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Summary. The steady laminar MHD boundary-layer flow past a wedge immersed in an incompressible

micropolar fluid in the presence of a variable magnetic field is investigated. The governing partial differential

equations are transformed to the ordinary differential equations using similarity variables, and then solved

numerically using a finite-difference scheme known as the Keller-box method. Numerical results show that the

micropolar fluids display drag reduction and consequently reduce the heat transfer rate at the surface, compared

to the Newtonian fluids. The opposite trends are observed for the effects of the magnetic field on the fluid flow

and heat transfer characteristics.

Nomenclature

a, b positive constants

A non-dimensional constant of integration

B(x) magnetic field

B0 uniform magnetic field

Cf skin friction coefficient

f dimensionless stream function

Grx local Grashof number

h dimensionless microrotation or angular velocity

i dimensionless microinertia

j microinertia

k thermal conductivity

K material parameter

m Falkner-Skan power-law parameter

M magnetic parameter

n temperature exponent parameter

N component of the microrotation vector normal to the xy-plane

Nux local Nusselt number

Pr Prandtl number

qw heat transfer from the surface of the wedge

Rex local Reynolds number

T fluid temperature

Tw(x) wedge temperature

T? ambient temperature

u, v velocity components along the x- and y-directions, respectively
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U(x) free stream velocity

x, y Cartesian coordinates along the surface and normal to it, respectively

Greek symbols

a thermal diffusivity

b Hartree pressure gradient parameter

c spin-gradient viscosity

g similarity variable

h dimensionless temperature

j vortex viscosity

l dynamic viscosity

m kinematic viscosity

q fluid density

r electrical conductivity

sw skin friction from the surface of the wedge

w stream function

Subscripts

w condition at the surface of the wedge

? condition at infinity

Superscript
0 differentiation with respect to g or ĝ

1 Introduction

Research interest in the flows of micropolar fluids has increased substantially over the past decades

due to the occurrence of these fluids in industrial processes. In the history of fluid mechanics,

Eringen [1], [2] is a pioneering researcher who has formulated the theory of micropolar fluids. This

theory takes into account the effect arising from the local structure and micro-motions of the fluid

elements, and is able to describe the behavior of the polymeric additives, animal blood, lubricants,

liquid crystals, dirty oils, solutions of colloidal suspensions, etc. The theory requires that one must

solve an additional transport equation representing the principle of conservation of local angular

momentum, as well as the usual transport equations for the conservation of mass and momentum.

A thorough review of micropolar fluid mechanics was given by Ariman et al. [3], [4]. Recently,

Kim [5] and Kim and Kim [6] have considered the steady boundary-layer flow of a micropolar fluid

past a fixed wedge with constant surface temperature and constant surface heat flux, respectively.

The similarity variables found by Falkner and Skan [7] were employed to reduce the governing

partial differential equations to ordinary differential equations. Unfortunately, the angular

momentum equation was not correctly derived so that the results of these papers [5], [6] are

inaccurate. Therefore, the objective of this paper is to improve and extend the work of Kim [5] by

considering the effect of variable magnetic field on the fluid flow and heat transfer characteristics for

a fixed wedge with variable surface temperature. The effect of a transverse magnetic field on a

porous wedge placed symmetrically with respect to the flow direction in a non-Newtonian fluid has

been considered by Hady and Hassanien [8]. Watanabe and Pop [9] presented the numerical results

of MHD free convection flow over a wedge in the presence of a magnetic field, while Kafoussias and

Nanousis [10] investigated the MHD laminar boundary-layer flow over a permeable wedge. Both of
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these papers considered a wedge immersed in a Newtonian fluid. Later, Yih [11] extended the work

of Watanabe and Pop [12], by considering the MHD forced convection flow adjacent to a non-

isothermal wedge. The former considered MHD boundary-layer flow over a flat plate in the presence

of a transverse magnetic field. The effects of a constant magnetic field on the fluid flow and heat

transfer characteristics were also considered in [13]–[16], while those of variable magnetic field were

studied in [17]–[25]. Lykoudis [17] studied the natural convection adjacent to a vertical hot plate

surrounded by an electrically conducting fluid in the presence of a magnetic field acting in the

direction perpendicular to the induced movement caused by the buoyant forces, and found that

similarity solutions exist when the intensity of the magnetic field changes with x
�1/4, where x is the

coordinate measured in the direction of the flow. The existence of similarity solutions was then

established by the experiment, as reported in [18].

2 Formulation of the problem

Consider the steady laminar boundary-layer flow past a wedge in an electrically conducting

micropolar fluid in the presence of a magnetic field B(x) applied in the normal direction to the walls

of the wedge, as shown in Fig. 1. The induced magnetic field is assumed to be small. This implies a

small magnetic Reynolds number Rem = l0r U(x) � 1, where l0 is the magnetic permeability, r is

the electrical conductivity and U(x) is the velocity outside the boundary-layer (inviscid flow). Under

these assumptions, the boundary-layer equations are
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where the x- and y-axes are measured along the surface of the wedge and normal to it, respectively,

u and v are respectively the velocity components along the x- and y-axes, and the other quantities

are defined in the Nomenclature. However, it should be mentioned that l, j, q and a are the fixed

parameters, while j, N and c are the quantities depending on (x, y). We shall assume that the

boundary conditions of these equations are of the following form:

B(x)

U(x)

v

u

x

W = bp

y

Fig. 1. Physical model and coordinate system
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u ¼ 0; v ¼ 0; j ¼ 0; N ¼ � 1

2

ou

oy
; T ¼ TwðxÞ at y ¼ 0;

u! UðxÞ; N ! 0; T ! T1 as y!1:
ð6Þ

We also assume that the external velocity of the fluid and the temperature of the wedge are

U(x) = ax
m and Tw(x) = T? + bx

n, respectively. Here, m = b/(2 � b), and b is the Hartree

pressure gradient parameter which corresponds to b = X/p for a total angle X of the wedge, n is

the temperature exponent parameter, and a and b are positive constants. The induced magnetic

field and the Hall effects are neglected. We notice that 0 � m � 1 with m = 0 for the

boundary-layer flow over a stationary flat plate (Blasius problem) and m = 1 for the flow near

the stagnation point on an infinite wall, while n = 0 corresponds to a constant wedge

temperature. In order to obtain similarity solutions of the problem described by Eqs. (1)–(6), we

assume that the variable magnetic field B(x) is of the form B(x) = B0x
(m-1)/2. This form of B(x)

has also been used by Cobble [19], [20], Helmy [21], Anjali Devi and Thiyagarajan [23], Chiam

[24], and very recently by Hoernel [25] in their MHD flow problems past moving or fixed flat

plates. Following Ahmadi [26] and Kline [27], we assume that the spin-gradient viscosity c can

be defined as

cðx; yÞ ¼ ðlþ j=2Þjðx; yÞ ¼ lð1þ K=2Þjðx; yÞ; ð7Þ

where K = j/l denotes the dimensionless viscosity ratio and is called the material parameter. This

assumption is invoked to allow the field of equations predicts the correct behavior in the limiting

case when the microstructure effects become negligible and the total spin N reduces to the angular

velocity (see [26] or [28]). Equation (7) has also been used by many researchers, such as, for

example, Gorla [29] and Ishak et al. [30] to study different problems of convective flow of

micropolar fluids. It is stated by Ahmadi [26] that for a non-constant microinertia, it is possible using

Eq. (7) to find similar and self-similar solutions for a large number of problems of micropolar fluids.

It is also worth mentioning that the case K = 0 describes the classical Navier-Stokes equations for a

viscous and incompressible fluid.

Following Kim [5] and Falkner and Skan [7], we introduce now the following similarity variables:

wðx; yÞ ¼ 2mxUðxÞ
mþ 1

� �1=2

f ðgÞ; Nðx; yÞ ¼ UðxÞ ðmþ 1ÞUðxÞ
2mx

� �1=2

hðgÞ;

jðx; yÞ ¼ 2mx

ðmþ 1ÞUðxÞ iðgÞ; g ¼ ðmþ 1ÞUðxÞ
2mx

� �1=2

y; hðgÞ ¼ T � T1
Tw � T1

;

ð8Þ

where m is the kinematic viscosity and w is the stream function defined in the usual way as u = qw/qy

and v = � qw/qx, so as to identically satisfy Eq. (1). Substituting (8) into Eqs. (2)–(5), we get the

following ordinary differential equations:

ð1þ KÞf 000 þ ff 00 þ 2m

mþ 1
1� f 0

2
� �

þ Kh0 þMð1� f 0Þ ¼ 0; ð9Þ

ð1þ K=2Þðih0Þ0 þ i fh0 � 3m� 1

mþ 1
f 0h

� �
� Kð2hþ f 00Þ ¼ 0; ð10Þ

ð1�mÞf 0i�mþ 1

2
fi0 ¼ 0; ð11Þ

1

Pr
h00 þ fh0 � 2n

mþ 1
f 0h ¼ 0; ð12Þ

subject to the boundary conditions
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f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; ið0Þ ¼ 0; hð0Þ ¼ � 1

2
f 00ð0Þ; hð0Þ ¼ 1;

f 0ð1Þ ! 1; hð1Þ ! 0; hð1Þ ! 0;
ð13Þ

where primes denote differentiation with respect to g, M = 2r B0
2/[aq(m + 1)] is the magnetic

parameter and Pr = m/a is the Prandtl number. If we integrate Eq. (11) subjected to (13), we get

i ¼ Af 2ð1�mÞ=ð1þmÞ; ð14Þ

where A is a non-dimensional constant of integration. We notice that Eqs. (9)–(11) were also derived

by Kim [5]. However, Eq. (10) was wrongly derived in Kim [5] because Eq. (14) in his paper

contained the extra term [m/(m + 1)]gf 0h0.

The physical quantities of interest are the skin friction coefficient and the local Nusselt number,

which are, respectively, defined as

Cf ¼
sw

qU2ðxÞ=2
; Nux ¼

xqw

kðTw � T1Þ
; ð15Þ

where the skin friction sw and the heat transfer from the plate qw are defined as

sw ¼ ðlþ jÞ ou

oy
þ jN

� �
y¼0

; qw ¼ �k
oT

oy

� �
y¼0

: ð16Þ

Using the variables (8), we get

1

2
Cf Re1=2

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
1þ K

2

� �
f 00ð0Þ; Nux=Re1=2

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
h0ð0Þ; ð17Þ

where Rex = U(x)x/m is the local Reynolds number.

2.1 Flat plate problem

In this case, m = 0 and thus, Eqs. (9) and (10) reduce to

ð1þ KÞf 000 þ ff 00 þ Kh0 þMð1� f 0Þ ¼ 0; ð18Þ

ð1þ K=2Þðih0Þ0 þ iðfh0 þ f 0hÞ � Kð2hþ f 00Þ ¼ 0; ð19Þ

subject to the boundary conditions (13). Also, Eq. (14) becomes

i ¼ Af 2: ð20Þ

The solution of Eqs. (18)–(20) subject to the boundary conditions (13) in the absence of the

transverse magnetic field (M = 0) can be found in [26]. If K= 0, but A = 0, i.e., i = 0, from Eq. (19),

we find

h ¼ � 1

2
f 00; ð21Þ

that is, gyration is identical to the angular velocity. Then Eq. (18) becomes

ð1þ K=2Þf 000 þ ff 00 þMð1� f 0Þ ¼ 0: ð22Þ

Following Rees and Bassom [31], we take

f̂ ðĝÞ ¼ ð1þ K=2Þ�1=2
f ðgÞ; ĝ ¼ ð1þ K=2Þ�1=2g; ð23Þ

and Eq. (22) reduces to
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f̂
000 þ f̂ f̂ 00 þMð1� f̂ 0Þ ¼ 0; ð24Þ

with the boundary conditions

f̂ ð0Þ ¼ 0; f̂
0ð0Þ ¼ 0; f̂

0ð1Þ ! 1; ð25Þ

where now primes denote differentiation with respect to ĝ: The problem (24) and (25) describes the

MHD boundary-layer flow of a Newtonian fluid over a flat plate in the presence of an applied

magnetic field, which was first studied by Rossow [32]. The skin friction coefficient given by

Eq. (17) now becomes

1

2
Cf Re1=2

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
1þ K

2

� ��1=2

f̂
00ð0Þ: ð26Þ

2.2 Wedge problem

The problem when M = 0 (absent of magnetic field) and n = 0 (isothermal wall) has been

considered by Kim [5] but his equation was not adequately derived. Thus, we cannot compare our

results with the results reported by Kim [5]. Furthermore, if A = 0, i.e., i = 0, it can be easily shown

that on using (23), Eqs. (9) and (10) reduce to

f̂ 000 þ f̂ f̂ 00 þ bð1� f̂ 02Þ þMð1� f̂ 0Þ ¼ 0; ð27Þ

where b = 2m/(m + 1), subject to the boundary conditions (25). This equation has also been derived

by Soundalgekar et al. [33].

3 Results and discussion

Equations (9), (10), (12) and (14) subject to the boundary conditions (13) are solved numerically

using a finite-difference scheme known as the Keller-box method as described in the book by Cebeci

and Bradshaw [34], for several values of the parameters K, M, m and n. As in [5], we consider only

the values of A and Pr unity, except for comparison with previously reported cases. This value of

non-dimensional constant of integration A was also used by Ahmadi [26]. In order to verify the

accuracy of the present method used on the simulation model, the results are compared with those

cases reported by Yih [11], Cebeci and Bradshaw [34], Chamkha et al. [35] and Lin and Lin [36], as

shown in Tables 1 and 2, and the comparisons are found to be in a very good agreement. Therefore,

the developed code can be used with great confident to study the problem considered in this paper.

Figures 2–4 display the dimensionless velocity profiles f 0(g) for various values of m, M and K,

respectively, while the other parameters are fixed. It is observed that the velocity f 0(g) increases with

m and M but decreases with K. These results show that increasing the wedge angle as well as the

magnetic field is to accelerate the velocity, while increasing the material parameter K is to decelerate

it. Further, the boundary-layer thickness decreases with an increase in m or M which in turn

increases the velocity gradient at the surface (g = 0), and hence produces an increase in the skin

friction coefficient. This observation is consistent with the values of f 00(0) shown in Tables 1 and 2.

The opposite trend is observed for the effect of K. These figures also show that the boundary

conditions (13) are satisfied, which support the validity of the numerical results obtained.

Variation of the non-dimensional temperature h(g) with g for different values of m, M and K are

displayed in Figs. 5 and 6, respectively. The temperature gradient at the surface, which represents
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Table 1. Values of Cf Rex
1/2 for various values of K, M and m

K M m Yih [11] Cebeci and Bradshaw [34] Chamkha et al. [35] Present results

0 0 0 0.332057 0.33206 0.332206 0.3321

1/3 0.757448 0.75745 0.757586 0.7575

1 1.232588 1.232710 1.232710 1.2326

1 1 0 0.9599

1/3 1.3983

1 0.8670

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

h

f ′
 (h

)

K = 1, M = 1 

m = 0, 0.1, 0.5,1 

Fig. 2. Velocity profiles f 0(g) for various values

of m with K = 1 and M = 1

Table 2. Values of Nux/Rex
1/2 for various values of K, M and Pr when m = 0 and n = 0

K M Pr Yih [11] Lin and Lin [36] Present results

0 0 0.0001 0.005590 0.005588 0.0056

0.001 0.017316 0.017316 0.0173

0.01 0.051589 0.051590 0.0516

0.1 0.140034 0.140032 0.1400

1 0.332057 0.332057 0.3321

10 0.728141 0.728148 0.7281

100 1.571831 1.57186 1.5719

1000 3.387083 3.38710 3.3871

10000 7.297402 7.29742 7.2974

1 1 1 0.3719

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

K = 1, m = 0.5

M = 0, 1, 2, 4, 10

h

f ′  (
h)

Fig. 3. Velocity profiles f 0(g) for various values

of M with K = 1 and m = 0.5 (X = 120�)
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the heat transfer rate increases with m, and M, but it decreases with K. The same trend is observed as

the variation of the velocity profiles. This result indicates that increasing the skin friction coefficient

is to increase the heat transfer rate at the surface. Influence of n over the dimensionless temperature

h(g) is shown graphically in Fig. 7. It is evident from this figure that the effect of n is to reduce the

temperature, but increases the thermal boundary-layer thickness, which in turn gives rise to the

temperature gradient at the surface. Thus, the heat transfer rate at the surface increases with n.

The sample of microrotation profiles for various values of M when m = 0.2 (X = 60�) and K = 1

is displayed in Fig. 8. It is observed that the absolute value of the dimensionless microrotation or

angular velocity |h(g)| continuously decreases with g and becomes zero far away from the surface,

which satisfies the boundary conditions (13). As expected, the microrotation effects are more

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
m = 0, M = 1 

K = 0, 1, 2, 4 

h

f ′ (h
) 

Fig. 4. Velocity profiles f 0(g) for various values

of K with M = 1 and m = 0 (flat plate)

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ω = 60° , K = 1, n = 0 

M = 0, 1, 4, 10

h

q 
(h

)

Fig. 5. Temperature profiles h(g) for various

values of M when m = 0.2 (X = 60�), K = 1 and

n = 0 (isothermal wall)

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ω  = 90°, M = 0, n = 0 

K = 0, 1, 2, 4 

h

q 
(h

)

Fig. 6. Temperature profiles h(g) for various

values of K when m = 1/3 (X = 90�), M = 0 and

n = 0
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dominant near the wall. Also, |h(g)| increases as M increases in the vicinity of the wedge but the

reverse happens as one moves away from it.

Figure 9 displays the variation of the skin friction coefficient in terms of f 00(0) against the wedge

angle X for different values of M and K. It is observed that f 00(0) increases with an increase in M, but

it decreases as K increases. These results are consistent with the velocity gradient shown in Figs. 3

and 4. The same result was reported by Yih [11] for the Newtonian fluid, concerning the effect of the

magnetic parameter on the skin friction coefficient.

The variation of the local Nusselt number, which represents the heat transfer rate at the surface, in

terms of �h0(0) are presented in Figs. 10 and 11 for n = 0 and n = 1, respectively. For a fixed

wedge angle, �h0(0) decreases as the material parameter K increases. This result is due to the fact

that the micromotion in micropolar fluid reduces the drag reduction, and consequently decreases the

heat transfer rate at the surface. For n = 0 (isothermal wedge), the value of �h0(0) increases

monotonically with an increase of the wedge angle, for both M = 0 and M = 1, but different features

are observed for n = 1. For M = 1, �h0(0) decreases monotonically with X, whereas it increases to

a certain value and then decreases monotonically for M = 0. Thus, the magnetic field gives more

influence to the heat transfer rate of a variable temperature wedge compared to an isothermal wedge.

Finally, as reported by Yih [11], the magnetic parameter M increases the local Nusselt number.

4 Conclusions

We have theoretically studied the problem of steady two-dimensional laminar fluid flow past a fixed

wedge immersed in an electrically conducting micropolar fluid. The governing partial differential

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ω = 60° , K = 1, M = 1 

n = − 0.5, 0, 0.5, 1, 2

h

q 
(h

)

Fig. 7. Temperature profiles h(g) for various

values of n when m = 0.2 (X = 60�), K = 1 and

M = 1

0 1 2 3 4 5 6
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

h(
h)

W  = 60°, K = 1 

M = 0, 1, 4, 10

h
Fig. 8. Microrotation profiles h(g) for various

values of M when m = 0.2 (X = 60�) and K = 1
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equations were transformed using suitable variables to get the ordinary differential equations, and

then solved numerically using an implicit finite-difference scheme known as the Keller-box method.

Numerical results for the velocity, temperature and microrotation profiles as well as the skin friction

coefficient and the local Nusselt number for various values of the material parameter K,

Falkner-Skan power-law parameter m, magnetic parameter M and temperature exponent parameter

n, while the dimensionless constant A and the Prandtl number Pr are fixed to be unity (the same as in

[5]), were obtained and have been illustrated in graphical forms. The numerical values of the skin

friction coefficient and the local Nusselt number for some values of the parameters were also

obtained and favorable comparisons with previously published cases of the problem were performed.

The numerical results showed that micropolar fluids display drag reduction compared to the classical

0 20 40 60 80 100 120 140 160 180
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

W

f ′′ (0
)

 0

M = 0 
M = 1 

 1

K = 0 

 1

Fig. 9. Skin friction coefficient f 0 0(0) as a

function of X for M = 0, 1 and K = 0, 1
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K = 0 
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n = 0 

 0

 1

-q
 ′ (
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Fig. 10. Local Nusselt number � h 0(0) as a

function of X for M = 0, 1 and K = 0, 1 when

n = 0
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M = 1 

1
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K = 0 

 1

-q
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Fig. 11. Local Nusselt number � h 0(0) as a

function of X for M = 0, 1 and K = 0, 1 when

n = 1
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Newtonian fluid (K = 0), and consequently reduce the heat transfer rate at the surface. The opposite

trends were observed for the effects of the transverse magnetic field on the fluid flow and heat

transfer characteristics. The skin friction coefficient increases as the wedge angle (i.e. m) increases.

Increasing n is to increase the heat transfer rate at the surface.
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