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Summary. A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies

and mode shapes of complete ellipsoidal shells of revolution with variable thickness and solid ellipsoids. Unlike

conventional shell theories, which are mathematically two-dimensional (2D), the present method is based upon the

3D dynamic equations of elasticity. Displacement components ur, uh, and uz in the radial, circumferential, and axial

directions, respectively, are taken to be periodic in h and in time, and algebraic polynomials in the r and z directions.

Potential (strain) and kinetic energies of the ellipsoidal shells of revolution and solid ellipsoids are formulated, and

the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by

minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values.

Convergence to three or four-digit exactness is demonstrated for the first five frequencies of the ellipsoidal shells of

revolution. Numerical results are presented for a variety of ellipsoidal shells with variable thickness. Frequencies for

five solid ellipsoids of different axis ratios are also given. Spherical shells and solid spheres are special cases which

are included. Comparisons are also made between the frequencies from the present 3D Ritz method, a 2D Ritz

method, and a 3D finite element method. The multiple degeneracies (two or more modes having the same frequency)

of spherical bodies are examined by analyzing some almost-spherical ellipsoids.

1 Introduction

A vast published literature exists for free vibrations of shells. The monograph of Leissa [1]

summarized approximately 1000 relevant publications world-wide through the 1960s. Almost all of

these dealt with shells of revolution (e.g., circular cylindrical, conical, spherical). Among them only

eighteen references considered ellipsoidal shells. Some additional investigations of dynamic

characteristics of ellipsoidal shells have also been uncovered [2]–[14]. However, these studies were

almost all based upon thin shell theory, which is mathematically two-dimensional (2D). That is, for

thin shells one assumes the Kirchhoff hypothesis that normals to the shell middle surface remain

normal to it during deformations (vibratory, in this case), and unstretched in length. This yields an
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eighth order set of partial differential equations of motion to be solved. For ellipsoidal shells they

involve variable coefficients, making them quite difficult to solve.

Even so, conventional shell theory is only applicable to thin shells. A higher order shell theory

could be used which considers the effects of shear deformation and rotary inertia, and would be

useful for the low frequency modes of moderately thick shells [6]. Such a theory would also be 2D.

But for ellipsoidal shells the resulting equations would be very complicated.

Recently natural frequencies for the ellipsoidal shells were obtained based upon a 3D theory,

however they were for solid hemi-ellipsoids and hemi-ellipsoidal shells of revolution with uniform

thickness [15].

In the present work complete ellipsoidal shells of revolution with variable thickness and solid

ellipsoids are analyzed by a 3-D approach. Instead of attempting to solve the equations of motion, an

energy approach is followed which, as sufficient freedom is given to the three displacement

components, yields frequency values as close to the exact ones as desired. To evaluate the energy

integrations over the shell volume exactly (not numerically), displacements and strains are expressed

in terms of the cylindrical coordinates, instead of related 3D shell coordinates which are normal and

tangent to the shell midsurface. Natural frequencies are obtained for five solid ellipsoids and fifteen

ellipsoidal shells of revolution, some having variable thickness. Spherical shells and solid spheres

are special cases which are included. Comparisons are also made between the frequencies from the

present 3D Ritz method, a 2D Ritz method, and a 3D finite element method.

2 Method of analysis

A representative cross-section of an ellipsoidal shell of revolution having variable thickness is shown

in Fig. 1. The lengths of major and minor axes of the mid-surface (zm) of the ellipsoidal shell are 2a

and 2b, respectively, and so the mid-surface has the equation of r
2/a2 + z

2/b2 = 1. The cylindrical

coordinate system (r, z, h), also shown in the figure, is used in the analysis, where h is

the circumferential angle. The shell thicknesses at z = 0 and r = 0 are H and h, respectively. Thus

the domain (K) of the ellipsoidal shell of revolution is obtained by subtracting the inner portion

0� r�a� H

2
; �zi� z� zi; 0� h� 2p ð1Þ

from the outer portion

z (axis of revolution)

h

b
z

o
z

m

z
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r

H

q

Fig. 1. A cross-section of an ellipsoidal shell of revolution and the cylindrical coordinate system (r, z, h)
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0� r�aþ H

2
; �zo� z� zo; 0� h� 2p; ð2Þ

where zi,o are the coordinates of the inner and outer surfaces of the cross-section for z � 0 in

Fig. 1, respectively,

zi;o � b� h

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

a� H=2

� �2
s

: ð3Þ

For mathematical convenience, the radial (r) and axial (z) coordinates are made dimensionless as

w � r

a
; f � z

b
: ð4Þ

Thus the domain (K) of the shell in terms of the nondimensional cylindrical coordinates ðw; f; hÞ is

given by subtracting the inner portion

0�w� 1� H�=2; �fi� f� fi; 0� h� 2p ð5Þ

from the outer portion

0�w� 1þ H�=2; �fo� f� fo; 0� h� 2p; ð6Þ

where

fi;o �
zi;o

b
¼ 1� H�h�

2k

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w

1� H�=2

� �2
s

; ð7Þ

with nondimensional thickness parameters of H
* and h

* and the axis ratio k defined by

H� � H

a
; h� � h

H
; k � b

a
: ð8Þ

In the case of solid ellipsoids the domain is given by

0�w� 1; �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
� f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
; 0� h� 2p: ð9Þ

Utilizing tensor analysis, the three equations of motion in terms of the cylindrical coordinate

system (r, z, h) are found to be [16]

rrr;r þ rrz; z þ
1

r
ðrrr � rhh þ rrh;hÞ ¼ q€ur; ð10aÞ

rrz;r þ rzz; z þ
1

r
ðrrz þ rzh;hÞ ¼ q€uz; ð10bÞ

rrh;r þ rzh; z þ
1

r
ð2rrh þ rhh;hÞ ¼ q€uh; ð10cÞ

where the rij are the normal (i = j) and shear (i=j) stress components; ur, uz, and uh are the

displacement components in the r, z, and h directions, respectively; q is mass density per unit volume;

the commas indicate spatial derivatives; and the dots denote time derivatives.

The well-known relationships between the tensorial stresses (rij) and strains (eij) of isotropic,

linear elasticity are
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rij ¼ kedij þ 2Geij; ð11Þ

where k and G are the Lamé parameters, expressed in terms of Young’s modulus (E) and Poisson’s

ratio (m) for an isotropic solid as

k ¼ Em
ð1þ mÞð1� 2mÞ ; G ¼ E

2ð1þ mÞ ; ð12Þ

e : err + ezz + ehh is the trace of the strain tensor, and dij is Kronecker’s delta.

The 3D tensorial strains (e ij) are found to be related to the three displacements ur, uz and uh by

[16]

err ¼ ur;r; ezz ¼ uz;z; ehh ¼
ur þ uh;h

r
; ð13aÞ

2erz ¼ ur;z þ uz;r; 2erh ¼ uh;r þ
ur;h � uh

r
; 2ezh ¼ uh;z þ

uz;h

r
: ð13bÞ

Substituting Eqs. (11) and (13) into Eqs. (10), one obtains a set of three second-order partial

differential equations in ur, uz, and uh governing free vibrations. However, in the case of ellipsoidal

shells, exact solutions are intractable because of the variable coefficients that appear in many terms.

Alternatively, one may approach the problem from an energy perspective.

Because the strains are related to the displacement components by Eqs. (13), unacceptable strain

singularities may be encountered exactly at r = 0 due to the term 1/r. Since a negligibly small hole

does not affect the frequencies [17], such singularities may be avoided by replacing the range for w
(: r/a) in Eqs. (5) and (6), 0�w�wi,o, with 10�5�w�wi,o, and by replacing 0�w� 1 in Eqs.

(9) with 10�5�w� 1.

During vibratory deformation of the body, its strain (potential) energy (V) is the integral over the

domain (K):

V ¼ 1

2

Z
K

ðrrrerr þ rzzezz þ rhhehh þ 2rrzerz þ 2rrherh þ 2rzhezhÞ r dr dz dh: ð14Þ

Substituting Eqs. (11) and (13) into Eq. (14) results in the strain energy in terms of the three

displacements:

V ¼ 1

2

Z
K

½kðerr þ ezz þ ehhÞ2 þ 2Gfe2
rr þ e2

zz þ e2
hh þ 2ðe2

rz þ e2
zh þ e2

rhÞg� r dr dz dh; ð15Þ

where the tensorial strains e ij are expressed in terms of the three displacements by Eqs. (13).

The kinetic energy (T) is simply

T ¼ 1

2

Z
K

q ð _u2
r þ _u2

z þ _u2
hÞ rdr dz dh : ð16Þ

For the free, undamped vibration the time (t) response of the three displacements is sinusoidal and,

moreover, the circular symmetry of the body of revolution allows the displacements to be expressed

by

urðw; f; h; tÞ ¼ Urðw; fÞ cos nh sinðxtþ aÞ; ð17:1Þ
uzðw; f; h; tÞ ¼ Uzðw; fÞ cos nh sinðxtþ aÞ; ð17:2Þ
uhðw; f; h; tÞ ¼ Uhðw; fÞ sin nh sinðxtþ aÞ; ð17:3Þ
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where Ur, Uz, and Uh are displacement functions of w and f, x is a natural frequency, and a is an

arbitrary phase angle determined by the initial conditions. The circumferential wave number is

taken to be an integer (n = 0, 1, 2, . . ., ?), to ensure periodicity in h. That the variables separable

form of Eqs. (17) does apply may be verified by substituting the displacements into the 3D

equations of motion [18]. Then Eqs. (17) account for all free vibration modes except for the

torsional ones. The torsional modes arise from an alternative set of solutions which are the same as

Eqs. (17), except that cosnh and sinnh are interchanged. For n� 1, this set duplicates the solutions

of Eqs. (17), with the symmetry axes of the mode shapes being rotated. But for n = 0 the

alternative set reduces to ur = uz = 0, uh = U
*
h(w, f)sin(xt + a), which corresponds to the

torsional modes. The displacements uncouple by circumferential wave number (n), leaving only

coupling in r (or w) and z (or f).

The Ritz method uses the maximum potential (strain) energy (Vmax) and the maximum kinetic

energy (Tmax) functionals in a cycle of vibratory motion. The functionals for the shell are obtained

by setting sin2 (xt + a) and cos2 (xt + a) equal to unity in Eqs. (15) and (16) after the displacements

(17) are substituted, and by using the nondimensional coordinates w and f, as follows:

Vmax ¼
bG

2

Z1þH�=2

0

Zfo

�fo

IV w dfdw �
Z1�H�=2

0

Zfi

�fi

IV w df dw

2
64

3
75; ð18Þ

Tmax ¼
a2bqx2

2

Z1þH�=2

0

Zfo

�fo

IT w dfdw �
Z1�H�=2

0

Zfi

�fi

IT w df dw

2
64

3
75; ð19Þ

where

IV �
k
G

j1 þ j2 þ j3ð Þ2 þ 2ðj2
1 þ j2

2 þ j2
3Þ þ j2

4

� �
C1 þ ðj2

5 þ j2
6ÞC2; ð20Þ

IT � ðU2
r þ U2

z ÞC1 þ U2
hC2; ð21Þ

and

j1 �
Ur þ nUh

w
; j2 � Ur;w; j3 �

Uz;f

k
; ð22:1Þ

j4 � Uz;w þ
Ur;f

k
; j5 �

nUz

w
� Uh;f

k
; j6 �

nUr þ Uh

w
� Uh;w; ð22:2Þ

and C1 and C2 are constants, defined by

C1 �
Z2p

0

cos2 nh dh ¼
2p if n ¼ 0

p if n� 1

(
; ð23:1Þ

C2 �
Z2p

0

sin2nh dh ¼
0 if n ¼ 0

p if n� 1

(
: ð23:2Þ

From Eqs. (12) it is seen that the nondimensional constant k=G in Eq. (20) involves only m as

follows:

k
G
¼ 2m

1� 2m
: ð24Þ
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For solid ellipsoids, the maximum energy functionals are given simply by

Vmax ¼
bG

2

Z1

0

Zffiffiffiffiffiffiffiffiffi1�w2
p

�
ffiffiffiffiffiffiffiffiffi
1�w2
p

IV w dfdw; ð25Þ

Tmax ¼
a2bqx2

2

Z1

0

Zffiffiffiffiffiffiffiffiffi1�w2
p

�
ffiffiffiffiffiffiffiffiffi
1�w2
p

IT wdf dw: ð26Þ

The displacement functions Ur, Uz, and Uh in Eqs. (17) are further assumed as algebraic

polynomials,

Urðw; fÞ ¼
XI

i¼0

XJ

j¼0

Aij w
ifj; ð27:1Þ

Uzðw; fÞ ¼
XK

k¼0

XL

l¼0

Bkl w
kfl; ð27:2Þ

Uhðw; fÞ ¼
XM
m¼0

XN

n¼0

Cmn wmfn; ð27:3Þ

and similarly for U
*
h, where i, j, k, l, m and n are integers; I, J, K, L, M and N are the highest degrees taken

in the polynomial terms; Aij, Bkl and Cmn are arbitrary coefficients to be determined. The algebraic

polynomials in Eqs. (27) form function sets which are mathematically complete [19, pp. 266–268]. Thus,

the function sets are capable of representing any 3D motion of the shell with increasing accuracy as the

indices I, J, . . ., N are increased. In the limit, as sufficient terms are taken, all internal kinematic

constraints vanish, and the functions (27) will approach the exact solution as closely as desired.

The eigenvalue problem is formulated by minimizing the free vibration frequencies with respect to

the arbitrary coefficients Aij, Bkl and Cmn, thereby minimizing the effects of the internal constraints

present, when the upper limits (I, J, . . ., N) become large. This corresponds to the equations [20]:

o

oAij

ðVmax � TmaxÞ ¼ 0 ði ¼ 0; 1; 2; . . .; I; j ¼ 0; 1; 2; . . .; JÞ; ð28:1Þ

o

oBkl

ðVmax � TmaxÞ ¼ 0 ðk ¼ 0; 1; 2; . . .;K ; l ¼ 0; 1; 2; . . .; LÞ; ð28:2Þ

o

oCmn

ðVmax � TmaxÞ ¼ 0 ðm ¼ 0; 1; 2; . . .; M; n ¼ 0; 1; 2; . . .; NÞ: ð28:3Þ

Equations (28) yield a set of (I + 1)(J + 1) + (K + 1)(L + 1) + (M + 1)(N + 1) linear, homogeneous,

algebraic equations in the unknowns Aij, Bkl and Cmn. The equations can be written in the form

ðK� X MÞx ¼ 0; ð29Þ

where K and M are stiffness and mass matrices resulting from the maximum strain energy (Vmax) and

the maximum kinetic energy (Tmax), respectively, and X is an eigenvalue of the vibrating system,

expressed as the square of non-dimensional frequency, X:x2
a

2q/G, and the vector x takes the form

x ¼ ðA00; A01; . . .; AIJ ; B00; B01; . . .; BKL; C00; C01; . . .; CMNÞT : ð30Þ
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For a nontrivial solution, the determinant of the coefficient matrix is set equal to zero, which yields

the frequencies (eigenvalues); that is to say K� X Mj j ¼ 0: These frequencies are upper bounds on

the exact values. The mode shape (eigenfunction) corresponding to each frequency is obtained, in

the usual manner, by substituting each X back into the set of algebraic equations, and solving for the

ratios of coefficients.

3 Convergence studies

To guarantee the accuracy of frequencies obtained by the procedure described above, it is necessary

to conduct some convergence studies to determine the number of terms required in the power series

of Eqs. (27). A convergence study is based upon the fact that, if the displacements are expressed as

power series, all the frequencies obtained by the Ritz method should converge to their exact values in

an upper bound manner. If the results do not converge properly, or converge too slowly, it would be

likely that the assumed displacement functions chosen are poor ones, or be missing some functions

from a minimal complete set of polynomials.

Tables 1–3 are sample convergence studies for three configurations of ellipsoidal shells (b/a = 1/2,

1, 2). All three configurations have uniform, moderate thickness (h/H = 1, H/a = 1/10). In Table 1

the first five frequencies of torsional vibration modes (n = 0T) are investigated. Tables 2 and 3

similarly show frequencies for axisymmetric (n = 0A) and lowest order bending (n = 1) modes.

To make the study of convergence less complicated, equal numbers of polynomial terms were

taken in both the r (or w) coordinate (i.e., I = K = M) and z (or f) coordinate (i.e., J = L = N),

although some computational optimization could be obtained for some configurations and some

mode shapes by using unequal numbers of polynomial terms.

The symbols TZ and TR in the tables indicate the total numbers of polynomial terms used through

the axial (z or f) and the radial (r or w) directions, respectively. Note that the frequency determinant

order DET is related to TZ and TR as follows:

DET ¼
TZ	 TR for torsional modes ðn ¼ 0Þ;
2	 TZ	 TR for axisymmetric modes ðn ¼ 0Þ;
3	 TZ	 TR for general modes ðn� 1Þ:

8><
>: ð31Þ

Frequencies in underlined, bold-faced type in Tables 1–3 are the most accurate values (to four

significant figures) achieved with the smallest determinant sizes.

Tables 1–3 show the monotonic convergence of all five frequencies as TZ (= J + 1, L + 1, and

N + 1 in Eqs. (27)) are increased, as well as TR (= I + 1, K + 1, and M + 1 in Eqs. (27)). One sees in

Table 1, for example, that the first nondimensional frequency in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
for n = 0T converges to

four digits (2.948) when as few as (TZ, TR) = (10,4) terms are used, which results in DET = 10 · 4

=40. Similarly, four digit convergence of the first frequency (1.195) in Table 2 requires a determinant

size of 2 · (11 · 6) = 132.

Comparing Tables 1 and 3, it is important to note that the modes for n = 1 require much larger

size of DET compared with the torsional modes (n = 0T). This is primarily because only the

circumferential displacement components (uh) are involved in the torsional modes, whereas all three

components enter into the modes having n � 1, as seen in Eqs. (31).

4 Numerical results for ellipsoidal shells, and discussion

Tables 4–8 present the nondimensional frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of ellipsoidal shells of revolution

with the axis ratios of b/a = 1/3, 1/2, 1, 2 and 3, respectively. Each table is for three shell
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configurations of ðH=a;h=HÞ = (1/30, 1), (1/10, 1/5) and (1/10, 1). That is, in each of the five

tables, frequencies are given for the ellipsoidal shells with thin uniform thickness, with variable

thickness, and with thick uniform thickness. Poisson’s ratio (m) was taken to be 0.3. Thirty-five

frequencies are given for each configuration, which arise from seven circumferential wave numbers

(n = 0T, 0A, 1, 2, 3, 4, 5) and the first five modes (s = 1, 2, 3, 4, 5) for each value of n, where the

superscripts T and A indicate torsional and axisymmetric modes, respectively. The numbers in

parentheses identify the first five frequencies for each configuration. The zero frequencies of rigid

body modes are omitted from the tables.

Table 1. Convergence of frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of an ellipsoidal shell of revolution with b/a = 1/2 and

H/a = 1/10 having uniform thickness (h/H = 1) for the five lowest torsional modes (n = 0T) for m = 0.3

TZa TRb DETc
1 2 3 4 5

4 2 8 3.668 5.702 8.557 20.75 25.20

4 16 2.984 4.265 5.773 8.010 10.22

6 24 2.981 4.235 5.713 7.147 8.512

8 32 2.981 4.227 5.707 7.031 8.401

10 40 2.981 4.227 5.707 7.029 8.401

5 2 10 3.668 5.476 8.557 11.70 25.20

4 20 2.984 4.222 5.773 7.094 10.22

6 30 2.981 4.208 5.713 6.966 8.512

8 40 2.981 4.207 5.707 6.946 8.401

6 2 12 3.302 5.476 8.007 11.70 15.10

4 24 2.957 4.222 5.700 7.094 8.672

6 36 2.950 4.208 5.656 6.966 8.347

8 48 2.950 4.207 5.655 6.946 8.298

7 2 14 3.302 5.373 8.007 10.44 15.10

4 28 2.957 4.219 5.700 7.021 8.672

6 42 2.950 4.206 5.656 6.940 8.347

7 49 2.950 4.206 5.655 6.938 8.300

8 2 16 3.136 5.373 7.985 10.44 13.05

4 32 2.950 4.219 5.691 7.021 8.468

6 48 2.948 4.206 5.651 6.940 8.292

7 56 2.948 4.206 5.651 6.938 8.289

8 64 2.948 4.205 5.651 6.937 8.287

9 2 18 3.136 5.025 7.985 10.41 13.05

4 36 2.950 4.210 5.691 7.014 8.468

6 54 2.948 4.205 5.651 6.937 8.292

7 63 2.948 4.205 5.651 6.936 8.289

8 72 2.948 4.205 5.651 6.935 8.287

10 2 20 3.132 5.025 7.541 10.41 12.87

4 40 2.948 4.210 5.669 7.014 8.457

5 50 2.948 4.205 5.651 6.946 8.321

6 60 2.948 4.205 5.651 6.937 8.288

7 70 2.948 4.205 5.650 6.936 8.286

8 80 2.948 4.205 5.650 6.935 8.284

11 2 22 3.132 4.952 7.541 10.06 12.87

4 44 2.948 4.208 5.669 6.976 8.457

5 55 2.948 4.205 5.651 6.941 8.321

6 66 2.948 4.205 5.651 6.936 8.288

7 77 2.948 4.205 5.650 6.935 8.286

a TZ = Total numbers of polynomial terms used in the z (or f) direction
b TR = Total numbers of polynomial terms used in the r (or w) direction
c DET = Frequency determinant order
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It is interesting to note in Tables 4 and 5 that, when b/a \ 1, the first two frequencies are for

axisymmetric modes (n = 0A). This is also true for the spherical (b/a = 1) shells of uniform

thickness in Table 6, but not for the variable thickness (h/H = 1/5) case. Tables 7 and 8 show that

for b/a [ 1 the fundamental frequency is for a mode having two circumferential waves in it (n = 2).

The torsional frequencies (n = 0T) are all for higher modes.

Table 2. Convergence of frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of a spherical shell of revolution with b/a = 1 and

H/a = 1/10 having uniform thickness (h/H = 1) for the five lowest axisymmetric modes (n = 0A) for

m = 0.3

TZa TRb DETc
1 2 3 4 5

5 2 20 1.238 1.876 2.736 3.622 5.020

4 40 1.205 1.521 1.928 2.734 2.788

6 60 1.205 1.507 1.806 2.483 2.733

8 80 1.205 1.507 1.800 2.468 2.731

10 100 1.205 1.506 1.799 2.466 2.723

6 2 24 1.218 1.779 2.735 3.129 3.351

4 48 1.197 1.501 1.811 2.309 2.729

6 72 1.196 1.472 1.707 2.067 2.654

8 96 1.196 1.471 1.702 2.036 2.482

10 120 1.196 1.470 1.699 2.014 2.452

7 2 28 1.215 1.588 2.735 2.918 3.350

4 56 1.196 1.478 1.794 2.226 2.728

6 84 1.196 1.470 1.701 2.014 2.501

8 112 1.196 1.469 1.698 1.995 2.435

10 140 1.196 1.469 1.697 1.992 2.410

8 2 32 1.211 1.573 2.103 2.736 3.350

4 64 1.196 1.473 1.721 2.167 2.728

6 96 1.195 1.469 1.696 2.000 2.414

8 128 1.195 1.468 1.690 1.982 2.380

10 160 1.195 1.468 1.690 1.980 2.370

9 2 36 1.210 1.551 2.069 2.735 3.005

4 72 1.196 1.470 1.709 2.053 2.697

6 108 1.195 1.468 1.693 1.989 2.400

7 126 1.195 1.468 1.690 1.983 2.389

8 144 1.195 1.468 1.690 1.978 2.370

9 162 1.195 1.468 1.690 1.977 2.366

10 180 1.195 1.468 1.689 1.977 2.366

11 198 1.195 1.468 1.689 1.976 2.364

10 2 40 1.210 1.548 1.975 2.735 2.934

4 80 1.196 1.469 1.697 2.030 2.517

6 120 1.195 1.468 1.691 1.984 2.385

7 140 1.195 1.468 1.689 1.978 2.371

8 160 1.195 1.468 1.689 1.976 2.364

9 180 1.195 1.468 1.689 1.976 2.361

10 200 1.195 1.468 1.689 1.976 2.360

11 2 44 1.209 1.548 1.972 2.650 2.734

4 88 1.195 1.468 1.693 1.999 2.490

6 132 1.195 1.468 1.689 1.980 2.377

7 154 1.195 1.468 1.689 1.976 2.364

8 176 1.195 1.468 1.689 1.975 2.361

9 198 1.195 1.468 1.689 1.975 2.359

a TZ = Total numbers of polynomial terms used in the z (or f) direction
b TR = Total numbers of polynomial terms used in the r (or w) direction
c DET = Frequency determinant order
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The spherical shells of Table 6 are particularly interesting in the two cases of uniform thickness

(h/H = 1), because of the degeneracies (multiple mode shapes having the same frequencies) present

in such cases. Thus, as the table shows, the fundamental frequency then appears for n = 0A, 1 and 2

modes, all three of them. They are all the same mode shape, but looked at from three different

directions. Interestingly, further multiple degeneracies are observed in Table 6 as, for example,

xR
ffiffiffiffiffiffiffiffiffi
q=G

p
= 1.591, which appears for the fourth mode of n = 0A, 1 and 2 when H/a = 1/30, but for

the third mode of n = 3, second mode of n = 4, and first mode of n = 5. The degeneracies for

spherical shells, as well as solid spheres, will be discussed further in Sect. 7.

Table 3. Convergence of frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of an ellipsoidal shell of revolution with b/a = 2 and H/

a = 1/10 having uniform thickness (h/H = 1) for the five lowest bending modes (n = 1) for m = 0.3

TZa TRb DETc
1 2 3 4 5

4 2 24 1.101 1.213 2.053 2.425 2.769

4 48 1.031 1.130 1.727 1.784 2.326

6 72 1.022 1.126 1.692 1.743 2.235

8 96 1.022 1.126 1.689 1.741 2.232

10 120 1.022 1.126 1.689 1.741 2.230

5 2 30 1.023 1.142 1.965 2.034 2.707

4 60 0.9902 1.123 1.561 1.747 2.135

6 90 0.9892 1.122 1.546 1.717 1.996

8 120 0.9892 1.122 1.542 1.716 1.947

10 150 0.9892 1.122 1.541 1.716 1.937

6 2 36 0.9981 1.122 1.616 1.841 2.706

4 72 0.9872 1.115 1.528 1.545 2.028

6 108 0.9868 1.114 1.514 1.519 1.917

8 144 0.9868 1.114 1.507 1.510 1.860

10 180 0.9868 1.114 1.506 1.508 1.846

7 2 42 0.9905 1.116 1.562 1.658 2.149

4 84 0.9870 1.114 1.511 1.516 1.875

6 126 0.9867 1.114 1.497 1.502 1.790

8 168 0.9867 1.114 1.496 1.500 1.781

8 2 48 0.9887 1.115 1.522 1.582 2.115

4 96 0.9867 1.114 1.497 1.506 1.806

6 144 0.9866 1.114 1.492 1.496 1.756

7 168 0.9866 1.114 1.491 1.494 1.751

8 192 0.9866 1.114 1.491 1.494 1.748

9 2 54 0.9884 1.115 1.513 1.519 2.054

4 108 0.9867 1.114 1.495 1.495 1.782

6 162 0.9866 1.114 1.492 1.493 1.751

7 189 0.9866 1.114 1.491 1.493 1.744

8 216 0.9866 1.114 1.491 1.493 1.741

9 243 0.9866 1.114 1.491 1.493 1.741

10 2 60 0.9883 1.115 1.500 1.513 1.831

4 120 0.9867 1.114 1.491 1.495 1.751

6 180 0.9866 1.114 1.491 1.493 1.740

7 210 0.9866 1.114 1.491 1.493 1.739

8 240 0.9866 1.114 1.491 1.493 1.738

a TZ = Total numbers of polynomial terms used in the z (or f) direction
b TR = Total numbers of polynomial terms used in the r (or w) direction
c DET = Frequency determinant order
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5 Comparisons with results from 2D shell theory

Jones-Oliveira [9] and Chen and Ginsberg [10] investigated the axisymmetric free vibration

properties of thin ellipsoidal shells using the method of assumed modes (which is equivalent to the

Rayleigh-Ritz method) based upon the 2D classical linear shell theory including bending effects. The

former [9] (2DRL) employed a series of prolate spheroidal angular functions and their derivatives in

the displacements. However, because of the difficulty in evaluating those functions, the series were

converted to Legendre basis functions. The basis functions the latter [10] (2DRT) used were

trigonometric.

Table 4. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of completely free, ellipsoidal shells of revolution with b/a = 1/3 for

m = 0.3

n s (H/a, h/H)

ð1=30; 1Þ ð1=10; 1=5Þ ð1=10; 1Þ
a
0

T
1 3.302 4.133 3.310

2 4.527 4.893 4.519

3 6.243 6.716 6.254

4 7.508 7.756 7.496

5 9.093 9.411 9.103
b
0

A
1 0.5173(1)

c
0.6792(1) 0.6305(1)

2 0.6437(2) 0.7031(2) 0.9734(2)

3 0.8087(5) 0.9088(5) 1.628

4 1.028 1.052 2.262

5 1.342 1.438 3.245

1 1 0.6853(3) 0.7735(3) 1.029(3)

2 0.7660(4) 0.8007(4) 1.068(5)

3 1.048 1.151 1.644

4 1.109 1.169 2.346

5 1.379 1.476 2.539

2 1 0.8890 0.9163 1.059(4)

2 0.8901 0.9582 1.530

3 1.094 1.046 1.966

4 1.344 1.461 2.122

5 1.654 1.510 2.574

3 1 1.121 1.204 1.616

2 1.155 1.206 2.109

3 1.498 1.546 2.781

4 1.679 1.847 3.143

5 2.074 2.104 3.600

4 1 1.379 1.504 2.194

2 1.422 1.511 2.747

3 1.891 2.006 3.607

4 2.047 2.278 3.969

5 2.524 2.683 4.630

5 1 1.663 1.853 2.818

2 1.710 1.870 3.433

3 2.285 2.487 4.463

4 2.443 2.761 4.707

5 3.000 3.283 5.656

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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Comparisons are made between the frequencies from the present 3D Ritz method (3DR) and two

2D Ritz methods [9], [10] in Table 9 for the first five nondimensional axisymmetric (n = 0A)

frequencies in qx 2
a

2(1 � m 2)/E of ellipsoidal shells of revolution with uniform thickness (h/H =1)

for m = 0.3.

Table 9 shows for b/a = 1.00504 and 1.4142 that all the five frequencies from 3DR are equal or

smaller than ones from the 2D shell analysis methods [9], [10] with an exception of the lowest

axisymmetric frequencies (n = 0A) for b/a = 1.4142. However, for b/a = 10.03746 all the five

frequencies from 2DRT [10] are smaller than ones from the other two methods (3DR and 2DRL [9]).

Table 5. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of completely free, ellipsoidal shells of revolution with b/a = 1/2 for

m = 0.3

n s (H/a, h/H)

ð1=30; 1Þ ð1=10; 1=5Þ ð1=10; 1Þ
a
0

T
1 2.950 3.669 2.948

2 4.212 4.678 4.205

3 5.656 6.052 5.650

4 6.946 7.247 6.935

5 8.295 8.562 8.284
b
0

A
1 0.7612(1)

c
0.9872(1) 0.8239(1)

2 0.8854(2) 1.005(2) 1.125(2)

3 1.020(5) 1.136(5) 1.618

4 1.194 1.289 2.234

5 1.428 1.579 3.036

1 1 0.9458(3) 1.055(3) 1.146(3)

2 0.9873(4) 1.073(4) 1.177(4)

3 1.186 1.306 1.635

4 1.222 1.352 2.238

5 1.451 1.594 2.435

2 1 1.146 1.205 1.309(5)

2 1.150 1.211 1.624

3 1.322 1.301 1.877

4 1.482 1.331 2.028

5 1.727 1.597 2.361

3 1 1.376 1.471 1.845

2 1.392 1.472 2.155

3 1.714 1.815 2.686

4 1.781 1.992 2.831

5 2.098 2.135 3.348

4 1 1.623 1.785 2.376

2 1.646 1.793 2.739

3 2.059 2.249 3.299

4 2.110 2.458 3.607

5 2.493 2.745 4.396

5 1 1.891 2.161 2.947

2 1.920 2.181 3.350

3 2.394 2.732 3.859

4 2.467 2.948 4.420

5 2.915 3.314 5.439

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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Lower frequencies are to be expected, because shear deformation and rotary inertia effects are

accounted for in a 3D analysis, but not in 2D thin shell analysis.

6 Numerical results for solid ellipsoids, and discussion

Table 10 gives the nondimensional frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of solid ellipsoids with the axis ratios

(b/a) of 1/3, 1/2, 1, 2 and 3, which are depicted in Fig. 2. Poisson’s ratio (m) was again taken to be

0.3. It is interesting to note that when b/a < 1 the fundamental frequencies are for modes having two

(n = 2) circumferential waves, unlike the hollow ellipsoidal shells where the fundamental mode is

Table 6. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of completely free, spherical shells of revolution with b/a = 1 for m = 0.3

n s (H/a, h/H)

ð1=30; 1Þ ð1=10; 1=5Þ ð1=10; 1Þ
a
0

T
1 2.000 2.320 1.996(5)

2 3.162 3.515 3.156

3 4.242 4.581 4.234

4 5.290 5.600 5.280

5 6.323 6.602 6.311
b
0

A
1 1.186(1) 1.387(5)

c
1.195(1)

2 1.410(2) 1.597 1.468(2)

3 1.513(3) 1.723 1.689(3)

4 1.591(4) 1.801 1.975(4)

5 1.675(5) 1.900 2.359

1 1 1.186(1) 1.295(3) 1.195(1)

2 1.410(2) 1.526 1.468(2)

3 1.513(3) 1.656 1.689(3)

4 1.591(4) 1.763 1.975(4)

5 1.675(5) 1.893 1.996(5)

2 1 1.186(1) 0.9341(1) 1.195(1)

2 1.410(2) 1.251(2) 1.468(2)

3 1.513(3) 1.551 1.689(3)

4 1.591(4) 1.715 1.975(4)

5 1.675(5) 1.762 1.996(5)

3 1 1.410(2) 1.299(4) 1.468(2)

2 1.513(3) 1.507 1.689(3)

3 1.591(4) 1.715 1.975(4)

4 1.675(5) 1.918 2.359

5 1.784 2.149 2.840

4 1 1.513(3) 1.557 1.689(3)

2 1.591(4) 1.756 1.975(4)

3 1.675(5) 1.980 2.359

4 1.784 2.230 2.840

5 1.928 2.518 3.410

5 1 1.591(4) 1.845 1.975(4)

2 1.675(5) 2.081 2.359

3 1.784 2.348 2.840

4 1.928 2.650 3.410

5 2.113 2.991 4.067

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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axisymmetric (n = 0A). For b/a > 1 the fundamental mode for solid ellipsoids is seen to be n = 1,

whereas for shells it is n = 2 (Tables 7 and 8). It is also seen that the axisymmetric modes (n = 0A)

are important like the hollow ellipsoidal shells. That is, they are among the lowest frequencies of the

solid ellipsoids.

If one holds the semimajor axis length (a) fixed, because it occurs in the nondimensional

frequency parameter xa
ffiffiffiffiffiffiffiffiffi
q=G

p
; increasing b/a then indicates ellipsoids of increasing volume. One

usually expects larger bodies to have lower frequencies. This is the case for most of the

frequencies in Table 10, but not all of them. Exceptions are seen for the first frequencies having

Table 7. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of completely free, ellipsoidal shells of revolution with b/a = 2 for

m = 0.3

n s (H/a, h/H)

ð1=30; 1Þ ð1=10; 1=5Þ ð1=10; 1Þ
a
0

T
1 1.144 1.245 1.142

2 1.890 2.027 1.888

3 2.598 2.755 2.594

4 3.288 3.457 3.283

5 3.969 4.144 3.962
b
0

A
1 1.169 1.309 1.169

2 1.548 1.609 1.562

3 1.634 1.726 1.693

4 1.700 1.862 1.831

5 1.785 2.016 1.979

1 1 0.9851 1.102 0.9866

2 1.111 1.152 1.114

3 1.460 1.525 1.491

4 1.465 1.569 1.493

5 1.634 1.777 1.738

2 1 0.4706(1)
c

0.4551(1) 0.4934(1)

2 0.7912 0.7428(3) 0.8276(3)

3 1.070 1.053 1.136

4 1.278 1.313 1.397

5 1.432 1.541 1.640

3 1 0.4931(2) 0.6035(2) 0.6290(2)

2 0.7313 0.8447(4) 0.9043(5)

3 0.9521 1.095 1.186

4 1.143 1.340 1.466

5 1.306 1.580 1.755

4 1 0.5339(3) 0.8641(5) 0.8938(4)

2 0.7255(5) 1.079 1.155

3 0.9132 1.310 1.437

4 1.090 1.553 1.740

5 1.256 1.803 2.071

5 1 0.6175(4) 1.244 1.278

2 0.7840 1.456 1.549

3 0.9536 1.687 1.846

4 1.123 1.936 2.181

5 1.294 2.197 2.550

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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n = 0A, 2, 3 and 4 (but not 0T or 1). There, the frequencies first increase, then decrease, with

increasing b/a.

Buchanan and Ramirez [21] analyzed the free vibrations of the solid spheres in 3D applying a

nine-node Lagrangian finite element and modeling the cross-section of the solid sphere using 50

elements, 231 modes or 694 degrees of freedom. Table 11 shows the comparisons of the first five

nondimensional torsional (n = 0T) and axisymmetric (n = 0A) frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of a solid

sphere (b/a = 1) from the present 3D Ritz (3DR) method and a 3D finite element method (3DF)

[21] for m = 0.3. It is interesting to note that all the frequencies from the present 3DR are equal to or

Table 8. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of completely free, ellipsoidal shells of revolution with b/a = 3 for

m = 0.3

n s (H / a, h / H)

ð1=30; 1Þ ð1=10; 1=5Þ ð1=10; 1Þ
a
0

T
1 0.7951 0.8435 0.7943

2 1.323 1.392 1.321

3 1.826 1.910 1.824

4 2.320 2.415 2.317

5 2.809 2.912 2.806
b
0

A
1 0.9337 1.035 0.9335

2 1.453 1.519 1.454

3 1.604 1.640 1.622

4 1.653 1.724 1.703

5 1.717 1.810 1.798

1 1 0.5832 0.6554(5) 0.5834(4)

2 0.9194 0.9780 0.9212

3 1.212 1.251 1.219

4 1.234 1.279 1.237

5 1.440 1.511 1.468

2 1 0.2369(1)
c

0.2644(1) 0.2759(1)

2 0.4484 0.4569(3) 0.4895(3)

3 0.6792 0.6851 0.7294

4 0.8937 0.9102 0.9603

5 1.079 1.118 1.172

3 1 0.2627(2) 0.4469(2) 0.4592(2)

2 0.4071(4) 0.5832(4) 0.6161(5)

3 0.5685 0.7456 0.7985

4 0.7315 0.9212 0.9929

5 0.8871 1.102 1.193

4 1 0.3347(3) 0.7574 0.7713

2 0.4428(5) 0.8793 0.9185

3 0.5653 1.019 1.086

4 0.6946 1.172 1.271

5 0.8254 1.337 1.471

5 1 0.4563 1.167 1.182

2 0.5473 1.295 1.338

3 0.6497 1.435 1.512

4 0.7600 1.589 1.708

5 0.8757 1.754 1.924

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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Table 9. Comparisons of the first five nondimensional axisymmetric (n = 0A) frequencies in q x 2
a

2

(1 � m2)/E of ellipsoidal shells of revolution with uniform thickness (h/H = 1) from the present 3D Ritz

methods (3DR) and two 2D Ritz methods (2DRL [9] and 2DRT [10]) for m = 0:3

b/a H/a Method 1 2 3 4 5

1.00504 0.0456 3DR 0.494 0.706 0.827 0.945 1.104

2DRL [9] 0.494 0.706 0.830 0.952 1.116

2DRT [10] 0.495 0.707 0.831 0.953 1.117

1.4142 0.0388 3DR 0.545 0.825 0.939 1.040 1.157

2DRL [9] 0.543 0.826 0.944 1.077 1.202

2DRT [10] 0.544 0.826 0.943 1.047 1.164

10.03746 0.00676912 3DR 0.0376 0.1161 0.2327 0.3829 0.5565

2DRL [9] 0.0456 0.1286 0.2461 0.4203 0.6185

2DRT [10] 0.0321 0.1073 0.2225 0.3735 0.5487

Table 10. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of completely free solid ellipsoids for m = 0.3

n s b/a

1=3 1=2 1 2 3

a
0

T
1 5.189 4.622 2.501(1) 1.283(2) 0.8596(2)

2 6.421 5.052 3.865(4) 2.106(5) 1.424(5)

3 8.460 7.235 5.095 2.878 1.959

4 8.877 8.177 5.763 3.627 2.481

5 11.34 8.196 6.266 4.364 2.998
b
0

A
1 2.273(2)

c
2.820(3) 2.646(2) 1.621(3) 1.123(4)

2 3.842 3.584 3.530(3) 2.616 1.910

3 5.400 5.377 3.937(5) 3.323 2.580

4 7.689 6.183 4.996 3.748 3.095

5 7.986 7.090 5.007 3.936 3.528

1 1 2.924(5) 2.890(4) 2.501(1) 1.110(1) 0.5880(1)

2 3.724 3.755 2.646(2) 1.856(4) 1.099(3)

3 5.947 4.961 3.530(3) 2.292 1.620

4 5.999 5.230 3.865(4) 2.601 2.074

5 6.840 5.917 3.937(5) 3.000 2.165

2 1 1.449(1) 1.876(1) 2.501(1) 2.454 2.400

2 2.780(4) 2.761(2) 2.646(2) 2.661 2.548

3 4.505 4.431 3.865(4) 3.159 2.839

4 5.048 5.002 3.937(5) 3.299 3.087

5 7.329 6.303 5.007 3.773 3.346

3 1 2.542(3) 3.134(5) 3.865(4) 3.725 3.673

2 4.197 4.154 3.937(5) 3.955 3.830

3 6.107 5.932 5.046 4.433 4.109

4 6.294 6.156 5.095 4.457 4.322

5 8.547 7.309 6.083 4.976 4.507

4 1 3.620 4.324 5.046 4.843 4.792

2 5.395 5.329 5.095 5.117 4.975

3 7.489 7.252 6.083 5.549 5.247

4 7.688 7.321 6.266 5.577 5.457

5 9.586 8.365 7.087 6.087 5.613

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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less than the ones from 3DF and, in one case, much less (3.530 versus 3.588). The present results are

converged to the exact values, to four digits.

7 Viewing degeneracies by means of almost-spherical ellipsoids

It was seen earlier that numerous degeneracies (two or more modes having the same frequency)

occur for spherical shells and solid spheres. One can reasonably wonder whether some of the

repeated frequencies for b/a = 1 (Tables 6 and 10) are correct, or are calculation errors. That they

are indeed correct degeneracies can be established by looking at the frequencies of almost spherical

ellipsoids.

3

2

1

1/2

b/a = 1/3

Fig. 2. Cross-sections of solid ellipsoids

Vibration analysis of solid ellipsoids 113



Table 11. Comparisons of the first five nondimensional torsional (n = 0T) and axisymmetric (n = 0A)

frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
of a solid sphere (b/a = 1) from the present 3D Ritz (3DR) method and a 3D finite

element method (3DF) [21] for m = 0.3

n Method 1 2 3 4 5

a0T 3DR 2.501 3.865 5.095 5.763 6.266

3DF 2.501 3.867 5.102 5.765 6.287
b0A 3DR 2.646 3.530 3.937 4.996 5.007

3DF 2.647 3.588 3.942 4.996 5.009

a T = Torsional mode
b A = Axisymmetric mode

Table 12. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
(including almost degenerate ones) for nearly spherical shells (H/a = 1/10,

h/H = 1, m = 0.3)

n s b/a

0:97 0:99 1 1:01 1:03

a
0

T
1 2.039 2.010 1.996(5) 1.982 1.954

2 3.213 3.175 3.156 3.137 3.099

3 4.305 4.257 4.234 4.210 4.164

4 5.367 5.309 5.280 5.252 5.196

5 6.412 6.345 6.311 6.278 6.212
b
0

A
1 1.185(1)

c
1.192(1) 1.195(1) 1.199(3) 1.205(3)

2 1.454(4) 1.463(4) 1.468(2) 1.472 1.480

3 1.684 1.688 1.689(3) 1.691 1.695

4 1.987 1.981 1.975(4) 1.975 1.970

5 2.397 2.379 2.359 2.362 2.345

1 1 1.196(2) 1.196(2) 1.195(1) 1.195(2) 1.194(2)

2 1.461(5) 1.466(5) 1.468(2) 1.469 1.473

3 1.688 1.689 1.689(3) 1.690 1.691

4 1.988 1.981 1.975(4) 1.975 1.965

5 2.027 2.006 1.996(5) 1.985 1.968

2 1 1.230(3) 1.207(3) 1.195(1) 1.184(1) 1.161(1)

2 1.483 1.473 1.468(2) 1.462(5) 1.451(5)

3 1.699 1.693 1.689(3) 1.686 1.679

4 1.993 1.983 1.975(4) 1.972 1.962

5 1.994 1.995 1.996(5) 1.997 1.999

3 1 1.521 1.485 1.468(2) 1.451(4) 1.417(4)

2 1.719 1.699 1.689(3) 1.679 1.659

3 2.001 1.985 1.975(4) 1.968 1.951

4 2.397 2.376 2.359 2.354 2.333

5 2.908 2.877 2.840 2.831 2.816

4 1 1.748 1.708 1.689(3) 1.670 1.634

2 2.015 1.989 1.975(4) 1.963 1.938

3 2.398 2.374 2.359 2.349 2.325

4 2.895 2.862 2.840 2.832 2.805

5 3.502 3.451 3.410 3.398 3.381

5 1 2.033 1.994 1.975(4) 1.957 1.922

2 2.404 2.375 2.359 2.346 2.318

3 2.891 2.860 2.840 2.830 2.800

4 3.491 3.453 3.410 3.387 3.358

5 4.150 4.108 4.067 4.047 4.010

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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Table 12 shows the frequencies of spherical (b/a = 1) and almost-spherical (b/a = 0.97, 0.99,

1.01, 1.03) shells having H/a = 1/10 and h/H = 1. The spherical shell frequencies listed are identical

to those seen previously in Table 6. The fundamental frequency (1.195) which appears for three

degenerate modes (n = 0A, 1, 2) is seen in each case to be a smooth transition in the frequency as b/a

is increased from 0.97 to 1.03. That is, if one were to plot xa
ffiffiffiffiffiffiffiffiffi
q=G

p
versus b/a, all three curves

would cross at b/a = 1. Similarly, the second degenerate frequency (1.468) is the result of four

curves crossing at b/a = 1.

Table 13 examines the frequency degeneracies of solid ellipsoids as b/a is increased from 0.97 to

1.03. The frequencies appearing there for b/a = 1 are the same as those in Table 10. Curve crossings

at b/a = 1 (solid sphere) similar to those described above are also seen here. Again, the fundamental

frequency (2.501) at b/a = 1 involves three degenerate modes; but this time, one of the modes is 0T,

instead of the 0A mode which was included for the shell. In this case the second degenerate

Table 13. Frequencies in xa
ffiffiffiffiffiffiffiffiffi
q=G

p
(including almost degenerate ones) for nearly spherical solid bodies

(m = 0.3)

n s b/a

0:97 0:99 1 1:01 1:03

a
0

T
1 2.573(3)

c
2.525(3) 2.501(1) 2.478(1) 2.433(1)

2 3.951 3.893 3.865(4) 3.836 3.780

3 5.196 5.128 5.095 5.061 4.995

4 5.800 5.775 5.763 5.752 5.731

5 6.382 6.304 6.266 6.227 6.151
b
0

A
1 2.691 2.661 2.646(2) 2.632(4) 2.603(4)

2 3.511 3.524 3.530(3) 3.536 3.546

3 4.000 3.958 3.937(5) 3.917 3.879

4 5.025 5.007 4.996 4.972 4.911

5 5.082 5.032 5.007 4.991 4.958

1 1 2.547(2) 2.517(2) 2.501(1) 2.485(2) 2.452(2)

2 2.683(5) 2.658(5) 2.646(2) 2.635(5) 2.612(5)

3 3.596 3.551 3.530(3) 3.510 3.472

4 3.939 3.889 3.865(4) 3.840 3.792

5 3.995 3.956 3.937(5) 3.919 3.884

2 1 2.480(1) 2.494(1) 2.501(1) 2.508(3) 2.521(3)

2 2.655(4) 2.649(4) 2.646(2) 2.643 2.638

3 3.904 3.878 3.865(4) 3.852 3.827

4 3.978 3.951 3.937(5) 3.924 3.899

5 5.040 5.018 5.007 4.994 4.962

3 1 3.844 3.858 3.865(4) 3.871 3.884

2 3.950 3.942 3.937(5) 3.933 3.925

3 5.088 5.060 5.046 5.032 5.006

4 5.129 5.106 5.095 5.084 5.062

5 6.148 6.105 6.083 6.062 6.020

4 1 5.060 5.051 5.046 5.041 5.033

2 5.075 5.088 5.095 5.101 5.112

3 6.127 6.098 6.083 6.070 6.043

4 6.298 6.276 6.266 6.256 6.236

5 7.154 7.109 7.087 7.065 7.023

a T = Torsional mode
b A = Axisymmetric mode
c Numbers in parentheses identify frequency sequence
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frequency (2.646) is the result of three curves crossing, instead of the four which appeared for the

shell.

8 Concluding remarks

Extensive and accurate frequency data determined by the 3D Ritz analysis have been presented for

hollow ellipsoidal shells of revolution with variable thickness and also solid ellipsoids. The analysis

uses the 3D equations of the theory of elasticity in their general forms for isotropic materials. They

are only limited to small strains. No other constraints are placed upon the displacements. This is in

significant contrast to the classical 2D thin shell theories, which make very limiting assumptions

about the displacement variation through the shell thickness.

The method is straightforward, but it is capable of determining frequencies and mode shapes as

close to the exact ones as desired. Therefore, the data in Tables 4–8, 10 and 12–13 may be regarded

as benchmark results against which 3D results obtained by other methods, such as finite elements and

finite differences, may be compared to determine the accuracy of the latter. Moreover, the frequency

determinants required by the present method are at least an order of magnitude smaller than those

needed by finite element analyses of comparable accuracy. This was demonstrated extensively in a

paper by McGee and Leissa [22]. The Ritz method guarantees upper bound convergence of the

frequencies in terms of functions sets that are mathematically complete, such as algebraic

polynomials. Some finite element methods can also accomplish this, but at much greater costs, and

others cannot.

The method presented could also be extended to circumferentially open (0� h� h 0) ellipsoidal

shells, instead of circumferentially closed (0� h� 2p) ellipsoidal shells of revolution considered in

the present work. However, the periodicity in h would not be present. It would be necessary then to

replace the double sums of algebraic polynomials in Eqs. (27) by triple sums, with polynomials in h
being included.
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