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Summary. This paper studies the interactions between N randomly-distributed cylindrical inclusions in a

piezoelectric matrix. The inclusions are assumed to be perfectly bounded to the matrix, which is subjected to an

anti-plane shear stress and an in-plane electric field at infinity. Based on the complex variable method, the

complex potentials in the matrix and inside the inclusions are first obtained in form of power series, and then

approximate solutions for electroelastic fields are derived. Numerical examples are presented to discuss the

influences of the inclusion array, inclusion size and inclusion properties on couple fields in the matrix and

inclusions. Solutions for the case of an infinite piezoelectric matrix with N circular holes or an infinite elastic

matrix containing N circular piezoelectric fibers can also be obtained as special cases of the present work. It is

shown that the electroelastic field distribution in a piezoelectric material with multiple inclusions is significantly

different from that in the case of a single inclusion.

1 Introduction

Studies on the inclusion problems in an infinite matrix are of theoretical and practical importance

with increasingly wide application of composite materials [1]–[3]. In fact, much effort has been

made on the subject since the pioneering work of Eshebly was published [4]. Even for the cases of

multiple circular inclusions, it is difficult to cite all the works which were carried out in past decades.

Recently, these related works have been extended to the case of an infinite piezoelectric matrix with

circular inclusions. Pak [5] analyzed a circular piezoelectric inclusion embedded in an infinite

piezoelectric matrix in the framework of linear piezoelectricity and obtained a closed-form solution

for the case of a far-field antiplane mechanical load and a far-field inplane electrical load. Dunn and

Wienecke [6] derived the electroelastic fields in and around inclusions and inhomogeneities in

transversely isotropic piezoelectric solids using Eshelby’s method. Xiao and Bai [7] investigated a

circular piezoelectric fiber sensor embedded in a non-piezoelectric elastic material and obtained a

closed-form solution for the stress field outside a circular piezoelectric inhomogeneity. Shen et al. [8]

studied the interaction of a piezoelectric screw dislocation with a nonuniformly coated circular
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inclusion in an unbounded piezoelectric matrix subjected to remote anti-plane shear and electric

fields. Deng and Meguid [9] considered the case of a partially debonded circular inclusion in

piezoelectric materials. Gao and Noda [10] studied the anti-plane deformation of an arbitrarily-

shaped inclusion embodied in an infinite piezoelectric material using Faber series expanding of

complex potentials. For the cases of multi-inclusions, Ishihara and Noda [11] studied an anti-plane

electroelastic problem of an infinite piezoelectric body with two circular piezoelectric inhomoge-

neities by introducing two complex potential functions and conformal mapping. Wu et al. [12] and

Wang and Shen [13] derived the electro-elastic field of the infinite piezoelectric medium with two

piezoelectric circular cylindrical inclusions under general loads based on the use of conformal

mapping and the theorem of analytic continuation, respectively. Especially, Chao and Chang [14]

addressed the problem of N interacting circular inclusions in anti-plane piezoelectricity based upon

the complex variable theory and the method of successive approximations by extending their

previous work on the problem of multiple inclusions in an elastic material [15]. The similar problem

was solved for the case of multi-inclusions in plane magnetoelasticity [16]. More recently, Chen and

Wu [17] proposed a null-field approach for piezoelectricity problems with arbitrary circular

inclusions by using the separable expressions of fundamental solutions and Fourier series for

boundary densities. In addition, Xu et al. [18] developed a rigorous analytical method for solving the

problem of a doubly periodic parallelogrammic array of piezoelectric fibers in piezoelectric

composites under anti-plane shear coupled with in-plane electrical load, based on the use of the

doubly quasi-periodic Riemann boundary value problem theory integrated with the eigenstrain and

eigen-electrical-field concepts.

In the present work we propose a straightforward and concise approach to analyze the problem of

N interacting circular inclusions in anti-plane piezoelectricity based on complex variable theory.

Mathematically, the key to the present problem is to solve a sub-problem taking place in the infinite

matrix with holes, which is a multiply-connected region. The feature of the present work is to

express the complex potential of the matrix in sum of those of N infinite regions having a single hole,

respectively, and an infinite region with hole. Then, using the continuous conditions between the

inclusions and the matrix produces a system of linear equations concerning unknown coefficients

involved in the complex potentials. Once these equations are solved the potentials become known

and thus all the fields can be determined. Below are the main contents of the work: following the

Introduction, the considered problem and used assumptions are stated in Sect. 2, and then the general

solutions of complex potentials are derived in Sect. 3. Presented in Sect. 4 are numerical examples to

discuss the influences of inclusion array, inclusion size and inclusion properties on couple fields in

the matrix and inclusions. Finally, this work is concluded in Sect. 5.

2 Statement of the problem

Consider an infinite piezoelectric matrix containing N cylindrical inclusions which are parallel to

each other. The cross-section normal to the inclusions is shown in Fig. 1, where the regions occupied

by the matrix and the cross-section of inclusions are denoted by M and I, respectively, and all the

inclusions are assumed to be completely bounded to the matrix. In true piezoelectric composites, the

matrix is purely elastic and the inclusions (fibers) are piezoelectric. However, in this work the matrix

and inclusions are assumed to be piezoelectric to obtain a general solution, which can cover the

solutions for special cases, for example, of an infinite elastic matrix with N piezoelectric fibers or

circular holes, of an infinite piezoelectric matrix containing multiple inclusions or holes. In addition,

the matrix and inclusions are assumed to have the same poling direction along the positive z axis and
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the same isotropic plane in the x�y plane, as shown in Fig. 1, where the matrix is loaded by a

uniform remote anti-plane shear and an in-plane electric loading.

In this case, the general solution for the generalized displacement function u and generalized

stress function / can be expressed as [19]

u ¼ Af zð Þ þ Af zð Þ; u ¼ uz;uð ÞT ; ð1:1Þ

/ ¼ Bf zð Þ þ Bf zð Þ; z ¼ xþ iy; ð1:2Þ

where uz and u are elastic displacement and electric potential, respectively; f(z) is a unknown

complex vector; A and B stand for the material constant matrices defined as

A ¼ I; B ¼ iB0; B0 ¼
c44 e15

e15 �e11

� �
: ð2Þ

In Eq. (2), c44, e15 and e11 represent the elastic constants, the piezoelectric constants and the

dielectric constants, respectively.

Once the complex potential f(z) is obtained based on given boundary conditions, all the fields,

e.g., the components of stress r, electric displacement D and electric field E, can be determined from

rzx;Dxð ÞT ¼ �/;2; rzy;Dyð ÞT ¼ /;1; u2;1 ¼ �Ex;u2;2 ¼ �Ey: ð3Þ

From Eq. (3) one has

r2 þ ir1 ¼ 2BF zð Þ; ð4Þ

where

r1 ¼ rzx;Dxð ÞT ; r2 ¼ rzy;Dyð ÞT ; F zð Þ ¼ df zð Þdz:

Thus, the key task is to find the complex potential vector f(z).

3 Complex potentials

In this case, the complex potential in the matrix has the form of

fðzÞ ¼ c1zþ f0ðzÞ; ð5Þ

where c
? is a constant related to the loading condition at infinity, and f0(z) is an unknown complex

function that nulls at infinity, i.e., f0(?) ¼ 0.
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Fig. 1. N circular piezoelectric inclusions in an infinite matrix
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In general, f0(z) can be expressed as

f0ðzÞ ¼
XN

n¼1

f
ð0Þ
n0 ðzÞ; ð6Þ

where f
(0)
n0(z) is an analytical function outside the inclusion ln, and it can be expanded into the

Laurent series as

f
ð0Þ
n0 ðzÞ ¼

X1
j¼1

anj

z� zn0

rn

� ��j

; ð7Þ

where anj are unknown coefficients, and rn is the radius of the n-th inclusion.

Inserting Eq. (7) into (6) gives

f0ðzÞ ¼
XN

n¼1

X1
j¼1

anj

z� zn0

rn

� ��j

: ð8Þ

On the other hand, inside any inclusion lp(p ¼1, 2 . . . N) the complex potential fp0(z) can be

expanded into the Taylor series as

fp0ðzÞ ¼
X1
j¼1

bpj

z� zp0

rp

� �j

; ð9Þ

where bpj are unknown coefficients.

Now, we move the origin of the global system x�y into the point zp0, that is, we make the

following coordinate translation: z�zp0 ¼ zp. In the local coordinate system xp�yp, Eqs. (9) and

(8) can be rewritten as

fp0ðzpÞ ¼
X1
j¼1

bpj

zp

rp

� �j

; ð10Þ

f0ðzpÞ ¼
X1
j¼1

apj

zp

rp

� ��j

þ
XN

n¼1
n 6¼p

X1
j¼1

anj

zp þ zp0 � zn0

rn

� ��j

: ð11Þ

In Eq. (11), the term
zpþzp0�zn0

rn

� ��j

is a given function that is analytic outside the inclusion

ln(n = p). This indicates that the function is also analytic inside the inclusion lp, and thus it can be

expanded into the Taylor series in the inclusion lp, that is

rn

zp þ zp0 � zn0

� �j

¼ rn

zp0 � zn0

� �j

1þ zp

zp0 � zn0

� ��j

¼ rn

zp0 � zn0

� �j

1þ
X1
i¼1

�1ð Þicji

zp

zp0 � zn0

� �i
 !

¼ rn

zp0 � zn0

� �j

þ
X1
i¼1

�1ð Þicji

rn

zp0 � zn0

� �jþi
zp

rn

� �i

¼ bp

nj0 þ
X1
i¼1

bp

nji

zp

rn

� �i

; ð12Þ
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where

bp

nj0 ¼
Rn

zp0 � zn0

� �j

; bp

nji ¼ ð�1Þicji

Rn

zp0 � zn0

� �jþi

; cji ¼
jð jþ 1Þ. . .ð jþ i� 1Þ

i!
:

Substituting Eq. (12) into Eq. (11) produces

f0ðzpÞ ¼
X1
i¼1

api

zp

rp

� ��i

þ
X1
i¼1

XN

n¼1
n 6¼p

X1
j¼1

anjb
p

nji

zp

rn

� �i

þ const: ð13Þ

On the interface between the matrix and the inclusion lp, the continuous conditions are

uM ¼ up; /M ¼ /p; ðp ¼ 1; 2 . . . NÞ: ð14Þ

Considering Eq. (1) together with (5), Eq. (14) can be reduced to

2Re Ac
1ðzp þ zp0Þb c þ 2Re Af0ðzpÞ½ � ¼ 2Re Apfp0ðzpÞ½ �; ð15Þ

2Re Bc1ðzp þ zp0Þb c þ 2Re Bf0ðzpÞ½ � ¼ 2Re Bpfp0ðzpÞ½ �: ð16Þ

Using the condition zp ¼ rp r ¼ rp e
ih at the rim of the inclusion lp, one has from Eqs. (15) and

(16) that

2Re Ac1ðRprþ zp0Þb c þ 2Re Af0ðrÞ½ � ¼ 2Re Apfp0ðrÞ½ �; ð17Þ
2Re Bc1ðRprþ zp0Þb c þ 2Re Bf0ðrÞ½ � ¼ 2Re Bpfp0ðrÞ½ �; ð18Þ

where A, B, Ap and Bp are the elastic matrices related to the matrix and the inclusion lp,

respectively, and

fp0ðrÞ ¼
X1
i¼1

bpir
i; ð19Þ

f0ðrÞ ¼
X1
i¼1

apir
�i þ

X1
i¼1

XN

n¼1
n6¼p

X1
j¼1

anjb
p

nji

rp

rn

� �i

ri: ð20Þ

Inserting Eqs. (19) and (20) into (17), and then equating the coefficients of ri (i� 1) gives

Ac1rpd1i þ Aapi þ A
XN

n¼1
n 6¼p

X1
j¼1

anjb
p

nji

rp

rn

� �i

¼ Apbpi; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N; ð21Þ

where d1i ¼ 1 for i ¼ 1 or d1i ¼ 0 for i = 1.

Similarly, we have from Eq. (18) that

Bc1rpd1i þ Bapi þ B
XN

n¼1
n6¼p

X1
j¼1

anjb
p

nji

rp

rn

� �i

¼ Bpbpi; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N: ð22Þ

If all the inclusions have the same radius, i.e., rn ¼ a (n ¼ 1, 2 . . . N), Eqs. (21) and (22) become

Ac1ad1i þ Aapi þ A
XN

n¼1
n 6¼p

X1
j¼1

anjb
p

nji ¼ Apbpi; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N; ð23Þ
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Bc1ad1i þ Bapi þ B
XN

n¼1
n6¼p

X1
j¼1

anjb
p

nji ¼ Bpbpi; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N: ð24Þ

Using Eq. (2), Eqs. (23) and (24) can be rewritten as

bpi ¼ c1Rpd1i þ api þ
XN

n¼1
n6¼p

X1
j¼1

bp

njianj; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N; ð25Þ

c1Rpd1i � api þ
XN

n¼1
n6¼p

X1
j¼1

bp

njianj ¼ B�1Bpbpi; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N: ð26Þ

Inserting Eq. (25) into Eq. (26) one can obtain a set of linear equations only containing the

unknown coefficients api as

ðIþ kpÞapi � ðI� kpÞ
XN

n¼1
n6¼p

X1
j¼1

bp

njianj ¼ ðI� kpÞc1Rpd1i; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N;

ð27Þ

where kp is a real matrix defined as

kp ¼ B�1Bp; p ¼ 1; 2 . . . N: ð28Þ

For the case of N circular holes kp ¼ 0, and Eq. (27) becomes

api �
XN

n¼1
n 6¼p

X1
j¼1

bp

njianj ¼ c1Rpd1i; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N: ð29Þ

For the case of N rigid conductive inclusions kp ? ? and (27) degenerates into

api þ
XN

n¼1
n 6¼p

X1
j¼1

bp

njianj ¼ �c1Rpd1i; i ¼ 1; 2 . . .1; p ¼ 1; 2 . . . N: ð30Þ

In general cases, one may take i and j up to the M-th terms, i.e., letting i ¼ j ¼ M in Eq. (27)

results in

ðIþ kpÞapi � ðI� kpÞ
XN

n¼1
n6¼p

XM
j¼1

bp

njianj ¼ ðI� kpÞc1Rpd1i; i ¼ 1; 2 . . . M; p ¼ 1; 2 . . . N:

ð31Þ

Taking the conjugate of Eq. (31) leads to

ðIþ kpÞapi � ðI� kpÞ
XN

n¼1
n6¼p

XM
j¼1

bp

njianj ¼ ðI� kpÞc1Rpd1i; i ¼ 1; 2 . . . M; p ¼ 1; 2 . . . N:

ð32Þ

Equations (31) and (32) constitute a set of 2N · M linear equations concerning 2N · M unknown

coefficients api and api ðp ¼ 1; 2; . . . N; i ¼ MÞ: After api is determined from Eqs. (31) and (32),
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bpi can be written out from Eq. (25). With api and bpi, all the complex potentials both in the matrix

and inclusions become unknown, and then all the field variables can be easily obtained by using

Eq. (3).

Especially, for a single inclusion with a radius R and a centre location at zp0 ¼ 0, Eqs. (25) and

(27) reduce to

b1p ¼ c1Rþ a1p; ðIþ kpÞa1p ¼ ðI� kpÞc1R: ð33Þ

From Eqs. (33) we have

a1p ¼ Bþ Bpð Þ�1
B� Bpð Þc1R; b1p ¼ M r12 þ ir11

� 	
; ð34Þ

where

M ¼ 2Bp Bþ Bpð Þ�1; r12 ¼ r1zy;D
1
y

� �T

; r11 ¼ r1zx;D
1
x

� 	T
; F zð Þ ¼ df zð Þdz:

Using Eqs. (4) and (33) we can establish the relationship between the field variables inside the

inclusion and the applied ones as

r pð Þ
2 þ ir pð Þ

1 ¼ M r12 þ ir11
� 	

; ð35Þ

that is

r pð Þ
zy ¼ M11r

1
zy þM12D1y ;

r pð Þ
zx ¼ M11r

1
zx þM12D1x ;

D pð Þ
y ¼ M21r

1
zy þM22D1y ;

D pð Þ
x ¼ M21r

1
zx þM22D1x :

ð36Þ

Similarly, the electric field inside can be expressed as

E pð Þ
y ¼ �W21r

1
zy �W22D1y ; E pð Þ

x ¼ �W21r
1
zx �W22D1x ; ð37Þ

where W ¼ 2i(Bp þ B)�1.

For this case, the field variable in the matrix can be expressed as

r2 þ ir1 ¼ r12 þ ir11 � B Bþ Bpð Þ�1
B� Bpð ÞB�1 r12 � ir11

� 	R2

z2
: ð38Þ

4 Numerical examples

Choose two model materials with the following constants:

CI
44 ¼ 3:52� 1010Nm�2; eI

15 ¼ 17:00Cm�2; eI
11 ¼ 1:51� 10�8CVm�1

for all the inclusions, and

CM
44 ¼ 2:56� 1010Nm�2; eM

15 ¼ 13:44Cm�2; eM
11 ¼ 6:00� 10�9CVm�1

for the matrix.

In Fig. 2, the distribution of electric displacement along the interface at the side of the matrix with

two same inclusions under combined mechanical load and electric field is shown. It is found that as

the distance between two inclusions increases, the value of the electric displacement is close to the

exact one, which is calculated from Eq. (38). In Figs. 3 and 4, stress and electric displacement are

Interactions between N circular cylindrical inclusions 37



plotted in the matrix with two inclusions with unequal radii, and it is shown that the applied electric

load has less influence on the variation of stress concentration around the inclusions, and the size of

inclusions has no remarkable effect on the distribution form of the field variables. For the case of

three equal inclusions with triangle array, the maximum values of stress and electric displacement in

the matrix have a small deviation compared with the case of two inclusions, as shown in Figs. 5
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and 6. However, as the number of inclusions increases, e.g., for the case of four inclusions located in

a square array as shown in Figs. 7 and 8, the changes of stress and displacement around the

inclusions become aggravate.
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5 Conclusions

This work presents a simple method to study a multi-inclusion-matrix system based on power series

expansion of complex potentials. The general solutions of complex potentials are derived when the

matrix is uniformly loaded by an in-plane electric field combined with an anti-plane shear stress at

infinity. Numerical calculations are conducted to discuss the influences of inclusion array, inclusion

size and inclusion properties on couple fields in the matrix and inclusions. It is found that the size of
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inclusions has no remarkable effect on the distribution of field variables, but as the number of

inclusions increases, the change of all field variables around the inclusions becomes very

complicated, especially when the inclusions are close to each other. Finally, it should be noted that

the proposed approach for solving a multiple-inclusion system can be extended to the case of

generalized plane strain in an infinite region with N circular inclusions or holes. For the case of

multiple elliptic inclusions or holes, the related problem can also be solved based on series expansion

of complex potentials in form of Faber series. The interested readers may refer to the work of

Kosmodamianskii [20].
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