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Summary. Embedded piezoelectric sensors can be used to monitor the mechanical behaviour of structures for

damage detection. This paper provides an analytical study of the dynamic behaviour of piezoelectric sensors

embedded in elastic media under high frequency electromechanical loads induced by piezoelectric actuators. A

generalized sensor/actuator model taking account of the deformation in both transverse and longitudinal

directions of the piezoelectric sensor/actuator is developed. The dynamic load transfer between the sensors/

actuators and the host medium is studied using Fourier transform method and solving the resulting integral

equations in terms of the interfacial normal and shear stresses. Detailed numerical simulation is conducted to

study the relation between the deformation of the sensor and that of the host medium under different loading

conditions. The results show the significant effect of the geometry, the material combination and the loading

frequency upon the behaviour of the sensor.

1 Introduction

Piezoceramic materials exhibit strong electromechanical coupling and are highly sensitive over a

wide range of loading frequencies. Using networks of piezoelectric sensors/actuators in the design of

smart structures has attracted significant attention from the industrial and research communities. This

new technology is now being used in the position and shape control, the active noise control, the

vibration suppression, and the real-time monitoring of structures [1]–[8]. Optimizing the

effectiveness and reliability of integrated sensor/actuator systems requires a clear understanding

of the sensing/actuating processes and the resulting electromechanical response of the whole

structure. When a piezoelectric patch is embbeded in a structure as a sensor, the local mechanical

deformation will result in an electric voltage across the thickness of the sensor, which can be

recorded by data acquisition systems to evaluate the strain/stress level. Ideally, the piezoelectric

sensor should not be intrusive, but in reality the existence of a sensor will disturb the mechanical

field to be measured. Since the stiffness of some piezoelectric sensors, piezoceramic ones for

example, is comparable to that of typical engineering materials, the disturbance from sensors on the

measured signal could be significant.
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In general cases involving sensors/actuators with finite length and thickness, due to the presence of

material discontinuity between the sensors/actuators and the host medium a complicated stress field

will be generated when external electromechanical loads are applied. The static behaviour of

piezoelectric sensors/actuators has been studied extensively to simulate the sensing/actuating

process. A beam with surface-bonded and embedded thin-sheet piezoelectric elements is first

analyzed to study the load transfer between piezoelectric elements and the host medium [9], [10]. A

refined actuator model based on the plane stress condition is studied to investigate the

electromechanical behaviour of a beam with symmetrically surface-bonded actuator patches [11].

Plate and shell models have also been extensively used in modelling the electromechanical

behaviour of piezoelectric structures [12]–[16]. The static local stress field near a thin-sheet

piezoelectric element attached to an infinite elastic medium is studied to investigate the load transfer

between the piezoelectric element and the host medium and the stress concentration [17]. A similar

analysis is also conducted to determine the static electromechanical field of a piezoelectric layer

bonded to an elastic medium with both interfacial and normal stresses being considered [18], [19].

Piezoelectric sensors/actuators have also been extensively used in vibration sensing and active

control [20]–[27] of structures. Typical examples are the use of piezoceramic elements as actuators

to excite structures and Polyvinylidene Fluoride (PVDF) films as sensors to monitor their vibration

for the identification of natural frequencies and mode shapes. Modal sensors, PVDF films with

special shapes, have also been developed to sense specific modal response in vibration [28]. Based

on the usage of piezoelectric sensors/actuators, an electromechanical impedance method has been

developed and extensively used for damage identification of structures [29]–[31]. It should be

mentioned that in most of the studies mentioned above the dynamic interaction between sensors and

host structures has been ignored and the received sensor signals have been used directly to evaluate

the strain/stress of the structure. The theoretical and experimental study of the vibration of beams

with attached piezoelectric sensors [32] indicates that the existence of piezoelectric elements will

change the modal shapes and natural frequencies of the beams. To account for the interaction effect

between sensors and host structures, correction factors have been introduced to relate the sensor

signal and the deformation of the host structure, which has been experimentally validated over a low

frequency range of 5–500 Hz [33].

Piezoelectric sensors, because they are quick in response, are also being used for high frequency

applications, such as generating and collecting diagnostic elastic waves for damage detection of

structures. In these applications, the wavelength is typically comparable or shorter than the length of

the sensor. The understanding of the dynamic behaviour of such structures is very limited in

comparison with the corresponding low frequency cases. Surface-bonded piezoceramic sensors

under high-frequency electric loads have been studied recently using a one-dimensional piezoelectric

sensor model [34]. The results show that the dynamic coupling between the sensor and the host

structure can significantly change the sensor signal. The dynamic response of embedded

piezoelectric sensors, which are considered to be used in advanced structures/materials such as

layered media or composites, has not been properly studied. The behaviour of embedded sensors is

different from that of the surface ones since for the embedded sensors not only the longitudinal

strain, but also the transverse deformation of it will play an important role in the sensing process,

especially when the loading frequency is high.

It is therefore the objective of the current paper to provide a comprehensive theoretical study of

the dynamic behaviour of embedded piezoelectric sensors. Attention will be focussed on the load

transfer between piezoelectric sensors and the host medium, and the electromechanical response of

the sensors. A generalized one-dimensional electromechanical model, which includes the

deformation in both transverse and longitudinal directions, is used to simulate the behaviour of

the sensor. Numerical simulation is conducted to evaluate the effect of the geometry, material
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mismatch, and the loading frequency on the resulting strain in the sensor, which represents the strain

level in the the host medium to be determined.

2 Formulation of the problem

Consider the two-dimensional plane problem of parallel thin-sheet piezoceramic elements, which

act as either sensors or actuators, embedded in a homogeneous and isotropic elastic insulator, as

illustrated in Fig. 1. The size of the sensors/actuators is assumed to be significantly smaller than

that of the host structure. Therefore, the host structure is modelled as an infinite medium. It is

assumed that the poling direction of each piezoceramic sensor/actuator is along its thickness. The

half length and the thickness of sensor/actuator An are denoted an and hn, respectively, and the

centre of it is located at (y0
n, z

0
n) in the global coordinate (y, z). A local coordinate system (yn, zn)

is also used to describe sensor/actuator An with the origin being at its centre. When the host

medium is deformed, an electric voltage will be generated across the upper and lower surfaces of a

sensor. In the current integrated sensor/acuator system, the deformation of the host medium is

induced by applying a voltage between the upper and the lower surfaces of actuator An, which

generates an electric field of frequency x along the thickness direction of the actuator

E
n
z = (Vn

� – Vn
+)/hn, with Vn

+ and Vn
� being the electric potentials at the upper and the lower

electrodes, respectively. Because of the piezoelectric property of the actuator, elastic waves will be

induced in the host medium.

The plane strain deformation will be assumed in this paper. Compared to the small thickness of the

piezoelectric sensor (typically 0.15 mm to 0.5 mm), the width of the piezoelectric thin-sheets in the

direction perpendicular to the y�z plane is significantly larger. For the current embedded

piezoelectric thin-sheet sensor, high stress concentration exists near the end of it. The deformation

corresponding to the high stresses near the end of the sensor will, however, be restrained by the

surrounding materials of both the sensor and the host medium. Limiting the deformation of the

sensor in the direction of the width will form a plane strain condition. It should also be mentioned

that no viscous effect is included in the current analysis and only non-dispersive wave propagation is

considered. For the steady state response of the system discussed in this paper, the time factor

exp(�ixt), which applies to all the field variables, will be suppressed. Existing studies indicate that

the interaction between piezoelectric elements under dynamic loads is usually very weak unless they

are in close proximity. In the current study, attention will be focussed on the cases where

piezoelectric elements are relatively far away and the interaction between the actuator and the sensor

will be ignored.

y

z

E n
z

A n

z n

an

Host Medium

hn

yn

Fig. 1. Embedded sensors/actuators in

an elastic medium
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2.1 Modelling of the sensor/actuator

The sensor and the actuator will behave differently in an integrated system. For the actuator, a high

frequency electric field Ez across its thickness is applied, which results in elastic waves in the host

medium with the typical wavelength being comparable to the length of the actuator. For the sensor,

the resulting elastic wave in the host medium will act as the incident wave. In this case, the inertia

effect of the sensor/actuator must be considered.

For an embedded thin-sheet sensor/actuator, its thickness is usually small in comparison with the

length. It can then be assumed that the stress and strain components ry
s , rz

s, ey
s , ez

s and displacement

uy
s are uniformly distributed across the thickness. The sensor/actuator can be regarded as a one-

dimensional electromechanical element subjected to s and rz, as shown in Fig. 2, in which s and rz

represent the interfacial shear and normal stresses between the sensor and the host medium.

According to these assumptions the equation of motion of the sensor/actuator in the axial direction

can be expressed as

drs
y

dy
þ sðyÞ=hþ qsx

2us
y ¼ 0; ð1Þ

where qs is the mass density of the sensor/actuator. The transverse deformation of the sensor/actuator

is given by

es
zðyÞ ¼

usþ
z � us�

z

h
; ð2Þ

with uz
s+, uz

s� being the displacements at the upper and lower surfaces of the sensor/actuator and h

being the thickness of the sensor/actuator. The coupled electromechanical behaviour of the sensor/

actuator can be described in terms of the following constitutive equations:

rs
y ¼ c11e

s
y þ c31e

s
z � e31Ez; ð3Þ

rs
z ¼ c31e

s
y þ c33e

s
z � e33Ez; ð4Þ

Ds
z ¼ e13e

s
y þ e33e

s
z þ k33Ez; ð5Þ

where c11, c31, c33 are the elastic constants, e31 and e33 are the piezoelectric constants, k33 is the

dielectric constant, and ey
s is the axial strain of the sensor/actuator given by

es
y ¼

dus
y

dy
: ð6Þ

V

Fig. 2. The sensor model and the

interfacial forces
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It is assumed that the sensor will operate in the open-loop mode [13], [35]. Since no external charge

is supplied, the electric displacement across the thickness of the sensor will be zero, i.e.,

Dz ¼ 0: ð7Þ

Using this sensor/actuator model, the axial strain of the actuator/sensor can be determined in terms of

s and (uz
a+ � uz

a�) by solving Eq. (1) as

es
yðyÞ ¼ eEðyÞ �

Zy

�a

cos ksðn� yÞpðnÞ
h�c11

dn

þ sin ksðaþ yÞ
h�c11 sin 2ksa

Zs

�a

cos ksðn� aÞpðnÞdn; ð8Þ

where

eEðyÞ ¼
e31Ez

c11

cos ksy

cos ksa
for actuator

0 for sensor

(
; ð9Þ

and p(y) is given by

pðyÞ ¼ sðyÞ þ h�c31
d

dy
ðuaþ

z � ua�
z Þ ð10Þ

and

ks ¼ x=cs; cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�c11=qs

p
;�c11 ¼

c11 for actuator

c11 þ
e2

31

e33
for sensor

(
;

�c31 ¼
c31 for actuator

c31 þ e31e33

e33
for sensor

(
;

ð11Þ

with ks and cs being the wave number and the axial wave speed of the actuator/sensor, respectively.

The transverse stress of the sensor/actuator, rs
z(y), can be expressed, using Eqs. (4) and (8), as

rs
zðyÞ ¼ rEðyÞ þ

�c31 sin ksðaþ yÞ
h�c11 sin 2ksa

Zs

�a

pðnÞ cos ksðn� aÞdn

�
�c31

h�c11

Zy

�a

pðnÞ cos ksðn� yÞdnþ
�c33

h
ðuaþ

z � ua�
z Þ;

ð12Þ

where

rEðyÞ ¼
c31eEðyÞ � e33Ez for actuator

0 for sensor

(
;

�c33 ¼
c33 for actuator

c33 þ
e2

33

e33
for sensor:

8<
:

ð13Þ

For a sensor, the electric displacement can be obtained from the constitutive relation as

Dz ¼ esey þ dsrz þ ksEz; ð14Þ

where es, ds and ks are effective material constants given in Appendix A. Under the open-loop mode

no external charge is supplied and the piezoelectric charge collected on the two electrodes will
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generate an electric field. Using Eqs. (7) and (14), the voltage along the sensor can be determined in

terms of the strains as

Vz ¼
h

ks

ðesey þ dsrzÞ: ð15Þ

Since the voltage is linearly dependent on ey and rz, in the following discussion attention will be

focussed on the strain and stress in the sensor.

2.2 Dynamic behaviour of the integrated electromechanical system

For the host medium with an embedded sensor/actuator, the total mechanical field (uT) generally

consists of two parts, the known incident wave (uI) and the outgoing wave (u) caused by the sensor/

actuator. Since the displacement and traction will be continuous at the upper and lower interfaces of

the sensor/actuator, the displacement field can be expressed as

uT ¼ uI þ u: ð16Þ

Based on the current sensor/actuator model, the displacement in y-direction is continuous, such that

uyðy; 0þÞ ¼ uyðy; 0�Þ: ð17Þ

Because the sensor/actuator will be deformed in the thickness direction, the host medium will

have a crack-like opening uz(y, 0+) � uz(y, 0�) at the site of the sensor/actuator. In addition,

the sensor/actuator will cause discontinuity of the shear stress across its thickness in the host

medium. The interfacial shear stress difference between the upper and the lower surfaces of the

‘crack’ forms a shear force s for the sensor/actuator, which has been discussed in the previous

Subsection, i.e.,

ryzðy; 0þÞ � ryzðy; 0�Þ ¼ s; jyj\a: ð18Þ

In the following discussion, the opening deformation of the ‘crack’ will be represented by the rate of

change of it with respect to y, which is denoted by /, i.e.

/ðyÞ ¼ o

oy
½uzðy; 0þÞ � uzðy; 0�Þ�; jyj\a: ð19Þ

The opening deformation / and the shear stress s acting on the ‘crack’ surfaces will result in an

outgoing elastic wave, which can be determined by solving an elastodynamic problem [36] under the

conditions given by (17)–(19). The general solution can be expressed as

eyðy; 0Þjmatrix ¼ �
1

2pl

Za

�a

sðnÞn1ðy� nÞdnþ l
Za

�a

/ðnÞn2ðy� nÞdn

2
4

3
5; ð20Þ

rzðy; 0Þjmatrix ¼ �
1

2p

Za

�a

sðnÞn2ðy� nÞdnþ l
Za

�a

/ðnÞn3ðy� nÞdn

2
4

3
5; ð21Þ

where l is the shear modulus of the host medium and

n1ðy� nÞ ¼ 1

k2

Z1

0

sðs2 � abÞ
a

sin sðn� yÞds; ð22Þ
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n2ðy� nÞ ¼ 1

k2

Z1

0

sð�cþ 2abÞ
a

sin sðn� yÞds; ð23Þ

n3ðy� nÞ ¼ 1

k2

Z1

0

ðc2 � 4s2abÞ
sa

sin sðn� yÞds ð24Þ

with c = s
2 + b2 and

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � K2
p

jsj[ K

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � s2
p

jsj\K

8<
: b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � k2
p

jsj[ k

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � s2
p

jsj\k

8<
: ; ð25Þ

K ¼ x=cL; k ¼ x=cT : ð26Þ

cL and cT are the longitudinal and transverse shear wave speeds of the elastic medium, respectively.

The ‘crack’ opening / and the shear stress s satisfy the following continuity condition between the

sensor/actuator and the host medium, as given by (16):

es
yðyÞ ¼ eyðy; 0Þ þ eI

yðy; 0Þ;
rs

zðyÞ ¼ rzðy; 0Þ þ rI
zðy; 0Þ; jyj\a;

ð27Þ

where ey(y, 0), rz(y, 0) are caused by the outgoing wave given by (20) and (21), and the terms with

superscripts 0a0 and 0I0 represent the sensor/actuator and the known incident field, respectively. It

should be mentioned that for the case of an actuator the incident wave does not exist.

By substituting Eqs. (8), (12), (20) and (21) into Eq. (27), the following integral equations can be

obtained:

� 1

2pl

Za

�a

�
sðnÞn1ðy� nÞ þ l/ðnÞn2ðy� nÞ�dn

� sin ksðaþ yÞ
h�c11 sin 2ksa

Zs

�a

�
sðnÞ þ �c31/ðnÞ� cos ksðn� aÞdn

þ 1

h�c11

Zy

�a

�
sðnÞ þ �c31/ðnÞ� cos ksðn� yÞdn ¼ eEðyÞ � eI

yðy; 0Þ; jyj\a;

ð28Þ

� 1

2p

Za

�a

�
sðnÞn2ðy� nÞ þ l/ðnÞn3ðy� nÞ

�
dn�

�c33

h

Zy

�a

/ðnÞdn

þ
�c31

h�c11

Zy

�a

�
sðnÞ þ �c31/ðnÞ

�
cos ksðn� yÞdn ¼ rEðyÞ � rI

zðy; 0Þ; jyj\a:

ð29Þ

Equations (28) and (29) involve a square-root singularity for both s and / at the ends of the sensor/

actuator. The general solutions of s and / can then be expressed in terms of Chebyshev polynomials as

sðyÞ ¼
X1
j¼0

AjTjðy=aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=a2

q
;

/ðyÞ ¼
X1
j¼0

BjTjðy=aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=a2

q
; ð30Þ
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with Tj being Chebyshev polynomials of the first kind and Aj and Bj being unknown constants to be

determined. If the expansions in (30) are truncated to the Nth term and Eqs. (28) and (29) are

satisfied at the following collocation points along the sensor/actuator:

yl ¼ a cos
l� 1

N � 1
p

� �
; l ¼ 1; 2; � � � ;N; ð31Þ

2N linear algebraic equations in terms of fcg ¼ fA0;A1; . . .;AN�1;B1;B2; . . .;BN�1gT
can be

obtained. These equations can be represented as

½Q�fcg ¼ fFg; ð32Þ

where [Q] is a known matrix given in Appendix B, and the general loading {F} is given by

Fl ¼ eEðylÞ � eIðyl; 0Þ l ¼ 1; 2; . . .;N

Fl ¼ rEðylÞ � rIðyl; 0Þ l ¼ N þ 1;N þ 2; . . .; 2N:
ð33Þ

Based on the solution of s and /, the dynamic stress and strain field in both the sensor/actuator and

the matrix can be determined.

3 Results and discussion

This Section will be devoted to the discussion of the static and dynamic behaviour of embedded

piezoelectric sensors. The incident wave is applied through a piezoelectric actuator subjected to a

harmonic electric load (voltage). Attention will be focussed on the effects of material property, the

geometry and loading frequency upon the the response of the sensors.

The incident field is induced by a piezoelectric actuator parallel to the sensor, which is

subjected to an electric voltage of frequency x across its thickness. Based on the solution given in

Subsect. 2.2, the strain and stress components eI and rI in the matrix induced by the actuator can

be determined as

eI
yðy�; z�Þ ¼

�1

2pk2

Za

�a

sðaÞðuÞ
Z1

�1

s3

a
e�ajz�j � sbe�bjz�j sin sðu� y�Þdsdu

2
4

þ l
Za

�a

/ðaÞðuÞ
Z1

�1

� sc
a

e�ajz�j þ 2sbe�bjz�j sin sðu� y�Þdsdu

3
5; ð34Þ

rI
yðy�; z�Þ ¼

�1

pk2

� Za

�a

sðaÞðuÞ
Z1

�1

� sc
2a

e�ajz�j þ sbe�bjz�j sin sðu� y�Þdsdu

þ l
Za

�a

/ðaÞðuÞ
Z1

�1

c2

2as
e�ajz�j � 2sbe�bjz�j sin sðu� y�Þdsdu

�
ð35Þ

with s(a), /(a) being given by the solution of Eq. (30) of the actuator. In these equations,

y
* = y � y

0
a, z

* = z � z
0
a with y and z being the coordinates measured from the centre of the

sensor, and ya
0 and za

0 being the position of the centre of the actuator.

At the position of the sensor, the following strain and stress components of the incident wave can

be obtained:
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eIðy; 0Þ ¼ eI
yðy� y0

a;�z0
aÞ; ð36Þ

rIðy; 0Þ ¼ rI
zðy� y0

a;�z0
aÞ; ð37Þ

which are used in (32) and (33) for the solution of the sensor problem.

3.1 Static behaviour of the sensor

Consider first the quasi-static behaviour of an embedded sensor when the loading frequency is very

low such that the typical wavelength of the elastic wave in the host medium is much longer than the

length of the sensor. The material constants of the sensor and the host medium are assumed to be

Sensor (PZT) [37]

c
ðaÞ
11 ¼ 13:9� 1010ðPaÞ; c

ðaÞ
12 ¼ 6:78� 1010ðPaÞ; c

ðaÞ
13 ¼ 7:43� 1010ðPaÞ;

c
ðaÞ
33 ¼ 11:5� 1010ðPaÞ; c

ðaÞ
44 ¼ 2:56� 1010ðPaÞ;

e
ðaÞ
31 ¼ �5:2ðC=m2Þ; e

ðaÞ
33 ¼ 15:1ðC=m2Þ; e

ðaÞ
15 ¼ 12:7ðC=m2Þ;

eðaÞ11 ¼ 6:45� 10�9ðC=VmÞ; eðaÞ33 ¼ 5:62� 10�9ðC=VmÞ

Host medium

E ¼ 2:74� 1010ðPaÞ; v ¼ 0:3:

The local strain ey
s and transverse stress rs

z along the sensor can be obtained from Eqs. (8) and (12).

The following strain and stress ratios at the position of the sensor between the sensor response and

the incident field are introduced and used to evaluate the property of the sensor in predicting the

mechanical field in the host medium:

−1 −0.5 0 0.5 1

y/a

0.2

0.4

0.6

0.8

1

1

vm = 20

vm = 5
vm = 8
vm = 10
vm = 15

Fig. 3. The static strain ratio for a PZT sensor
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j1ðyÞ ¼
es
yðyÞ

eI
yðyÞ

; j2ðyÞ ¼
rs

zðyÞ
rI

zðyÞ
: ð38Þ

Ideally, if the sensor does not disturb the incident field these values should be one. The change of

these two parameters represents the intrusive effect of the sensor on the original incident field.

Figures 3 and 4 show the effect of the length-to-thickness ratio of the sensor ms = a/h upon

j1 ¼
es
yðyÞ

eI
yðyÞ

and j2 ¼ rs
zðyÞ

rI
zðyÞ

for the case where the actuator is centrally aligned with the sensor with a

distance ez = 10a and the length-to-thickness ratio of the actuator is ma = 20. It is assumed that the

length of the sensor 2a is a constant for all the cases considered and the thickness of the sensor

changes with ms. The ratio j1, which represents the level of the strain transferred from the host

medium to the sensor, decreases dramatically with increasing thickness of the sensor. However, the

effect of the thickness of the sensor on the transverse stress transfer, represented by j2, is relatively

insignificant in comparison with the change in j1.

The corresponding results for the case of a PVDF sensor are shown in Figs. 5 and 6. The property

of the PVDF sensor is Sensor (PVDF)

c
ðaÞ
11 ¼ 2:5� 109ðPaÞ; c

ðaÞ
12 ¼ 0:75� 109ðPaÞ; c

ðaÞ
13 ¼ 0:75� 109ðPaÞ;

c
ðaÞ
33 ¼ 0:9� 109ðPaÞ; c

ðaÞ
44 ¼ 0:25� 109ðPaÞ;

e
ðaÞ
31 ¼ 4:6� 10�3ðC=m2Þ; e

ðaÞ
33 ¼ �3:4� 10�3ðC=m2Þ; e

ðaÞ
15 ¼ �1:7� 10�3ðC=m2Þ;

eðaÞ11 ¼ 0:106� 10�9ðC=VmÞ; eðaÞ33 ¼ 0:106� 10�9ðC=VmÞ:

In comparison with the result for PZT sensors, the PVDF sensor shows much higher strain transfer

ratio for a given length-to-thickness ratio. For both strain transfer ratio j1 and stress transfer ratio j2,

the thickness shows a significant effect, which is different from the case of PZT sensors.

−1 −0.5 0 0.5 1

y/a

0.4

0.6

0.8

1

2 vm = 20

vm = 5
vm = 10
vm = 10
vm = 15

Fig. 4. The static stress ratio for a PZT sensor
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Figures 7 and 8 show the distribution of j1 and j2 along the sensor for the case where

ms ¼ 20; c12

c11
¼ c13

c11
¼ 0:5; for different material combinations q ¼ pE

2�c11
: A higher strain transfer ratio j1

is observed for higher material combination q, corresponding to a softer sensor. The stress transfer

ratio j2, however, decreases with increasing q.
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3.2 Dynamic behaviour of the sensor

Figures 9 and 10 show the amplitudes of the dynamic strain and stress transfer ratio j1 and j2

between a PZT sensor and the host medium for the case where ms = 20, q = 0.3, and qs/qH = 1, with

qs and qH being the mass density of the sensor and the host medium, respectively. In the central part
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of the sensor the strain transfer ratio j1 increases with increasing loading frequency (ka). But the

effect of the loading frequency upon the stress transfer ratio j2, oscillating around j2 = 1 with the

change of ka, is not as significant as that on the strain transfer ratio.

The corresponding amplitudes of the dynamic strain and stress transfer ratio j1 and j2 along a

PVDF sensor are shown in Figs. 11 and 12 where ms = 20, q = 26.5, and qs/qH = 0.3. In this case the
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Fig. 10. The dynamic stress ratio for a PZT sensor
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Fig. 9. The dynamic strain ratio for a PZT sensor
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effect of the loading frequency (ka) upon both the strain and stress transfer ratios is significant. j1

and j2 decrease with increasing loading frequency ka.

The results discussed indicate that the relation between the sensor response and the incident wave

is complicated in most of the cases considered. It should also be mentioned that different from the
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Fig. 12. The dynamic stress ratio for a PVDF sensor
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case of the surface bonded-sensor [37], both longitudinal strain and transverse stress of an embedded

sensor will contribute to the electric voltage output of the sensor.

4 Concluding remarks

An analytical solution is provided to study the static and dynamic electromechanical behaviour of

piezoelectric sensors embedded in the elastic medium under plane mechanical and electrical loads.

The analysis is based on the use of a generalized one dimensional sensor/actuator model. The

effect of the different sensor parameters and the loading frequency upon the behaviour of the

sensor is studied. The results show the necessity to account for the interaction between the sensor

and the host medium due to the material mismatch, especially for relatively high loading

frequencies. Further theoretical and experimental studies are necessary for determining the

dynamic strain in the host medium using embedded piezoelectric sensors under high loading

frequency.

Appendix A

Effective material constants

The electromechanical behaviour of piezoelectric materials can be described by

frg ¼ ½c�feg � ½e�fEg; fDg ¼ ½e�feg þ ½k�fEg:

In these equations, {r} and {e} are the stresses and the strains, while {D}, {E} represent the electric

displacement and the electric field intensity, respectively. [c] is a matrix containing the elastic

stiffness parameters, [e] represents the piezoelectric constants and [k] represents the dielectric

constants.

For a sensor under open-loop mode (Dz = 0), Eqs. (3), (4) and (5) result in

Ez ¼ �ðe13ey þ e33ezÞ=k33;

rz ¼ c�13ey þ c�33ez;

ez ¼ ðrz � c�13eyÞ=c�33:

Equation (5) can then be expressed in terms of ey and rz and Ez as

Dz ¼ esey þ dsrz þ ksEz

with the effective material constants of the sensor being given by

es ¼ e13 �
e33c�13

c�33

;

ds ¼
e33

c�33

;

ks ¼ k33:

Appendix B

Sensor/actuator solution

The matrix [Q] used in Eq. (32) for solving the single sensor/actuator problem is given by
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Qlj ¼ �p
X1
j¼1

cj

sin ½j cos�1 gl�
sin ½cos�1 gl�

þ p
X1
j¼1

cj

Z1

0

P1
j ð�s; glÞ

�
2�k

2�s�b

k0½ð2�s2 � �k
2Þ2 � 4�s2�a�b�

þ 1

�
d�s

þ qm
X1
j¼1

cj

Zp

cos�1 gl

cos½ksðcos h� glÞ� cosðjhÞdh

� qm
sin½�ksðgl þ 1Þ�

sinð2ksÞ
X1
j¼1

cjP
2
j :

In the above equations,

gl ¼ yl=a; �K ¼ Ka; �k ¼ ka; ks ¼ ksa; �s ¼ sa

and

P1
j ð�s; glÞ ¼ Jjð�sÞ

ð�1Þn cosð�sglÞ j ¼ 2nþ 1

ð�1Þnþ1 sinð�sglÞ j ¼ 2n

(

P2
j ¼ Jjð�sÞ

ð�1Þn sinð�ksÞ j ¼ 2nþ 1

ð�1Þn cosð�ksÞ j ¼ 2n

�

with Jj (j = 1; 2 . . .) being the Bessel functions of the first kind.

�a; �b can be obtained from a, b directly, which are defined in Eq. (25), with s, K, k being replaced

by �s; �K ; �k; respectively.
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