation is generalized by introduction of internal state variables and

appropriate evolution equations. The conventional constitutive equations characterize the secondary

creep rate by the power law stress function and include the effect of tertiary creep by means of the

scalar valued damage parameter. An example is the following model [9]:

_ecr ¼ 3

2
a

rvM

1� x

� �n s

rvM
; _x ¼ b

½arT þ ð1� aÞrvM�k

ð1� xÞl
ð1Þ

with

rvM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s � �s

r
; rT ¼

1

2
ðrI þ jrI jÞ:

In this notation _ecr is the creep rate tensor, r is the stress tensor, s is the stress deviator, rvM is the von

Mises equivalent stress, rT is the maximum tensile stress, rI is the first principal stress, and x is the

damage parameter. The weighting factor a characterizes the influence of the principal damage

mechanisms (rT-controlled or rvM-controlled). a, b, n, k and l are material constants.

To identify the material constants in Eqs. (1), experimental data of uni-axial creep up to rupture

are required. The identification procedure is presented for example in [10]. The model (1) has been

widely used to characterize creep and long-term strength of materials and structures. Examples of

material constants as well as structural mechanics applications can be found in [2], [10]–[13] among

others. However, the model (1) guarantees the correct prediction of the creep and the damage rates

only for a certain stress range. To discuss the range of validity let us consider the uni-axial stress

state with the tensile stress r. In this case Eqs. (1) provide the following relations

_ecr
min ¼ arn; t� ¼

1

Ark
; ecr

� ¼ Brn�k; A � ðlþ 1Þb; B � a

bðlþ 1� nÞ ; ð2Þ

where _ecr
min is the minimum creep rate, t� is the time to fracture and ecr� is the creep strain before

fracture (creep ductility). The plots of Eqs. (2) in a double logarithmic scale represent straight lines.

Figure 1a shows a typical dependence of the minimum creep rate on the applied stress for advanced
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heat-resistant steels. Within the range 0 B r B r0, where r0 is the transition stress, the creep rate is

a nearly linear function of the stress. The ‘‘moderate’’ stress range is characterized by the power law

creep. The creep exponent takes usually the values between 3 and 12 depending on the material, type

of alloying and processing conditions. Within the region of ‘‘high’’ stresses the power law

breakdown is usually observed. Figure 1b illustrates a typical long-term strength curve, i.e. the

dependence of time to creep fracture on the applied stress. The available data for the range of ‘‘low’’

stresses suggest that the dominant damage mechanism is the nucleation and growth of intergranular

cavities and microcracks [14]. For moderate stresses the damage evolution is determined by the

mixed (brittle–ductile) mode. The additional damage mechanisms are the microstructure degradation

processes, e.g. the subgrain coarsening and coarsening of carbide precipitates [15]. For ‘‘high’’ stress

values the fracture mode is primarily ductile and the uni-axial specimen necks down as a result of

excessive deformation.

Here let us focus on the analysis of steady-state creep. Processes associated with the

microstructural degradation will be ignored. Although such an approach does not allow to predict

the time to creep fracture, it provides a first estimation of the stress redistribution in a structure.

Figure 2 shows the experimental data for 9Cr1MoVNb steel at 600 �C after [4], [5]. In the ‘‘low’’

stress range the creep rate can be well approximated by a linear function of the applied stress. For the

‘‘moderate’’ stress range the considered steel exhibits power law creep with the creep exponent

n ¼ 12. To describe the creep behavior for both the linear and power law creep ranges various

functions of stress, which are more or less physically motivated, have been proposed. Overviews are

presented in [7] and [16] among others. One example is the hyperbolic sine law _e ¼ A sinhðBrÞ;
applied in [17]–[19] to characterize minimum creep rate of various materials. However, for the

considered steel this equation describes well only the linear creep range, Fig. 2. In what follows let

us assume the minimum creep rate to be the sum of the linear and the power law stress functions

_e ¼ a
r
r0
þ a

r
r0

� �n

¼ a
r
r0

1þ r
r0

� �n�1
" #

; ð3Þ

where r0 is the ‘‘transition stress’’. With n ¼ 12 and r0 ¼ 100 MPa the model (3) provides a good

description of the minimum creep rate for both the linear and the power law creep ranges, Fig. 2.
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Many examples of structural analysis, e.g., [2], show, that the ranges of ‘‘low’’ and ‘‘moderate’’

stresses are mostly important for engineering applications. Therefore, for structures made from

advanced heat resistant steels the use of the power law stress function may lead to a significant

underestimation of the creep rate for the ‘‘low’’ stress values.

Equation (3) can only be applied to the case of constant temperature. For non-isothermal

conditions the material constants a and r0 should be replaced by functions of temperature. The

experimental data presented in [4] for different temperatures suggest that with an increase of the

temperature the transition stress r0 decreases, while the constant a increases. In what follows let us

assume isothermal conditions for the sake of brevity.

The structural analysis requires a constitutive model of creep under multi-axial stress states.

Following the creep theory proposed by Odqvist [20] the creep rate tensor _ecr is defined by the creep

potential W and the flow rule

_ecr ¼ oW

or
; W ¼ Wðr;TÞ: ð4Þ

For isotropic materials the creep potential must satisfy the restriction

W Q � r �QT
� �

¼ WðrÞ ð5Þ

for any symmetry transformation Q, Q�QT ¼ I, det Q ¼ :1. From this follows that the potential

depends only on the three invariants of the stress tensor. With the principal invariants

J1ðrÞ ¼ tr r; J2ðrÞ ¼
1

2
½ðtr rÞ2 � tr r2�; J3ðrÞ ¼ det r ¼ 1

6
ðtr rÞ3 � 1

2
tr rtr r2 þ 1

3
tr r3 ð6Þ

one can write

WðrÞ ¼ WðJ1; J2; J3Þ:

Any symmetric second rank tensor can be uniquely decomposed into the spherical and the deviatoric

part. For the stress tensor the decomposition has the form
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r ¼ rmI þ s; tr s ¼ 0 ) rm ¼
1

3
tr r:

With the principal invariants of the stress deviator

J2D ¼ �
1

2
tr s2 ¼ � 1

2
s ��s; J3D ¼

1

3
tr s3 ¼ 1

3
ðs � sÞ ��s

the potential takes the form W ¼ W(J1, J2D, J3D). Applying the rule for the derivative of a scalar

valued function with respect to a second rank tensor one can obtain

_ecr ¼ oW

oJ1
I � oW

oJ2D

sþ oW

oJ3D

s2 � 1

3
tr s2I

� �
: ð7Þ

In the classical creep theory it is assumed that the inelastic deformation does not produce a

significant change in volume. The spherical part of the creep rate tensor is neglected, i.e., tr _ecr ¼ 0:

Setting the trace of (7) to zero results in

tr _ecr ¼ 3
oW

oJ1
¼ 0 ) W ¼ WðJ2D; J3DÞ;

and the first term in the right-hand side of Eq. (7) can be neglected. From this follows that the creep

behavior is not sensitive to the hydrostatic stress state r ¼ �pI; where p > 0 is the hydrostatic

pressure. The last term in the right-hand side of Eq. (7) is nonlinear with respect to the stress deviator

s. Equations of this type are called tensorial nonlinear equations, e.g., [1], [21]. They allow to

consider some non-classical stress state dependencies or second-order effects of the material

behavior. Within the engineering creep mechanics such effects are usually ignored. The assumption

that the potential is a function of the second invariant of the stress deviator only, i.e. W ¼ W(J2D),

leads to the classical von Mises type theory. In applications it is convenient to introduce the

equivalent stress to compare the creep behavior under different stress states including the uni-axial

tension. With the von Mises equivalent stress

rvM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3J2D

p

and W ¼ WðrvMðrÞÞ the flow rule (4) results in

_ecr ¼ oWðrvMÞ
orvM

orvM

or
¼ oWðrvMÞ

orvM

3

2

s

rvM
: ð8Þ

The second invariant of _ecr can be calculated as follows:

_ecr � �_ecr ¼ 3

2

oWðrvMÞ
orvM

� 	2

:

Introducing the notation _e2
vM ¼ 2

3
_ecr � �_ecr and taking into account that P ¼ _ecr � �r� 0; where P is the

dissipation power, one can write

_ecr ¼ 3

2
_evM

s

rvM
; _evM ¼

oWðrvMÞ
orvM

: ð9Þ

The Odqvist creep theory assumes the power law type creep potential

WðrvMÞ ¼
a

nþ 1
rnþ1

vM :

According to experimental data for the considered steel let us apply the potential
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WðrvMÞ ¼
a

2

rvM

r0

� �2

þ a

nþ 1

rvM

r0

� �nþ1

:

In this case the creep constitutive equation (9) takes the form

_ecr ¼ 3

2

_e0

r0
1þ rvM

r0

� �n�1
" #

s; _e0 � ar0 ð10Þ

with the following material constants:

_e0 ¼ 2:5� 10�7 1=h; r0 ¼ 100 MPa; n ¼ 12:

3 Governing equations for steady-state creep of thick cylinder

Consider a thick cylinder section loaded by internal pressure, Fig. 3. Let v be the vector

characterizing the velocity of the material point. Assuming the plane strain state we may write

v ¼ vrðrÞer ) rv ¼ ðrvÞT ¼ ovr

or
er � er þ

vr

r
eu � eu: ð11Þ

The condition of the volume constancy yields

r � v ¼ ovr

or
þ vr

r
¼ 0 ) vr ¼

C

r
; ð12Þ

where C is an integration constant. In what follows we apply the geometrically linear theory. In this

case the symmetric part of the velocity gradient is the strain rate tensor

_e ¼ C

r2
ðeu � eu � er � erÞ; ð13Þ

and the latter can be additively decomposed into the elastic and the creep part. The rate of the stress

deviator is related to the rate of the deviatoric part of the elastic strain

_s ¼ 2Gð_e� _ecrÞ; ð14Þ

where G is the shear modulus. If the hardening and the damage processes are negligible and the

pressure is constant over time, then the steady state solution exists for which _s ¼ 0: With Eqs. (10),

(13) and (14) we obtain

r rb ra

p

r

ra ≤ r ≤ rb

ϕ

eϕ (ϕ)

er(ϕ)

Fig. 3. Thick cylinder, geometry and loading
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C

r2
ðeu � eu � er � erÞ ¼

3

2

_e0

r0
1þ rvM

r0

� �n�1
" #

s: ð15Þ

According to Eq. (15) the stress deviator and the von Mises equivalent stress have the following

form:

sðrÞ ¼ sðrÞðeu � eu � er � erÞ ) rvMðrÞ ¼
ffiffiffi
3
p

sðrÞ; ð16Þ

where the function s(r) must be found from the following nonlinear equation

C

r2
¼ 3

2

_e0

r0
1þ

ffiffiffi
3
p

sðrÞ
r0

 !n�1
2
4

3
5sðrÞ: ð17Þ

The classical approach to the steady state creep of the thick cylinder assumes the power law creep

constitutive equation, e.g., [1], [6], [7]. In this case Eq. (17) simplifies to

C

r2
¼ 3

2

_e0

r0

ffiffiffi
3
p

sðrÞ
r0

 !n�1

sðrÞ:

The mean stress rm must be found from the equilibrium condition

rrm þr � s ¼ 0 ) drm

dr
¼ ds

dr
þ 2

r
s: ð18Þ

The radial stress rr, the hoop stress ru and the axial stress rz are defined as follows:

rr ¼ er � r � er ¼ rm � s; ru ¼ eu � r � eu ¼ rm þ s; rz ¼ ez � r � ez ¼ rm: ð19Þ

The radial stress must satisfy the following boundary conditions:

rrðraÞ ¼ �p; rrðrbÞ ¼ 0: ð20Þ

4 Solutions

Let us rewrite Eq. (17) in the normalized form

f ð~sÞ ¼ ~sþ ~sn ¼
~C

g2
; ~s � s

r0

ffiffiffi
3
p
¼ rvM

r0
; ~C � Cffiffiffi

3
p

_e0r2
a

; g ¼ r

ra

: ð21Þ

Since f ð~sÞ is a monotonically increasing function, an inverse function exists such that

~s ¼ f�1ð~C=g2Þ: ð22Þ

With the boundary condition rr(1) ¼ @p and Eqs. (18)–(20) the following equation can be

derived:

Z1=f

1

2

r
f�1ð~C=g2Þdg ¼

ffiffiffi
3
p

p

r0
; f ¼ ra

rb

: ð23Þ

By solving Eq. (23) the integration constant ~C can be obtained. From Eqs. (18), (19) and (20) the

following equations for the stress distributions along the radial coordinate g can be derived:
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rrðg; ~CÞ ¼ 2r0ffiffiffi
3
p

Zg

1=f

1

g
f�1ð~C=g2Þdg; ruðg; ~CÞ ¼ 2r0ffiffiffi

3
p

Zr

1=f

1

g
f�1ð~C=g2Þdgþ f�1ð~C=g2Þ

2
64

3
75: ð24Þ

The classical solution to the steady-state creep of the thick cylinder is based on the power law

stress function, e.g., [6]. It follows from Eqs. (21)–(24) by assuming ~s	 1: In this case

f ð~sÞ ¼ ~sn ) f�1ð~C=g2Þ ¼
~C1=n

g2=n
:

Equation (23) yields

~C1=n ¼
ffiffiffi
3
p

p

r0

1

nð1� f2=nÞ
:

The normalized von Mises equivalent stress can be obtained from Eq. (22) as

~s ¼
ffiffiffi
3
p

p

r0

1

nð1� f2=nÞg2=n
: ð25Þ

Equations (24) provide the following stress distributions:

rr ¼ �
p

1� f2=n
g2=n � f2=n
� �

; ru ¼
p

1� f2=n
f2=n � n� 2

n
g2=n

� �
: ð26Þ

According to Eq. (25) the normalized von Mises stress takes the minimum value on the outer surface

of the cylinder, i.e. for g ¼ 1/f

~smin ¼
ffiffiffi
3
p

p

r0

f2=n

nð1� f2=nÞ
:

The classical solution can only be applied for ~smin 	 1. In this case the cylinder ‘‘operates’’ in the

power law creep range. For the normalized pressure we obtain

p

r0
	 nffiffiffi

3
p 1� f2=n

f2=n
:

As an example let us assume f ¼ 0.5. For 9Cr1MoVNb steel at 600 �C with r0 ¼ 100 MPa and

n ¼ 12 we find that p 	 0.848r0 ¼ 84.8 MPa.

On the other hand, if we set ~s
 1; then the linear creep range, i.e. f ð~sÞ ¼ ~s; can be assumed. The

corresponding stress distributions follow from Eqs. (25) and (26) by setting n ¼ 1. The normalized

von Mises stress takes the maximum value at the inner radius g ¼ 1,

~smin ¼
ffiffiffi
3
p

p

r0

1

1� f2

 1:

With f ¼ 0.5 and r0 ¼ 100 MPa we find that cylinder ‘‘behaves’’ in the linear creep range for

p 
 43.3 MPa. We observe that for the considered steel the classical approach can be applied either

for very high or for very low pressures.

To match the results the transition from the linear to the power law creep must be taken into

account. In this case the inverse function f
@1 and consequently the stress distributions cannot be

presented in the closed analytical form. To obtain an approximate solution of Eqs. (21)–(24) two

numerical procedures including the numerical integration and finding the root of a nonlinear

algebraic equation are required. For the calculations we applied the Mathcad package. The input
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parameters are the ratio of the cylinder radii f, the normalized pressure ~p ¼ p=r0 and the creep

exponent n. Figure 4 shows the dependence of the integration constant ~C on the normalized pressure

~p in the double logarithmic scale for the case f ¼ 0.5. Similar to the minimum creep rate versus

stress dependence, Fig. 2, the linear, the transition and the power law ranges are observable. Figure 5

illustrates the dependence of the hoop stress on the normalized pressure for different values of f. The

validity ranges of the classical solution can be recognized. For both the low and the high pressures

the results do not depend on ~p and agree with the classical solution (26) for n ¼ 1 and n ¼ 12. We

observe that if the power law stress function would be applied then the hoop stress would be

underestimated on the inner surface and overestimated on the outer surface. The range of validity of

the power law creep depends on f and extends with an increase of f (decrease of the wall thickness).

Therefore for thin walled pipes loaded by a moderate pressure the power law creep is a reasonable

approximation. Figure 6 illustrates the stress distributions along the radial coordinate for the case

f ¼ 0.5. For ~p ¼ 0:2 the results agree with the classical solution assuming the linear creep. Let us

note that for n ¼ 1 the stress distributions (26) coincide with the Lamé solution of the linear

elasticity problem. For ~p ¼ 0:9 the results correspond to the power law creep solution. In this case

the hoop stress relaxes down on the inner surface and increases on the outer surface. For moderate

pressures usually encountered in the praxis the result differs from the classical one. The hoop stress

still relaxes down on the inner surface but its maximum shifts towards the core layer of the cylinder.

In recent years the finite element method has become the widely accepted tool for structural

analysis. The advantage of the finite element method is the possibility to simulate creep processes in

real engineering structures with complex geometries, various types of loading and boundary

conditions. To apply a general purpose finite element code a user-defined material subroutine which

includes the specific creep constitutive model should be developed. To assess that the subroutine is

correctly coded and implemented, results of finite element computations must be compared with

reference solutions of benchmark problems. Several benchmark problems based on the creep

constitutive model (1) are presented in [2], [22].

We incorporated the creep constitutive equation (10) into the ABAQUS finite element code. The

results obtained by the approximate solution of Eqs. (21)–(24) do not involve the finite element

meshing and can be applied to verify the finite element procedures. Let us note that the steady state

creep problem of the thick cylinder in the power law creep range is the standard benchmark [8]. The

geometrical data and the finite element model are assumed as given in the benchmark manual [8]. In

the calculations we set ra ¼ 25.4 mm, rb ¼ 50.8 mm. The pipe section has been meshed by ten
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CAX8R elements. Figure 7 illustrates the solutions based on the ABAQUS finite code and the

approximate solutions of Eqs. (21)–(24). We observe that for different values of the normalized

pressure the solutions are in a very good agreement.
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5 Conclusions

The aim of this paper was to describe the minimum creep rate for advanced heat resistant steels

for both the linear and the power law creep ranges. The outcome is the Odqvist type creep

constitutive equation with three material constants including the creep exponent n, the stress r0

characterizing the transition from the linear to the power law creep range as well as the reference

creep rate _e0: The material constants are identified for 9Cr1MoVNb steel at 600 �C. To illustrate

the influence of the linear creep on the structural behavior we presented an example for the

pressurized thick cylinder. The results show that the character of the steady state stress

distributions additionally depends on the normalized pressure ~p ¼ p=r0: For low values of ~p the

cylinder behaves in the linear creep range. The hoop stress has the maximum on the inner surface.

For high values of ~p the classical power law type solution follows with the maximum hoop stress

on the outer surface. For moderate values of ~p both the linear and the power law creep ranges

must be taken into account. The maximum of the hoop stress shifts towards the core of the

cylinder. The range of validity of the classical solution depends on the material behavior and in

particular, on the transition stress value r0. For materials with a narrow linear creep range, i.e. for

small values of r0 the classical power law creep solution can be applied. For advanced heat

resistant steels, however, r0 usually takes values between 50 and 100 MPa depending on the

absolute temperature [4]. In this case the power law creep assumption may lead to misleading

conclusions regarding the structural behavior under creep conditions.

Future studies should be related to the extension of the secondary creep model to account for

temperature dependence as well as microstructure degradation processes like subgrain coarsening

and creep cavitation. This can be accomplished by the introduction of appropriate Arrhenius type

temperature functions and internal state variables.
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