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Summary. A class of nonsingular yield conditions depending on three parameters is analyzed for isotropic
materials exhibiting strength differential effect and pressure insensitivity. The yield condition can then be
expressed in terms of the second and third stress deviator invariants. The convexity requirement is considered
and the constraints imposed on the material parameters are discussed in detail. The dual dissipation function is
derived in the analytical form. The condition can be applied in the analysis of high strength alloys (such as
Inconnel 718) or of shape memory alloys (such as NiTi, NiAl, CuZnGa, or CuAlINi) in order to specify the onset
of yield, or of martensitic or austenitic transformation. The conditions can easily be generalized to account for
mixed hardening and back stress anisotropy. Some experimental data are provided to verify the proposed
conditions.

1 Introduction

The present work is devoted to the analysis of yield conditions and dissipation potentials for metals
or metallic alloys exhibiting the strength differential (SD) effect, namely different yield stress in
tension and compression. This effect has been observed in many iron-based metals such as plain
carbon or low alloy steels, cast iron and also in some metals such as titanium, aluminium,
magnesium and nickel-base super alloys, such as Inconel 718. A separate class of shape memory
alloys (NiTi, NiAl, CuZnGa) also exhibit different tensile and compressive critical stresses
corresponding to the onset of phase transformation. The corresponding transformation surfaces then
exhibit varying critical stresses along radial stress paths.

In early works the SD effect was associated with pressure-dependent flow and dilatancy of metals.
Spitzig and Richmond [1] used the Drucker—Prager yield condition dependent on the first stress and
the second stress deviator invariants /1, /5 coupled with the associated or non-associated flow rule.
The microstructural aspects of SD effect were discussed among others by Chait [2], [3], Casey and
Sullivan [4] and Rauch and Leslie [5]. The pressure-dependent dislocation motion was assumed with
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plastic strain exhibiting volumetric portion. The importance of non-Schmid effects in slip systems
was emphasized by Kuroda and Kuwabara [6].

However, for hexagonal close packed (hcp) materials the twinning and slip mechanism contribute
to SD effect, cf. Hosford and Allen [7] and Hosford [8]. As these metals are pressure insensitive, the
dependence of the yield condition on the first stress invariant should be neglected and the effect of
the third stress deviator invariant J3 becomes important. Similarly, the onset of martensitic
transformation in shape memory alloys was assumed to depend on J3, cf. Raniecki and Lexcellent
[9] and Lexcellent et al. [10], or generated from micromechanical models, cf. Huang [11]. Recent
studies by Iyer and Lissenden [12], Casacu and Barlat [13] provide formulations of yield conditions
and flow potentials for magnesium alloys and nickel base alloys assuming dependence on the third
stress deviator invariant. The simulation of deformation anisotropy was also presented by Casacu
and Barlat [13] by modifying the isotropic yield condition. In an earlier paper by Shrivastawa et al.
[14], a general form of anisotropic yield condition was discussed with account for the effect of J3.

In Sect. 2 we consider a three-parameter class of isotropic yield conditions depending on J5 and
/3 and independent of hydrostatic pressure. The constraints imposed by the convexity condition will
be discussed in detail and the parameters will be identified for Ni-Ti shape memory alloys. In Sect. 3
the form of the dissipation function will be derived and the inverse relations will be generated.

2 Analysis of three-parameter yield conditions
2.1 General formulation

Consider an isotropic material for which the yield condition can be expressed in terms of the second
and third stress deviator invariants Jo, J3, namely in the form

TS’l(J27J3) _ (JZ)Sm/Z _c (Jg)m _ T?'ﬂl =0, (1)
where

1 1 ’ 1 1 . 1
Joy = 55;;]'87;]' = étr(sz), J3 = §S¢k8k181¢ = gtr(sd) = det(s), Sij = 045 — §O’kk($7jj (2)

and s;; denotes the deviatoric part of the Cauchy stress tensor o;;, the material parameters are 721, 7,
and c. For 7; = 1 we obtain the yield condition considered by Casacu and Barlat [13], thus

F1(Ja,J3) = (J2)*? —cdy — 2 =0, (3)
and for 72; = 2 the condition proposed by Drucker [15],
81 (J2,J5) = (J2)° — c(Js)? — 7 = 0. (4)

Let us note that for even exponents 721 = 2, 4, 6,. .. the yield condition predicts the same values of
the yield stress in tension and compression. However, for odd exponents 72; = 1, 3, 5, ... the yield
condition provides different values of the yield stress, thus exhibiting the SD-effect. Introduce the
Lode invariants 7 and ,

r(s) = [tr(s?)]Y? = |s| = V/2J2, y(s) = cos(30) = L&;}z = V6tr(N?), (5.1,2)
2(J2)

/

positive half-axis of principal stress ¢; on the octahedral plane, cf. Fig. 2. The Lode invariant y(s) is

where ¥ = |s| = (sijsij)l ? and 0 represent the stress radius and its angle with the image of the

the homogeneous function of degree zero of the stress deviator. It is bounded, —1 <y < 1, and
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takes the values: y = 0 at simple shear (0 = 30°), y = 1 at simple tension (0 = 0°) and y = —1 at
simple compression (0 = 60°). As indicated in Eq. (5.2) it can be expressed in terms of the
normalized deviator represented by the unit vector N along the stress radius

=== uaWN)=0, tr(N?) =1. (6)

In passing we note that this unit tensor has the following mathematical properties:

3detN = tr(N?) = %6% tr(N?) = é (7)

which directly follow from the Cayley—Hamilton theorem specified for normalized deviatoric tensors,
g 1 1 1 3

Taking into account Eqs. (5) the yield condition (1) can be transformed as follows:

F1 (o, J3) = (Jz)s’"“/z{l - c[(J];;/z]’”‘ } =0 & Fy(eds) = 1foy) — V32t =0, (9.1,2)
2
where
oL 2 "
Soy) = [1 —coy™ ', co= C(T\/g> . 1o

Two different yield functions &, (cf. Eq. (1)) and &, (cf. Eq. (9.2)) describe the same yield surface
in the s-space. The presented transformation illustrates the general mathematical property noted by
Hill [16]: the yield function § of a star-shaped (with respect to the origin) yield surface can be scaled
over the surface so that (3§/a;;)a;; is uniform. In the considered case (0F,/0s;;)s; = V21 . Since
v is the length of the radius-vector in the deviatoric space and y = \/gtr(N 3) (cf. Egs. (5)), the
equation of the yield surface (9.2) in the deviatoric space can also be presented in alternative
parametric form

ﬂTCN

oly(N)]

where four independent components of N, cf. Eq. (6), play the role of parameters.

More generally, the conical limit surface for pressure sensitive material can be described as
follows [17], [18]:

§(o) =S (y)r(s) + Hitr(e) —Ho =0, f(y) >0, f(0)=1, (11)
and its counterpart for pressure-insensitive isotropic metallic solids becomes

F(s) =S (W)r(s) —V2re =0, f(y)>0, f(0)=1

or

outf (y) = V3, (12)

where H and H are material parameters, o.; is the effective Huber—Mises stress, gof = v/3J3 . The
positive-valued function f'(y) is called the shape function of the critical state surface. It is scaled here
so that f = 1 at pure shear. Therefore, for pressure-insensitive materials the constant 7, represents
the yield (or critical) stress in pure shear. The class of non-singular (regular) yield conditions is
defined by scale functions with bounded first derivative df(y)/dy = (y). The notion of shape
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function was introduced by Podgérski [17], [18] to describe the section of a general conical limit
surface made by the deviatoric plane for pressure sensitive materials (concrete, sand and clay).
Generalizing the earlier proposals of Lade and Duncan [19], Matsuoka [20] and Ottosen [21] he
proposed the trigonometric form of the shape function whose alternative form is

f(y) —cos F arccos(ay) — [_f] (13)

"~ cos(30 — p) 3
where 0 <a<1 and 0 < f)’ < 30° are material parameters.

As remarked in Sect. 1 we shall here analyze simpler exponential and power two-parameter shape
functions, and investigate in details the convexity of the described critical surfaces. In calibrating
yield conditions with experimental data, an alternative scaling of the shape function may also be
convenient. For example, one can write the condition (12) in the equivalent forms
_ V2/3a.

oet(y) = 0., N(-1)=1 & r(s)_m

oetfo(y) =0 fo(1) =1 & r(s) = %,

where ¢, and o; denote yield stresses in simple compression and simple tension, respectively. The

(14.1-6)

following connections between these different shape functions occur:

Sf) =mfy), L) =aW), fly)=mai(y), (15)

where the parameters m and g

m= @, g=2 (16)
47 Oc
specify the tension—compression—shear limit state asymmetry called frequently “the strength
differential effect” or SD effect. Let us note that for Huber—Mises yield condition there is
q=m=1.
It is shown in Appendix A that the yield surface specified by (12) is convex provided the shape
function f(y) satisfies the following condition:

(1= ) ')+ 0 a7)

in the interval —1 <y < 1.

Here and in the subsequent analysis we shall adopt the convention that the superimposed prime
denotes the derivative of a function with respect to the argument enclosed in brackets. The convexity
condition for differently scaled shape functions is identical to (17), thus f1(y) or f2(y) can be
substituted into Eq. (17).

2.2 Two parameter exponential shape function

Consider the two-parameters exponential shape function f1(y) defined by
N) =1+0{1 —exp[-ai(1 +y)]} A(-1)=1, (18)

where ¢; > 0 and b, are constant parameters to be determined from the experimental data. Note that
for ¢; = 0 or b; = 0 the condition (18) becomes the Huber—Mises yield criterion.

The convexity condition (17) imposed on the exponential shape function (18) generates the
inequality
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, 1 -
biF(y,c1)<(1+b1), Fi(y,c1) = 9(—c§y2 +oy+cE+ §>e[—°l<y+l>] (19)

which must be satisfied for arbitrary —1 < y < 1. The careful analysis of the function F';(y, cy)
leads to the following conclusions:

(i) When 0 < ¢; < ¢] = 8/27 the function F', reaches its supremum at the boundary y = 1. It is
equal to F'1(1, ¢1) = (9c1 + D)exp(—2c¢y).
(i) When ¢; > ¢ the function F'; reaches the analytical maximum F'y [y1(¢cy), ¢1] for

1 49

y:yl(cl)z—[3— — +4c}

201 9 (20)

that belongs to the interval —1 <y < 1.
(iii) The function F'; reaches its infimum at the boundary y = —1 of the interval —1 <y < 1.1t
is equal to F'y(—1, ¢;) = 1 — 9c;.

The convexity condition therefore provides the parameter inequalities

Bo(c1) <bi < Bi(c1), (21)
where
F1(1,+1)—1 for ClSC’{ :8/27
Bi(c1) = 1 f £ = 8/27
Filyi(c1),e1]-1 orey =cp = / ’ (22)
1 -1

Cl)=7—F————"=—.
ﬁZ( 1) Fl(—l,cl)—l 961
The graphical illustration of the convexity inequalities (21) is presented in Fig. la. It is seen in
Fig. 1a that for increasing values of parameter c; the convexity interval of the variation of b;
becomes narrow with b; — 0 for large ¢;. Determining from Egs. (14.1) and (18) the asymmetry
parameters 12 and g, cf. Egs. (16), we have

D) =1+b(1—e?) =g, A0)=1+b(1—e)=(qgm)" (23)
and

L (1—qm _ (1-gm)
0171n(m_1>, bl*q—m[Z—m(1+q)] (24)

provided that either (m > 1 and gm < 1) or (m < 1 and gm > 1) holds.
Two bounding curves of Fig. 1a can now be mapped onto the bounding curves in the m — ¢; and
q — c; planes shown in Fig. 1b. Their equations are (¢ = 1, 2)

q=qi(c1) =[1+Bi(cr)(1 —e )],

-1 (25)
m = mi(er) = [+ Bi(en)(1 — ][+ Bilen)(1 )],

where f1(c;) and pfs(c;) are defined by Egs. (22). The convexity domain (q; < q < @o,
my < m < m,) shown in Fig. 1b specifies the variation of the asymmetry parameters q, m
satisfying inequalities (21). Figure 1c presents the forms of the exponential shape functions for
selected parameters corresponding to the border of the convexity region (cf. Eqgs. (22)). When
q = [1/f1(1)] <1 the functions f1(y) are increasing, when q > 1 they are decreasing functions
of the Lode parameter y.
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Introduce the non-dimensional effective stress 7; defined as follows:

Oef \/3—/57(0') B 1 (26)

mn=—-= =

Oc Oc fl (COS 39) '

The geometrical loci of the relation (26) for the exponential shape function on the octahedral plane
are presented in Fig. 2a, b for selected parameters corresponding to the border of the convexity
region.

The thermodynamics of pseudoelasticity in shape memory alloys developed by Raniecki and
Lexcellent [9] employs the notion of the shape function to describe the pseudoelasticity limits, i.e.
the limit stability states of austenite where the austenite—martensite phase transitions are initiated.
The exponential form of the shape function was applied in Raniecki et al. [22] to describe the limits
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Fig. 2. Examples of exponential yield loci: a for the case ¢ <1 and the values of ¢c; = 0.45, 1.0, 3.0; b for
the cases g<1, ¢y =8/27and g > 1, ¢; = 0.01, ¢; = 2.0

in Ti-51 at %Ni shape memory alloy. The proportional torsion—compression—tension tests were
performed at y = 0, £1, +11/16 under controlled stresses at temperatures 7" = 316 K and
T = 322.5 K. The specified parameter values are b; = 0.463 and ¢; = 0.777. The continuous line
in Fig. 3a presents the exponential shape function for this alloy. The experimental points are marked
by squares and crosses. The image of the surface on the octahedral plane for the temperature
T = 322.5 K is shown in Fig. 3b. Squares denote the experimental critical stresses (offset 0.2%)
presented by Raniecki et al. [22]. It is seen that the proposed condition closely simulates the
experimental data. The theoretical (corresponding to the specified parameters) limit locus in the
principal stress plane is presented in Fig. 3c for the situation when g3 = 0. The symbol . occurring
in this figure denotes the critical stress in simple compression. It is equal to 604 MPa for the
investigated TiNi alloy.
Lexcellent et al. [10] used the trigonometric form of shape function

Soly) = cos{%arccos[l —ag(l - y)]}

and found that the results of their experiments on CuZnAl and CuAlBe alloys are well fitted when
as = 0.7. With accuracy lesser than 1% their theoretical shape function curve can equivalently be
described by the exponential shape function (18) with b; = 0.4 and ¢; = 0.52. It is shown by the
dotted line in Fig. 3a. It is seen that CuZnAl and CuAlBe alloys exhibit less pronounced SD effect
than TiNi alloy.

2.3 Two-parameter power shape function

The alternative, relatively simple critical condition can be specified by a two-parameter power shape
function of the type (12)

Sly) =1 +by)", f(0)=1, (27)

where
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Fig. 3. a Shape functions f;(y) of limit transfor-
05 mation surfaces specifying the onset of austenite—
’ martensite phase transformation in TiNi (after
_1 / Raniecki et al. [22]) and CuZnAl, CuAlBe (after
0210, Lexcellent et al. [10]) alloys, b image of the surface
15 on octahedral plane for TiNi, ¢ theoretical limit
¢ -5 -1 05 0 05 1 L5 transformation curve in plane stress state for TiNi
bl<1 (28)

and 7 is an arbitrary exponent. For 7 = 1/3 the combination of Egs. (27) and (12) reduces to
Casacu’s and Barlat’s [13] condition. The shape function in the form (27) for » = —1 (b < 0) was
employed by Millis and Zimmerman [23] as the failure condition for concrete, whereas for dry sand
Gudehus [24] proposed the function (27) for n = —1/2, (b < 0).

The convexity condition (17) now takes the form

Fy(y,b,n) = Agy® + Boy + Co >0, (29)
where
Ag=b%(1-9n%), Bo=b(2-9n), Co=1+9%nn—-1). (30)

By analyzing the set of inequalities (28) and (29) we arrive at the following conclusions:

(i) When Inl > 1/3 implying Ay < 0, the necessary and sufficient condition for (28) and (29) to
hold is

P —
T (1-9n)?

A\

B1)

This case corresponds to the situation when the smaller root of the equation F, = 0 is less
or equal to —1 and the greater root is larger or equal to 1.
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(i) When —1/3 <n <0 orn* = 3/11 <n < 1/3 implying Ay > 0, the inequality (31) is
also necessary and sufficient for the set of inequalities (28) and (29) to occur. This result
corresponds to the situation when either the smaller root of F's = 0 is greater than 1 or the
larger root is smaller than —1.

(ili) When 0 <7 < n* = 3/11 the non-positive discriminant of F's = 0 determines the necessary
and sufficient condition for (28) and (29) to hold, which implies

1b] < bo(n) = \/ o 1_27;)(319? 5 (32)

Hence, the convexity condition of the yield surface (12) with the power shape function (27) can
be expressed as follows:

b] <a(n), (33)
where
1
if n<
T —on if n<0
a(n) = 1 P, _i (34)
on—1 MM =g

bo(n) otherwise.

The graphical image of the condition (34) in the (b,n)-plane is shown in Fig. 4a. For the illustration
purpose the points B and D corresponding to 7 = n* = 3/11 are marked. It is seen that the
convexity domain is narrowing for increasing or decreasing values of 7 from zero value.

From Eq. (27) it follows that

JA)=m=(1+b)", f(-1)=mqg=(1-b)", (35)

and the boundaries of the convexity region can be presented in the (m, 7) and (g, 72) planes. The

parametric forms of the convexity boundaries b = o(n) and b = —a(n) are

1—a(n)]" ,
q=q1(n) = W, m=my(n) = [1+an)]" (36)
and

Convexity Region

1 17
075 mn) | g
65 BG/11,11/16) qm) 15
= - _ 1.4 (n)
5 5| @0 . 13 %
9 Convexity @) | 5
g 0 ’ my(n)
£ my(n) 1.1
a 025 1| Convexity Convexity
— m(n
0.5 b=-a(m<0 DG/, -11/16) 1™ 09 ma(m)
075 ; ) ¢
N 0.7 ql(n)
-1 0.6
-1.5-12 0906 -03 0 03 06 09 12 15 ~0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 04 0.5
a exponent 7 b n

Fig. 4. The power shape function of the yield surface: a convexity domain in the (b, 72)-plane, b convexity
domains in (m, 1) and (g, 1) planes
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q=qz(n) :%,

where the function «(72) is defined by (34). The convexity domain boundaries in the (m, 1) and (q,
n) planes are shown in Fig. 4b. Let us note that for » = 1/3 [or n; = 1 for the exponent occurring
in the yield condition (1)] the presented specification of the convexity domain |b| < 1/2 (or
equivalently |c| <3v/3/4 , cf. Eq. (1)) does not agree with the result (|c| <3v/3/2) obtained by
Casacu and Barlet [13].

By comparison of the plots presented in Figs. 1b and 4b it is seen that the convex power yield
function (27) is capable to describe higher strength asymmetry than the exponential function (19).
For instance, in the convex region the minimum values of the asymmetry parameter g are
Gmin =~ 0.609 (for n ~ 0.24, m ~ 1.148, b ~ 0.775) and @nin ~ 0.676 (for
m ~ 1.144, by ~ 0.807, ¢c; ~ 0.45) when power and exponential shape functions are applied,

m=my(n) =[1 - a(n)]", (37)

respectively. Likewise, in the convex region the maximum values of the parameter g are
Qmax =~ 1.642 (for n ~ 024, m ~ 0.7, b ~ —0.775) for the power shape function and
Qmax ~ 1.282 (for m ~ 0.877, c; = 0.01 b; ~ —11.1) for the exponential shape function.

The examples of the power shape functions at the boundary of the convexity domain setting
b = a(n) and b = —a(n) are presented in Fig. 5

Figure 6a, b presents the loci of the yield condition (12) for the power shape function (27) on the
octahedral plane for selected parameters at the border of the convexity region.

i

3 Rigid-plastic solids: flow rule and dissipation function
3.1 Inverse relations

In this Section we shall discuss the flow rule and inverse relations between stress and strain rate
tensors generated by the dissipation function which is a dual potential to the yield condition for a
rigid-plastic response. Denote by D the Eulerian strain rate which for a pressure-insensitive material
and the associated flow rule is the deviatoric tensor. The flow rule associated with the yield condition
(12) takes the form

1.3

1.2

1.1

Power Shape Function f(y)

I - (0.06)
0.9 & (0.065)
08 o (1/3) - (0.24)
o (0.24)
0.7
-1 -0.75-05-025 0 025 0.5 0.75 1 Fig. 5. Power shape functions at the

y boundary of the convexity domain
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Fig. 6. Examples of yield loci for the power shape function at the border of the convexity domain: a for the
asymmetry parameter ¢ < 1, b forg > 1

D = r,(D)n(s), (38)
where

B B 5 _ 0%/os D
7.(D) = [D| = \/tr(D*), n(s)= o5/3s] D] (39)

and n(s) is the unit normal tensor to the yield surface.

To determine the inverse relation we shall introduce the orthonormal reference frame n, n* in the
strain-rate deviator space and the conjugate frame N, N in the stress deviator space specified by
the normalized tensors (Fig. 7). Let us note that

ag(:) =N, r%z =3V/1- 1PN (s), (40)

where N* is the normalized tensor orthogonal to N, so that

N'(s) = J%—y VBN 1) —uN|, V=1, wNY =0, (1), =y,
(41.1-4)

and moreover N and N satisfy the orthogonality condition, thus

tr(NN') =0 (42)

and

Alrf(y))/0s = 0F/es =fN +3f (y)v/1 — 2N*. (43)

The normalized deviatoric tensor n(s) (tr(nz) = 1) normal to the yield surface (12) can be
decomposed along N and N as follows:

n(s) = AN +BN*, (44)

where
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\Qj D (D) = const

o,(+)

Fig. 7. Reference frames n, n' and N, Nt in a stress deviator space and b strain rate deviator space

9y 12
Aly) = {1 ro -0 2] } ~ tr(Nm) = cos(z),

: (45.1-4)
Bly) = ?fj)) VI~ ¢ cos(y) = tr(mN"*) = J* sin(y),

A2+ B =1, j =sign[f'(v),

and y is the angle between the direction of strain rate and stress in the deviatoric space, cf. Fig. 7.
Thus, the normalized strain rate tensor n can be specified from Eqgs. (44) and (45).

In order to derive the inverse relations specifying the stress deviator in terms of the strain rate
deviator, it is assumed that n is prescribed and N is to be determined.

Let us first define the normalized stress deviator n' orthogonal to n, thus

n't = -BN +AN*, tr(nnt) =0, tr(n®)=1, tr(n)=0, (46.1—4)
and in view of (44) and (46) we can write
N =An —Bn', N! =Bn+An'. (47)

Considering the octahedral strain rate plane, Fig. 7, introduce the Lode parameter 2(D) specified by
the angle y between strain rate vector and the image of principal strain rate axis Dy, thus

x2(D) = % = V6tr[n®(D)] = cos(3y), (48)
where
2, = r3(D), 7, =\/tr(D?), I3 =det(D) = tr[(D)?]/3 (49)

and I, = 0, Io, I3 are the basic invariants of D. Referring to Appendix B, the relation between the
parameters & and y can be exposed in two alternative forms:

x=a(y) = V6tr(n®) = y(A® — 3AB%) + /1 — 42(34°B — B) = cos[3(0 —j*1)] (50)

x = x(y) = cos{arccos(y) — 37" arccos/A(y)]} = 0=y +5% (61.1,2)
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where j* = sign[f’(y)]. Here, A(y) and B(y) are specified by (45), since A(+1) = 1 and B(£1) = 0
it follows from Eq. (50) that z(+1) = 1. The other mathematical property of the representations
(50) and (51) is discussed in Appendix B. Define the function g(x)

_cos[i@)]_ [AW)
“”Ifwm1‘bwh

; (52)
=y(x)

where y(x) is the inverse of 2(y) specified by Eq. (50). The following differential relation between
f) and g(x) holds:

\/—y2f (y \/7%:0. (53)

Therefore, the dual form of Eq. (45) becomes

9y —1/2
g(x)} } = tr(Nn) = cos[y(x)],

A(z) = Aly(x)] = {1 4901 —a?) [9’(96)

B(x) = Bly(x)] = —3~‘;/((_j)) T2 cos(y) = tr(nN'Y) = j sin[y(@)], (54.1-4)

A*+ B =1, j =signlf'(y)] = —signly'(@)].

If the dual function g(x) is known then the function y(x) is determined from (54.1), and the
inverse relation y(x) directly follows from Eq. (51), thus

y = y(x) = cos{arccos(x) + 35 arccos[A(x)]} (55)
or

y =y(@) = V6ir(N?) = 2(A% — 34B?) — V1 — 22(34%B — B%) = cos[3(y +5*1)], (56)
where

s

0=y+s, J° =-—signlg(v)].

Referring to Appendix B the relation between n't and n is of the form

IR 5
Wip= M

which is the same as the relation between N and N+ , cf. Eq. (41.1). Both relations are independent
of the selected scale function f(y).
For the exponential shape function defined by Eq. (18) we have j* = sign(b;) J * = 0forb; = 0)and

l1) —an|, tr(n')=0, tr(n")*=1, (57.1-3)

nt(D) = 3

9(1 — y?)bicie 2 (1+y)
[1+b1(1 - e+

A(y) = cos(y) = [1 +tan®(x)] %, tan*(y) =

(58)

The plot of the relation between the x and y parameters for selected values of the constants f1(c1)
and fiz(cy), at the border of the convexity domain, cf. Eq. (22), is shown in Fig. 8

For the power shape function defined by Eq. (27) we have j* = sign(bn), j* =0 forb =0 or
n = 0, and

1—y?

tan®(y) = 9b°n? ,
(1+by)”

(59)
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exponential yield surfaces

The relations 2(y) for selected parameters at the border of the convexity region specified by Eq. (29)
are shown in Fig. 9. The diagonal dotted straight line presented in Figs. 8 and 9 represents the 2(y)
relation for the Huber—Mises yield condition.

3.2 The dissipation function

For rigid-plastic solids the dissipation power per unit of volume associated with the yield condition
(12) can be expressed as follows:

cos(y)
Sly)

Introducing the inverse function g(x) defined by (52), we can also define the dissipation function
D(D) of strain rate as

D = tr(sD) = 7(s)r,(D)tr(Nn) = r(s)r,(D) cos(y) = V21.7,(D) (60)

D(D) = V2tr,(D)g (). (61)
Since by direct differentiation of Eq. (49) we have
or.(D) _ or 5 1

D - VC@—Svl—xn (D), (62)

where n+(D) is given by Eq. (57), the following expression for the gradient of the dissipation
function can be derived in view of Eqs. (52) and (54), thus

PO _ e {n L VI—aE (ﬁ—j)))nﬂm} — r{A(@)n — Bx)n*]. (63)

As the dissipation function is homogeneous of degree one with respect to strain rate and generates
stress by the potential rule, we have
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and the gradient expressions (63) provide the stress—strain rate relations. It follows from Eq. (61)
that g(x) plays the role of a shape function of the surface of constant dissipation rate, © = const , in
the strain-rate space. It is defined by Eq. (52) in terms of the yield surface shape function f(y) scaled
so that f(0) = 1. When other scales of the yield shape function (cf. Eq. (14)) are used to define the

shape function of constant dissipation rate, e.g.,

_ cosfy(#)] _cos[y(2)]
R Tes R A e (55)
we have in view of Eq. (14)
g1(%) = gmg(x), ga(x) =mg(x), gi1(=1)=1, g2(1)=1 (66)
and
Zg; =V2t.g(x) = \/gocgl(x) = \/gmgz (@). (67)

ustrative plots of g;(x) dual to exponential yield shape functions are presented in Fig. 10 for the
selected parameters corresponding to the border of the convexity domain.
Define the dimensionless equivalent strain rate by

“fh”w> (68)

and the corresponding function R;,(y) following from (68) by

ng =
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1

Ri.(y) = gilcos@°

(69)
The dual potentials are presented in the octahedral plane in Fig. 11. To illustrate the duality, two
points A and A; are marked on the potential loci. The point A; is the dual image of A in the mapping
(64). The normal to the yield locus at A has the direction 0—A;, whereas the normal to the
dissipation potential locus (69) at A; is represented by the line 0-A.

The shape functions g;(x) of the constant dissipation potential dual to the power shape functions
f(y) are plotted in Fig. 12 for the selected values of parameters corresponding to the border of the
convexity region.

It is seen that the curvatures of curves plotted in Fig. 12 for 7 > 0 and b = a(n) > 0 are
relatively small, therefore it may be convenient to employ the approximate linear function, thus

(e

for which the dissipation function is expressed as follows:

DA(D) = /2/30.7,(D)g} [x(D)] = \/2/3r,(6 — 0.5 [6]x) & =0.5(cc + ay),

gi@) =1 (70)

[o] = oc — oy

(71)

The relative error Ap = (g1 — g‘f) /g1 associated with this approximation is presented in Fig. 13. For
n > 1/3 it is less than 8%.

The illustrative comparison of geometrical images of the power yield condition and the associated
constant dissipation rate functions condition is shown in Fig. 14. Two dual points A and A; are also
marked in this figure. In this case the yield curves are not tangent at rounded corners to the constant
dissipation rate loci because the functions f(y) and g;(x) have different scales: f(0) =1,
g1(=1) =1,0:0) # 1,f(-=1) # L.
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Fig. 10. Shape functions g,(x) of con-
stant dissipation potential surface asso-
ciated with the dual exponential yield

surfaces for selected parameters at the
border of the convexity domain
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| dissipation Fig. 11. Loci of dual potentials associ-
rate ated with the exponential yield
240 300 functions in the m-plane. Parameter
- values are qpni, ~ 0.676, ¢; = 0.45,

4 Concluding remarks

The present paper provides the analysis of three-parameter yield conditions for hydrostatic stress
independent material response, but affected by the third stress deviator invariant. The SD effect
associated with different yield stresses in tension and compression can naturally be accounted for.
There are numerous classes of modern materials exhibiting SD effect, and their plastic response
could be specified by applying the present condition. It turns out that the convexity condition sets an
essential constraint on the range of variation of material parameters for both exponential and power
shape function. The dual potential corresponding to the dissipation rate function was also specified.
The aim of this paper is to provide a theoretical framework of constitutive relations for modern
materials. The identification of material parameters can then be carried out for specific cases of
tested materials. The account for the mixed isotropic and kinematic hardening can be introduced by
applying the proposed forms of yield conditions and dissipation functions.
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Fig. 13. Relative error associated with the
linear approximation of g;(x) dual to the power

shape function f(y), cf. Eq. (27)
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Appendix A: Convexity condition

Fig. 14. n-Plane. Loci of dual poten-
tials associated with power yield
functions, qmin ~ 0.609, n = 0.24,
b = a(0.24) = 0.775

Introduce a Cartesian a coordinate system &y — 2, on the octahedral plane. The mutual position of
the x1, 2, axes and images of the principal stress axes are shown in Fig. 2a. The polar coordinates

7 — 0 on the same plane are defined by the usual formulas

x1 = —rcos(6),

9 = rsin(0).

(A1)

Let x; = w(x,) be a non-positive continuous and continuously differentiable function describing the
curve representing the critical condition in the segment 0 < 0 < ©/3. Equivalently, the same
segment of curve can be described in polar coordinates or in parametric form as
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r=~Ry(0) or x1(0) =Rs(0)cos(0), x9(0)=—R3(0)sin(0). (A2)

Assume for simplicity the following boundary values [they are relevant for scale (14) of the shape
function]:

Ry(0=0)=1, Ry(0=n/3)=1/q & w(0)=—-1, w(a)=-05/q, a=05V3/q (A3)

such that the considered segment in Cartesian coordinates is 0 < x, < a. As it is well known the
images of the principal stresses on the octahedral plane shown in Fig. 2a are the symmetry axis of
the whole figure enclosed by the geometrical loci of critical condition. Hence, in order no corners of
the closed curve to occur at boundary points of each segment it is necessary that

dw
dx 2

dw
dax 2

=V3 & Ry(0=0)=0, Ry(0=mn/3)=0. (Ad.1-4)

Zo=a

)

29=0

Here we restrict our discussion to the regular critical condition for which Eq. (A4) holds. Assume
additionally that function w(x;) is convex in 0 < x, < a. Then directly from the definition of
convex functions we have

0< dw(xs) < w(a) —w(ws) <3

— dxy — a — Xs - (45)
on account of Eq. (A4). Since
27(0) = —R5(0) cos(0) + Rasin(0), x4(0) = R,(0) sin(6) + Rz cos(0) (A6)
the inequality (AS) implies the obvious mathematical property
x5(0) >0, 2/(0)>0. (A7.1,2)
The known differential condition of convexity of the function w(x,) can be written in the form
dz;‘]—gﬂzo s x’z(e)%[ﬁ;gm >0 (A8.1,2)

on account of Eq. (A7.1). Substitute Eq. (A6) into (A8.2) and perform the indicated operations to get

Lo, oadiw  RYO) [Ry(0)]
— N —5 = ——=>+2|—=—= 1>0. A9
RMOP gg= "5 25| +12 (A9)

Define the shape function f»(y), ¥ = cos(30) by [cf. Egs. (14.2) and (A3)]

1
Ro() =——, —-1<y<l1 =1 -1)=q. Al10
2(0) TolcosB0)]’ <y<l, f(1)=1 fi(-1)=q (A10)
Substitute Eq. (A10) into Eq. (A9) and make the required differentiation to get the final result
Sa(y
(1) - ) 22 >0 (A1D)

The condition is invariant under the change of scale of the shape function. Note that conditions
(A4.3,4) will be satisfied iff;(—l) andflz(l) are bounded.

Appendix B: The form of inverse relations

(i) To prove the statements (50), (51) and equivalence of Eqgs. (46.1) and (57) [we will show that
Eq. (57) implies Eq. (46.1)] it is expedient to perform first some algebraic manipulations upon
Egs. (41.1) and (44). The Cayley—Hamilton relations (8) and (5.2) imply
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| Y 1 Y

N =_N+-21 = N'=_N?*4+_2_N. Bl
2 3v6 2 3v6 (B1)

Multiplication of (41.1) by N, N, (N*)? and N?, with use of Eq. (B1) results in

VI—’N'N = —yNz+§N+%1, (B2)

(N1 = 21 —N?, J1—p2(NY)? = \/;Nz - gyN - \1/—86(4 — )1, (B3.1,2)

1 Y V6 Y Y

N'Y'N=-N-—"_1, J1-PN'N?=-N?-ZIN- " _]. B4

(N7) 6V "356 Yy 5 6 "35 (B4)

Hence

—V6Ur[(NY)?] = V6 tr(N*N?) = /1 — 2 = sin(36),

—V61r[(NY)*N] = V6tr(N?) = —V6tr[(N1)N] = y = cos(30), (B5)

and obviously tr[(N")?] = 1 . Multiplication of Eq. (44) by n and n? gives
n® = A°N? + 2ABNN* + B*(N*)?, (B6.1.2)
n® = A’N® + 342BN?N* + 3B2A(N*)°N + B*(N1)°. o

(i) The result (50), (51) follows from (B6.2). Calculate the trace of the Eq. (B6.2) and use of
Eq. (BS) to get

x = V6tr(n®) = y(4> — 3B%4) + /1 — y2(34°B — B?) (B7)
or equivalently
x = cos(3y) = cos(30) cos(3y) +j* sin(30) sin(3y) = cos[3(0 —j*x)]

on account of Eqs. (5.2) and (45). This is the proof of relations (50) and (51).
(iii) To justify Eq. (53) calculate the total differential of Eq. (52) and write it in the following
form:

g Al f)

o ™ =4 ™ ) ™ (9)
Note that A'(y)dy +j*Bdy =0, (A(y) = cos(y), B =j*sin(y)) which implies

Aly) f'W) oy

A d/y—i-S\/l—yzmj dy=0 (B9)

on account of (45.2). Since y=cos(30) = dy = —3y/1 —y2d0 and likewise x =
cos(3y) = dx = —3v/1 — 22dy, the total differential of the relation 0 = y + ;' %, cf. Eq. (51.2), is

_ dx dy
3V1—a2 31-y2
Eliminate in turn j" dy between Egs. (B9) and (B10), and then A'(y)dy/A(y) from the resulting
equation and Eq. (B8) to get Eq. (53).
(iv) To show that Eq. (57.1) implies Eq. (46.1) express n? — 1/3 in terms of N and N+ . To this
end solve Eq. (41.1) with respect to N,

=

Jdy

(B10)
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VBN? = yN + /1 — 12N+ +1(V/6/3), (B11)
and substitute this result into Eqgs. (B2) and (B3.1),
VBN'N = /1 — 2N —yN*+, V6 (N1)? _%1 yN — /1 —2N*. (B12)

Substitute Eqs. (B12) and (B11) into Eq. (B6.1), and find the following decomposition:
1
\/é<n2 - §1) - [(AZ — By +24B\/1 — yZ}N + [(Az —B)y1 -2 — 21439}1\7L (B13)

which together with Eq. (44) enables to write Eq. (57) in the following form:

1—x2nL:[( — B2y + 2AB\/1 — % — AaIN + [(A% — B)\/1 — 42 — 2ABy — Bx}N

(B14)
However, for dual couple, the relation (51.2) (proved above) implies
cos(3y +5%y) = cos(30 — 25*y) = (A2 — By +24B\/1 —y? = Ax — BV1 — a2, (B15)
sin(3y +5%x) = sin(360 — 25°y) = —B*)\/1—y? — 2ABy = Bx + AV1 — 22. (B16)

When this is combined with Eq. (B14) one finally gets
= _-BN +AN*

and thus proves that Eq. (57) implies Eq. (46.1).
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