
Shear deformation effect in nonlinear analysis
of spatial composite beams subjected to variable
axial loading by bem

E. J. Sapountzakis and V. G. Mokos, Athens, Greece

Received September 8, 2006; revised February 17, 2007
Published online: June 12, 2007 � Springer-Verlag 2007

Summary. In this paper a boundary element method is developed for the nonlinear analysis of composite

beams of arbitrary doubly symmetric constant cross section, taking into account the shear deformation

effect. The composite beam consists of materials in contact, each of which can surround a finite number of

inclusions. The materials have different elasticity and shear moduli with same Poisson’s ratio and are

firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial

loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the

induction of a twisting moment. To account for shear deformations, the concept of shear deformation

coefficients is used. Five boundary value problems are formulated with respect to the transverse dis-

placements, the axial displacement and to two stress functions and solved using the Analog Equation

Method, a BEM based method. Application of the boundary element technique yields a system of non-

linear equations from which the transverse and axial displacements are computed by an iterative process.

The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress

functions using only boundary integration. Numerical examples with great practical interest are worked

out to illustrate the efficiency and the range of applications of the developed method. The influence of both

the shear deformation effect and the variableness of the axial loading are remarkable.

1 Introduction

An important consideration in the analysis of the components of plane and space frames is the

influence of the action of axial, lateral forces and endmoments on the deformed shape of a beam.

Lateral loads and end moments generate deflection that is further amplified by axial compres-

sion loading. On the other hand, composite beams have been increasingly used in recent years as

structural members due to their high strength/stiffness properties for light weight materials. The

extensive use of these structural elements requires an accurate analysis which is achieved taking

into account that the axial force is nonlinearly coupled with the transverse deflections, avoiding

in this way the inaccuracies arising from a linearized second-order analysis.

Over the past twenty years, many researchers have developed and validated various

methods of performing a linearized second-order analyses on structures. Early efforts led to

methods based on accounting for the aforementioned effect by using magnification factors

applied to the results obtained from first-order analyses [1]–[3]. An example of such a method
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is the ‘‘B1 and B2 factor approach’’ provided in the AISC-LRFD specification [4]. Since the

modifications used in this method are only applied to the moments of the columns and not of

the beams, the results obtained from this method are often unsatisfactory especially for cases

involving moderate to large deformations [2]. Consequently, due to the demand of more

rigorous and accurate second-order analysis of structural components several research papers

have been published including a non-linear incremental stiffness method [5], closed-form

stiffness methods [6], [7], the analysis of non-linear effects by treating every element as a

‘‘beam-column’’ element [8], a design method for space frames using stability functions to

capture second-order effects associated with P-d and P-D effects [9], uniform formulae

restricted to a single bar of a skeletal structure and to only a few loadings [10], the finite

element method using linear and cubic shape functions [11] and a 3-D second-order plastic-

hinge analysis accounting for material and geometric non-linearities [12], [13]. Recently,

Katsikadelis and Tsiatas [14] presented a BEM-based method for the nonlinear analysis of

homogeneous beams with variable stiffness. In all these studies shear deformation effect is

ignored.

Moreover, Kim et al. presented a practical second-order inelastic static [15] and dynamic [16]

analysis for 3-D steel frames, Machado and Cortinez [17] a geometrically non-linear beam

theory for the lateral buckling problem of bisymmetric thin-walled composite simply supported

or cantilever beams, taking into account shear deformation effects. Nevertheless, in all of the

aforementioned research efforts the axial loading of the structural components is assumed to be

constant. Finally, the boundary element method taking into account shear deformation effects

has been employed only for first-order analyses [18]–[20].

In this paper a boundary element method is developed for the nonlinear analysis of com-

posite beams of arbitrary doubly symmetric constant cross section, taking into account the

shear deformation effect. The composite beam consists of materials in contact, each of which

can surround a finite number of inclusions. The materials have different elasticity and shear

moduli with same Poisson’s ratio and are firmly bonded together. The beam is subjected to an

arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied

at the shear center of the cross section, avoiding in this way the induction of a twisting moment.

To account for shear deformations, the concept of shear deformation coefficients is used. Five

boundary value problems are formulated with respect to the transverse displacements, the axial

displacement and to two stress functions and solved using the Analog Equation Method [21], a

BEM based method. Application of the boundary element technique yields a system of non-

linear equations from which the transverse and axial displacements are computed by an iter-

ative process. The evaluation of the shear deformation coefficients is accomplished from the

aforementioned stress functions using only boundary integration. The essential features and

novel aspects of the present formulation compared with previous ones are summarized as

follows:

(i) The beam is subjected in an arbitrarily concentrated or distributed variable axial loading.

(ii) The beam is supported by the most general boundary conditions including elastic support

or restrain.

(iii) The analysis is not restricted to a linearized second-order one but is a nonlinear one arising

from the fact that the axial force is nonlinearly coupled with the transverse deflections

(additional terms are taken into account).

(iv) Shear deformation effect is taken into account.

(v) The boundary conditions at the interfaces between different material regions have been

considered.
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(vi) The shear deformation coefficients are evaluated using an energy approach, instead of

Timoshenko’s [22] and Cowper’s [23] definitions, for which several authors [24], [25]

have pointed out that one obtains unsatisfactory results or definitions given by other

researchers [26], [27], for which these factors take negative values.

(vii) The effect of the material’s Poisson ratio ı́ is taken into account.

(viii) The proposed method employs a pure BEM approach (requiring only boundary dis-

cretization) resulting in line or parabolic elements instead of area elements of the FEM

solutions (requiring the whole cross section to be discretized into triangular or quadri-

lateral area elements), while a small number of line elements are required to achieve high

accuracy.

Numerical examples with great practical interest are worked out to illustrate the efficiency and

the range of applications of the developed method. The influence of both the shear deformation

effect and the variableness of the axial loading are remarkable.

2 Statement of the problem

Consider a prismatic beam of length l with a doubly symmetric composite cross section of

arbitrary shape, consisting of materials in contact, each of which can surround a finite number

of inclusions, with modulus of elasticity Ej, shear modulus Gj and common Poisson’s ratio v,

occupying the regions Xj ðj ¼ 1; 2; . . . ;KÞ of the y; z plane (Fig. 1). The materials of these

regions are firmly bonded together and are assumed homogeneous, isotropic and linearly

elastic. Let also the boundaries of the nonintersecting regions Xj be denoted by

Cj ðj ¼ 1; 2; . . . ;K :Þ. These boundary curves are piecewise smooth, i.e., they may have a finite

number of corners. Without loss of generality, it may be assumed that the x-axis of the beam

principal coordinate system is the line joining the centroids of the cross sections. The beam is

subjected to an arbitrarily distributed axial loading px and to torsionless bending arising from

arbitrarily distributed transverse loading py, pz and bending moments my, mz along the y- and

z-axes, respectively (Fig. 1a).

According to the nonlinear theory of beams for moderate large deflections

ð @u=@xð Þ2� @u=@x; @u=@xð Þ @u=@yð Þ � @v=@xð Þþ @u=@yð Þ; @u=@xð Þ @u=@zð Þ � @w=@xð Þþ
@u=@zð ÞÞ and assuming small rotations [28], [29], the angles of rotation of the cross-section in

the x-z and x-y planes of the beam subjected to the aforementioned loading and taking into

account shear deformation effect satisfy the following relations:

cos xy � 1; cos xz � 1; ð1:1; 2Þ

sin xy � xy ¼ �
dw

dx
¼ hy � cz; sin xz � xz ¼ �

dv

dx
¼ �hz � cy; ð1:3; 4Þ

where w ¼ w xð Þ, v ¼ v xð Þ are the beam transverse displacements with respect to the z- and

y-axes, respectively, cy, cz are the additional angles of rotation of the cross-section due to shear

deformation (Fig. 2a) [28], [29], while the corresponding curvatures are given as

ky ¼
dhy

dx
¼ �d2w

dx2
þ dcz

dx
¼ �d2w

dx2
� pz

G1Az

; ð2:1Þ

kz ¼
dhz

dx
¼ d2v

dx2
�

dcy

dx
¼ d2v

dx2
þ py

G1Ay

; ð2:2Þ
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where the first material is considered as reference material, G1Ay, G1Az are shear rigidities of the

Timoshenko’s beam theory and

Az ¼ jzA ¼ 1

az

A; Ay ¼ jyA ¼ 1

ay

A ð3:1; 2Þ

are the shear areas with respect to the y- and z-axes, respectively, with jy, jz the shear

correction factors, ay, az the shear deformation coefficients and A the composite cross section

area given as

A ¼
XK

j¼1

Gj

G1

Z

Xj

dXj: ð4Þ

It is worth here noting that the reduction of Eq. (4) using the shear modulus G1 of the first

material could be achieved using any other material, considering it as reference material.

Referring to Fig. 2b [28], [29], the stress resultants Rx, Rz acting in the x- and z-directions,

respectively, are related to the axial N and shear Qz forces as
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Fig. 1. Prismatic beam in torsionless bending (a) with an arbitrary composite doubly symmetric cross-

section occupying the two dimensional region X (b)
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Rx ¼ N cos xy þ Qz sin xy; ð5:1Þ

Rz ¼ Qz cos xy � N sin xy; ð5:2Þ

which by virtue of Eqs. (1) become

Rx ¼ N � Qz

dw

dx
; ð6:1Þ

Rz ¼ Qz þ N
dw

dx
: ð6:2Þ

The second term in the right hand side of Eq. (6.1), expresses the influence of the shear force Qz

on the horizontal stress resultant Rx. However, this term can be neglected since Qzw0 is much

smaller than N [28], [29] and thus Eq. (6.1) can be written as

Rx � N: ð7Þ

Similarly, the stress resultant Ry acting in the y-direction is related to the axial N and shear Qy

forces as

Ry ¼ Qy þ N
dv

dx
: ð8Þ

The governing equation of the beam transverse displacement w ¼ w xð Þ will be derived by

considering the equilibrium of the deformed element in the x-z plane. Thus, referring to Fig. 2b

we obtain

1
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Fig. 2. Displacements (a) and forces (b)

acting on the deformed element in the
xz plane
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dRx

dx
þ px ¼ 0; ð9:1Þ

dRz

dx
þ pz ¼ 0; ð9:2Þ

dMy

dx
� Qz þmy ¼ 0: ð9:3Þ

Substituting Eqs. (7), (6.2) into Eqs. (9.1,2), using Eq. (9.3) to eliminate Qz, employing the

well-known relation

My ¼ E1Iyky; ð10Þ

where the moment of inertia of the composite cross section with respect to the y-axis is given as

Iy ¼
XK

j¼1

Ej

E1

Z

Xj

z2dXj; ð11Þ

and utilizing Eq. (2.1) we obtain the expressions of the angle of rotation due to bending hy and

the stress resultants My, Rz as

hy ¼ �
dw

dx
þ 1

G1Az

�E1Iy

d3w

dx3
� E1Iy

G1Az

dpz

dx
þ N

d3w

dx3
� 2px

d2w

dx2
� dpx

dx

dw

dx

� �
þmy

� �
; ð12Þ

My ¼ �E1Iy

d2w

dx2
� E1Iy

G1Az

pz þ
dN

dx

dw

dx
þ N

d2w

dx2

� �
; ð13:1Þ

Rz ¼ �E1Iy

d3w

dx3
� E1Iy

G1Az

dpz

dx
þ N

d3w

dx3
� 2px

d2w

dx2
� dpx

dx

dw

dx

� �
þmy þ N

dw

dx
: ð13:2Þ

and the governing differential equation as

E1Iy 1þ N

G1Az

� �
d4w

dx4
¼ pz � px

dw

dx
þ N

d2w

dx2
þ dmy

dx

� E1Iy

G1Az

d2pz

dx2
� 3px

d3w

dx3
� 3

dpx

dx

d2w

dx2
� d2px

dx2

dw

dx

� �
: ð14Þ

Moreover, the pertinent boundary conditions of the problem are given as

az
1w xð Þ þ az

2RzðxÞ ¼ az
3; ð15:1Þ

bz
1hy xð Þ þ bz

2MyðxÞ ¼ bz
3 at the beam ends x ¼ 0; l; ð15:2Þ

where az
i ; bz

i ði ¼ 1; 2; 3Þ are given constants, while the angle of rotation hy and the stress

resultants My, Rz are given as

hy ¼ �
E1Iy

G1Az

1þ N

G1Az

� �
d3w

dx3
� dw

dx
; ð16:1Þ

My ¼ �E1Iy 1þ N

G1Az

� �
d2w

dx2
; ð16:2Þ

Rz ¼ �E1Iy 1þ N

G1Az

� �
d3w

dx3
þ N

dw

dx
at the beam ends x ¼ 0; l; ð16:3Þ
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Equations (15) describe the most general boundary conditions associated with the problem at

hand and can include elastic support or restrain. It is apparent that all types of the conventional

boundary conditions (clamped, simply supported, free or guided edge) can be derived form

these equations by specifying appropriately the functions az
i and bz

i (e.g., for a clamped edge it

is az
1 ¼ bz

1 ¼ 1; az
2 ¼ az

3 ¼ bz
2 ¼ bz

3 ¼ 0).

Similarly, considering the beam in the x-y plane we obtain the boundary value problem of

the beam transverse displacement v ¼ v xð Þ as

E1Iz 1þ N

G1Ay

� �
d4v

dx4
¼ py � px

dv

dx
þ N

d2v

dx2
� dmz

dx

� E1Iz

G1Ay

d2py

dx2
� 3px

d3v

dx3
� 3

dpx

dx

d2v

dx2
� d2px

dx2

dv

dx

� �
inside the beam, (17)

ay

1v xð Þ þ ay

2RyðxÞ ¼ ay

3; ð18:1Þ

by

1

dv xð Þ
dx

þ by

2MzðxÞ ¼ by

3 at the beam ends x ¼ 0; l; ð18:2Þ

where ay

i ; by

i ði ¼ 1; 2; 3Þ are given constants and the expressions of the angle of rotation hz and

the stress resultants Mz, Ry inside the beam are given as

hz ¼
dv

dx
� 1

G1Ay

�E1Iz

d3v

dx3
� E1Iz

G1Ay

dpy

dx
þ N

d3v

dx3
� 2px

d2v

dx2
� dpx

dx

dv

dx

� �
�my

� �
; ð19:1Þ

Mz ¼ E1Iz

d2v

dx2
þ E1Iz

G1Ay

py þ
dN

dx

dv

dx
þ N

d2v

dx2

� �
; ð19:2Þ

Ry ¼ �E1Iz

d3v

dx3
� E1Iz

G1Ay

dpy

dx
þ N

d3v

dx3
� 2px

d2v

dx2
� dpx

dx

dv

dx

� �
�my þ N

dv

dx
; ð19:3Þ

and the moment of inertia of the composite cross section with respect to the z-axis is given as

Iz ¼
XK

j¼1

Ej

E1

Z

Xj

y2dXj: ð20Þ

In both of the aforementioned boundary value problems the axial force N inside the beam or at

its boundary is given from the following relation [28], [29]:

N ¼ E1A
du

dx
þ 1

2

dw

dx

� �2

þ 1

2

dv

dx

� �2
" #

; ð21Þ

where u ¼ u xð Þ is the bar axial displacement, which can be evaluated from the solution of the

following boundary value problem:

E1A
d2u

dx2
þ d2w

dx2

dw

dx
þ d2v

dx2

dv

dx

� �
¼ �px inside the beam; ð22Þ

c1u xð Þ þ c2NðxÞ ¼ c3 at the beam ends x ¼ 0; l; ð23Þ

where ci ði ¼ 1; 2; 3Þ are given constants.

The solution of the boundary value problems prescribed from Eqs. (14), (15.1,2) and (17),

(18.1,2) presumes the evaluation of the shear deformation coefficients az, ay corresponding to
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the principal centroidal system of axes Cyz. These coefficients are established equating the

approximate formula of the shear strain energy per unit length [25],

Uappr: ¼
ayQ2

y

2AG1
þ azQ2

z

2AG1
; ð24Þ

with the exact one given from

Uexact ¼
XK

j¼1

E1

Ej

Z

Xj

sxzð Þ2jþ sxyð Þ2
j

2G1
dXj; ð25Þ

and are obtained as [30]

ay ¼
1

jy

¼ A

E1D
2

XK

j¼1

Z

Xj

Ej rHð Þj�e

� �
� rHð Þj�e

� �
dXj; ð26:1Þ

az ¼
1

jz

¼ A

E1D
2

XK

j¼1

Z

Xj

Ej rUð Þj�d

� �
� rUð Þj�d

� �
dXj; ð26:2Þ

where sxzð Þj; sxyð Þ
j
are the transverse (direct) shear stress components, rð Þ � iy @=@yð Þ

þiz @=@zð Þ is a symbolic vector with iy; iz the unit vectors along the y- and z-axes, respectively,

D is given from

D ¼ 2 1þ mð ÞIyIz; ð27Þ

m is the Poisson ratio of the cross section material, e and d are vectors defined as

e ¼ eyiy þ eziz ¼ mIy

y2 � z2

2

� �
iy þ mIyyzð Þiz; ð28:1Þ

d ¼ dyiy þ dziz ¼ mIzyzð Þiy � mIz

y2 � z2

2

� �
iz; ð28:2Þ

and H y; zð Þ, U y; zð Þ are stress functions, which are evaluated from the solution of the following

Neumann type boundary value problems [30]:

r2Hj ¼ �2Iyy in Xj ðj ¼ 1; 2; . . . ;KÞ; ð29:1Þ

Ej

@H
@n

� �

j

�Ei

@H
@n

� �

i

¼ Ej � Eið Þn � e on Cj ð j ¼ 1; 2; . . . ;KÞ; ð29:2Þ

r2Uj ¼ �2Izz in Xj ð j ¼ 1; 2; . . . ;KÞ; ð30:1Þ

Ej

@U
@n

� �

j

�Ei

@U
@n

� �

i

¼ Ej � Eið Þn � d on Cj ð j ¼ 1; 2; . . . ;KÞ; ð30:2Þ

where Ei is the modulus of elasticity of the Xi region at the common part of the boundaries

of Xj and Xi regions, or Ei ¼ 0 at the free part of the boundary of Xj region, while

@=@nð Þj� ny @=@yð Þjþnz @=@zð Þj denotes the directional derivative normal to the boundary Cj.

The vector n normal to the boundary Cj is positive if it points to the exterior of the Xj region. It

is worth here noting that the normal derivatives across the interior boundaries vary discon-

tinuously. In the case of negligible shear deformations az ¼ ay ¼ 0. The boundary conditions
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(29.1) and (30.2) have been derived from the physical consideration that the traction vector in

the direction of the normal vector n on the interfaces separating the j and i different materials

are equal in magnitude and opposite in direction, while it vanishes on the free surface of the

beam.

3 Integral representations – Numerical solution

According to the precedent statement of the problem, the nonlinear analysis of a beam

including shear deformation reduces in establishing the transverse displacements w ¼ w xð Þ,
v ¼ v xð Þ having continuous derivatives up to the fourth order with respect to x, the axial

displacement u ¼ u xð Þ having continuous derivatives up to the second order with respect to x

and the stress functions U y; zð Þð Þj and H y; zð Þð Þj having continuous partial derivatives up to the

second order with respect to y and z.

3 1 For the transverse displacements w; v

The numerical solution of the boundary value problems described by Eqs. (14), (15.1,2) and

(17), (18.1,2) is similar. For this reason, in the following we will analyze the solution of the

problem of Eqs. (14), (15.1,2) noting any alteration or addition for the problem of Eqs. (17),

(18.1,2). Equation (14) is solved using the Analog Equation Method [21]. This method has been

developed for the beam equation including axial forces by Katsikadelis and Tsiatas [31].

However, another formulation is presented in this investigation.

Let w be the sought solution of the boundary value problem described by Eqs. (14) and

(15.1,2). Differentiating this function four times yields

d4w

dx4
¼ qz xð Þ: ð31Þ

Equation (31) indicates that the solution of the original problem can be obtained as the

deflection of a beam with unit flexural rigidity and infinite shear rigidity subjected to a flexural

fictitious load qz xð Þ under the same boundary conditions. The fictitious load is unknown.

However, it can be established using BEM as described in the following.

The solution of Eq. (31) is given in integral form as

w xð Þ ¼
Z l

0

qzw�dx� w�
d3w

dx3
� dw�

dx

d2w

dx2
þ d2w�

dx2

dw

dx
� d3w�

dx3
w

� �l

0

; ð32Þ

where w� is the fundamental solution, which is given as

w� ¼ 1

12
l3 2þ qj j3�3 qj j2
� �

ð33Þ

with q ¼ r=l, r ¼ x� f, x, f points of the beam, which is a particular singular solution of the

equation

d4w�

dx4
¼ dðx; nÞ: ð34Þ

Employing Eq. (33) the integral representation (32) can be written as
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wðxÞ ¼
Z l

0

qzK4ðrÞdx� K4ðrÞ
d3w

dx3
þ K3ðrÞ

d2w

dx2
þ K2ðrÞ

dw

dx
þ K1ðrÞw

� �l

0

; ð35Þ

where the kernels KiðrÞ; ði ¼ 1; 2; 3; 4Þ, are given as

K1ðrÞ ¼ �
1

2
sgn q ð36:1Þ

K2ðrÞ ¼ �
1

2
lð1� qj jÞ; ð36:2Þ

K3ðrÞ ¼ �
1

4
l2 qj jð qj j � 2Þsgn q; ð36:3Þ

K4ðrÞ ¼
1

12
l3 2þ qj j3�3 qj j2
� �

: ð36:4Þ

Notice that in Eq. (35) for the line integral it is r ¼ x� n, x; n points inside the beam, whereas

for the remaining terms r ¼ x� f, x inside the beam, f at the beam ends 0; l:

Differentiating Eq. (35) results in the integral representations of the derivatives of the

deflection w as

dwðxÞ
dx

¼
Z l

0

qzK3ðrÞdx� K3ðrÞ
d3w

dx3
þ K2ðrÞ

d2w

dx2
þ K1ðrÞ

dw

dx

� �l

0

; ð37:1Þ

d2wðxÞ
dx2

¼
Z l

0

qzK2ðrÞdx� K2ðrÞ
d3w

dx3
þ K1ðrÞ

d2w

dx2

� �l

0

; ð37:2Þ

d3wðxÞ
dx3

¼
Z l

0

qzK1ðrÞdx� K1ðrÞ
d3w

dx3

� �l

0

: ð37:3Þ

The integral representations (35), (37.1) written for the beam ends 0; l together with the

boundary conditions (15.1,2) can be employed to express the unknown boundary quantities

w, w0, w00 and w000 in terms of qz. This is accomplished numerically. If L is the number of

the nodal points along the beam axis, this procedure yields the following set of linear

equations:

E11½ � E12½ � E13½ � E14½ �

0½ � E22½ � E23½ � 0½ �

E31½ � E32½ � E33½ � E34½ �

0½ � E42½ � E43½ � E44½ �

2
666664

3
777775

wf g

w0f g

w00f g

w000f g

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼

az
3

� 	

bz
3

� 	

0f g

0f g

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

þ

0½ �

0½ �

F3½ �

F4½ �

2
666664

3
777775

qzf g ð38Þ

in which E22½ �, E23½ �, E1i½ �, (i ¼ 1; 2; 3; 4), are 2	 2 matrices including the nodal values of the

functions az
1; a

z
2; bz

1; bz
2 of Eqs. (15.1,2) and Eij½ �, (i ¼ 3; 4, j ¼ 1; 2; 3; 4) are square 2	 2

known coefficient matrices resulting from the values of the kernels Ki at the beam ends; az
3

� 	
,

bz
3

� 	
are 2	 1 known column matrices including the boundary values of the functions az

3; bz
3

in Eqs. (15.1,2) and Fi½ � ði ¼ 3; 4Þ are 2	 L rectangular known matrices originating from the

integration of the kernels on the axis of the beam. Finally, wf g, w0f g; w00f g and w000f g are
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vectors including the two unknown nodal values of the respective boundary quantities and qzf g
is a vector including the L unknown nodal values of the fictitious load.

The discretized counterpart of Eq. (35) when applied to all nodal points in the interior of the

beam yields

Wf g ¼ F½ � qzf g � E1½ � wf g þ E2½ � w0f g þ E3½ � w00f g þ E4½ � w000f gð Þ; ð39Þ

where F½ � is an L	 L known matrix and Ei½ � i ¼ 1; 2; 3; 4ð Þ are L	 2 also known matrices.

Elimination of the boundary quantities from Eq. (39) using Eq. (38) for homogeneous

boundary conditions (15.1,2) (az
3 ¼ bz

3 ¼ 0) yields

Wf g ¼ Bz½ � qzf g; ð40Þ

where Bz½ � is an L	 L matrix.

Moreover, the discretized counterpart of Eqs. (37.1–3) when applied to all nodal points in

the interior of the beam, after elimination of the boundary quantities using Eq. (38) yields

W 0f g ¼ B0z

 �

qzf g; W 00f g ¼ B00z

 �

qzf g; W 000f g ¼ B000z

 �

qzf g; ð41:1� 3Þ

where B0z

 �

, B00z

 �

, B000z

 �

are known L	 L coefficient matrices. Note that Eqs. (40) and (41) are

valid for homogeneous boundary conditions (az
3 ¼ bz

3 ¼ 0). For non-homogeneous boundary

conditions, an additive constant vector will appear in the right hand side of these equations.

Finally, applying Eq. (14) to the L nodal points in the interior of the beam we obtain the

following linear system of equations with respect to qz:

D0000z


 �
� D000z

 �

B000z

 �

� D00z

 �

B00z

 �

� D0z

 �

B0z

 �
 �

qzf g ¼ pzf g þ m0y

n o
� Dz½ � p00z

� 	
; ð42Þ

where D0000z


 �
, D000z

 �

, D00z

 �

, D0z

 �

, Dz½ � are diagonal L	 L matrices whose elements are given from

D0000z

� 

ii
¼ E1Iy 1þ Ni

G1Az

� �
; ð43:1Þ

D000z
� 


ii
¼ 3E1Iy

G1Az

pxð Þi; ð43:2Þ

D00z
� 


ii
¼ 3E1Iy

G1Az

p0x
� 


i
þNi; ð43:3Þ

D0z
� 


ii
¼ E1Iy

G1Az

p00x
� 


i
� pxð Þi; ð43:4Þ

Dzð Þii¼
E1Iy

G1Az

ð43:5Þ

at the L nodal points in the interior of the beam; qzf g, pzf g, m0y

n o
and p00z

� 	
are vectors with L

elements including the values of the fictitious loading, the transverse loading, the first derivative

of the bending moment distributed loading and the second derivative of the transverse loading

at the L nodal points in the interior of the beam. The values of the quantities myð Þ0, pzð Þ00, pxð Þ0

and pxð Þ00 result after approximating the corresponding derivatives with appropriate central,

forward or backward finite differences.

Similarly for the transverse deflection v ¼ v xð Þ, application of Eq. (17) to the L nodal points

in the interior of the beam results the following linear system of equations with respect to qy:

D0000y

h i
� D000y

h i
B000y

h i
� D00y

h i
B00y

h i
� D0y

h i
B0y

h ih i
qy

� 	
¼ py

� 	
� m0z
� 	

� Dy½ � p00y

n o
; ð44Þ
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where B0y

h i
, B00y

h i
, B000y

h i
are known L	 L coefficient matrices similar to those mentioned before

for the deflection w; D0000y

h i
, D000y

h i
, D00y

h i
, D0y

h i
, Dy½ � are diagonal L	 L matrices whose elements

are given from

D0000y

� �

ii
¼ E1Iz 1þ Ni

G1Ay

� �
; ð45:1Þ

D000y

� �

ii
¼ 3E1Iz

G1Ay

pxð Þi; ð45:2Þ

D00y

� �

ii
¼ 3E1Iz

G1Ay

p0x
� 


i
þNi; ð45:3Þ

D0y

� �

ii
¼ E1Iz

G1Ay

p00x
� 


i
� pxð Þi; ð45:4Þ

Dyð Þ
ii
¼ E1Iz

G1Ay

ð45:5Þ

at the L nodal points in the interior of the beam; qy

� 	
, py

� 	
, m0z
� 	

and p00y

n o
are vectors with

L elements, similar with those mentioned before for the deflection w.

3.2 For the axial displacement u

Let u be the sought solution of the boundary value problem described by Eqs. (22) and (23).

Differentiating this function two times yields

d2u

dx2
¼ qx xð Þ: ð46Þ

Equation (46) indicates that the solution of the original problem can be obtained as the axial

displacement of a beam with unit axial rigidity subjected to a flexural fictitious load qx xð Þ under
the same boundary conditions. The fictitious load is unknown.

The solution of Eq. (46) is given in integral form as

uðxÞ ¼
Z l

o

u�qxdxþ u�
du

dx
� du�

dx
u

� �l

0

; ð47Þ

where u� is the fundamental solution, which is given as

u� ¼ 1

2
jrj; ð48Þ

with r ¼ x� f, x, f points of the beam.

Following the same procedure as in Sect. 3.1, the discretized counterpart of Eq. (47) and its

first derivative with respect to x, when applied to all nodal points in the interior of the beam

yields

Uf g ¼ Bx½ � qxf g; ð49:1Þ

U0f g ¼ B0x

 �

qxf g; ð49:2Þ
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where Bx½ �, B0x

 �

are known matrices with dimensions L	 L, similar to those mentioned before

for the deflection w and the following system of equations with respect to qx, qy and qz is

obtained:

D00x

 �

qxf g þ D00x

 �

B00z

 �

qzf g

 �

dg:
B0z

 �

qzf g þ D00x

 �

B00y

h i
qy

� 	h i

dg:
B0y

h i
qy

� 	
¼ � pxf g; ð50Þ

where the symbol ½ �dg: indicates a diagonal matrix with the elements of the included column

matrix, qxf g, pxf g are vectors with L elements, similar to those mentioned before for the

deflection w, while the axial force at the neutral axis of the beam can be expressed as

follows:

Nf g ¼ D0x

 �

B0x

 �

qxf g þ D0x

 �

B0z

 �

qzf g

 �

dg:
B0z

 �

qzf g þ D0x

 �

B0z

 �

qzf g

 �

dg:
B0z

 �

qzf g: ð51Þ

In Eqs. (50) and (51) D00x

 �

, D0x

 �

are diagonal L	 L matrices whose elements are given from

D00x
� 


ii
¼ E1A; ð52:1Þ

D0x
� 


ii
¼ E1A

2
ð52:2Þ

at the L nodal points in the interior of the beam. Equations (42), (44), (50) and (51)

constitute a nonlinear coupled system of equations with respect to qx, qy, qz and N. The

solution of this system is accomplished iteratively by employing the two term acceleration

method [32], [33].

3.3 For the stress functions U y; zð Þð Þj and H y; zð Þð Þj

The evaluation of the stress functions U y; zð Þð Þj and H y; zð Þð Þj is accomplished using BEM as

presented in [30].

Moreover, since the torsionless bending problem of beams is solved by the BEM, the domain

integrals for the evaluation of the area, the bending moments of inertia and the shear defor-

mation coefficients Eqs. (26.1,2) have to be converted to boundary line integrals, in order to

maintain the pure boundary character of the method. This can be achieved using integration by

parts, the Gauss theorem and the Green identity. Thus, the moments of inertia and the cross

section area can be written as

Iy ¼
1

E1

XK

j¼1

Z

Cj

Ej � Eið Þ yz2 cos b
� 


ds; ð53:1Þ

Iz ¼
1

E1

XK

j¼1

Z

Cj

Ej � Eið Þ zy2 sin b
� 


ds; ð53:2Þ

A ¼ 1

2G1

XK

j¼1

Z

Cj

Gj � Gið Þ y cos bþ z sin bð Þds; ð53:3Þ

while the shear deformation coefficients ay and az are obtained from the relations

ay ¼
A

E1D
2

4vþ 2ð ÞIyIHy þ
1

4
v2I2

yIed � IHe

� �
; ð54:1Þ
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az ¼
A

E1D
2

4vþ 2ð ÞIzIUz þ
1

4
v2I2

z Ied � IUd

� �
; ð54:2Þ

where

IHe ¼
XK

j¼1

Z

Cj

Ej � Eið Þ Hð Þj n � eð Þds; ð55:1Þ

IUd ¼
XK

j¼1

Z

Cj

Ej � Eið Þ Uð Þj n � dð Þds; ð55:2Þ

Ied ¼
XK

j¼1

Z

Cj

Ej � Eið Þ y4z sin bþ z4y cos bþ 2

3
y2z3 sin b

� �
ds; ð55:3Þ

IHy ¼
1

6

XK

j¼1

Z

Cj

Ej � Eið Þ �2Iyyy4z sin bþ 3 Hð Þj cos b� y n � eð Þ
� �

y2
h i

ds; ð55:4Þ

IUz ¼
1

6

XK

j¼1

Z

Cj

Ej � Eið Þ �2Izzz
4y cos bþ 3 Uð Þj sin b� z n � dð Þ

� �
z2

h i
ds: ð55:5Þ

4 Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a

computer program has been written and representative examples have been studied to dem-

onstrate the efficiency and the range of applications of the developed method.

h=
27

cm
 

t=4mm

y

z

x
Px=±500kN

px=±100kN/m

py=250kN/m

pz =500kN/m

l=2m
Ec=Eref=2.1E7kPa, 
Es=2.1E8kPa, v=0.3 

az = 1.85012 
ay = 4. 35463 

b=14cm 

t=4cm 

x

Fig. 3. Cantilever beam of example 1
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Example 1

A cantilever beam of a hollow composite rectangular cross section b	 h consisting of two

concrete and two steel rectangular parts in contact, loaded axially (either tensionally or com-

pressively) and transversely in both directions, as shown in Fig. 3 has been studied. In Figs. 4 and

5 the transverse deflections w, v and in Fig. 6 the axial displacement u along the beam axis are

presented for both cases of tensile or compressive axial loading as compared with those obtained

from a linear analysis taking into account or ignoring the shear deformation effect. As expected,

from the first two figures it is easily verified that tensile axial loading decreases while compressive

loading increases the resulting deflections. From the last figure it comes up that even for tensile

axial loading the results of the nonlinear analysis show a remarkable negative beam axial dis-

placementu coming from the intense transverse load. For this reason, in Table 1 the values of the

axial displacements u along the beam are given for both cases of tensile or compressive axial

loading.Moreover, from the aforementioned figures and table the increment of all the deflections

and the axial displacement due to the influence of the shear deformation effect is remarkable.

Example 2

A cantilever beam having the composite cross section consisting of a HEB-300 totally

encased in a circular matrix, loaded axially (either tensionally or compressively) with a

parabolic variation of the third order of the axial loading px and uniformly transversely in
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Fig. 4. Deflections w of the beam of example 1
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both directions, as shown in Fig. 7, has been studied. In Tables 2 and 3 the transverse

deflections w, v and in Fig. 8 the axial displacement u along the beam axis are presented

for both cases of tensile or compressive axial loading as compared with those obtained from

a linear analysis taking into account or ignoring shear deformation effect. From these tables

and figure it comes up that for this solid cross section the resulting from the nonlinear

analysis deflections decrement due to tensile axial loading, deflections increment due to

compressive one and the axial displacement arising from the transverse loading are not so

intense as in the case of the thin-walled cross section. Moreover, the increment of all the

deflections and the axial displacement due to the influence of the shear deformation effect in

this case could be ignored.

Example 3

A clamped beam having the composite cross section consisting of an I-section

ðEc ¼ Eref ¼ 2:1	 107 kN/m2Þ totally filled ðEs ¼ 2:1	 106 kN/m2Þ so as to form a composite

rectangular cross section, loaded transversely in both directions, as shown in Fig. 9, has been

studied. In Figs. 10 and 11 and in Table 4 the transverse deflections w, v, respectively, along the

beam axis are presented as compared with those obtained from a linear analysis taking into

account or ignoring shear deformation effect. From the aforementioned figures and table the

influence of the shear deformation effect is once again remarkable and should not be ignored in

nonlinear analysis.
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Fig. 5. Deflections v of the beam of example 1
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5 Concluding remarks

In this paper a boundary element method is developed for the nonlinear analysis of beams

of arbitrary doubly symmetric composite constant cross section, taking into account the

shear deformation effect. Five boundary value problems are formulated with respect to the

transverse displacements, the axial displacement and to two stress functions and solved
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Fig. 6. Axial displacement u of the beam of example 1

Table 1. Axial displacements u (cm) along the beam of example 1

No. x (cm) Tension Compression

Linear analysis Nonlinear analysis Linear analysis Nonlinear nalysis

Independent of s.d. Without s.d. With s.d. Independent of s.d. Without s.d. With s.d.

1 3:448 0:004 0:004 0:004 �0:004 �0:005 �0:005

2 31:034 0:038 0:004 �0:014 �0:038 �0:152 �0:199

3 65:517 0:079 �0:157 �0:214 �0:079 �0:955 �1:180

4 100:000 0:117 �0:496 �0:601 �0:117 �2:648 �3:197

5 134:483 0:153 �0:942 �1:097 �0:153 �5:115 �6:111

6 168:966 0:188 �1:426 �1:630 �0:188 �8:081 �9:605

7 200:000 0:216 �1:864 �2:111 �0:216 �10:935 �12:965
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Px=±500kN 
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Es=2.1E8kPa, v=0.3 
az= 1.70804   
ay= 1.24375 

HEB 300 

r = 25cm 

x

Fig. 7. Cantilever beam of example 2

Table 2. Transverse deflections w (mm) along the beam of example 2

No. x (cm) Linear analysis Nonlinear analysis

Independent of axial loading Px, px Tension Compression

Without s.d. With s.d. Without s.d. With s.d. Without s.d. With s.d.

1 3:448 0:005 0:027 0:005 0:027 0:005 0:027

2 31:034 0:387 0:586 0:385 0:583 0:390 0:589

3 65:517 1:533 1:952 1:522 1:940 1:543 1:964

4 100:000 3:163 3:803 3:139 3:776 3:187 3:831

5 134:483 5:065 5:925 5:024 5:879 5:106 5:972

6 168:966 7:086 8:167 7:026 8:099 7:146 8:236

7 200:000 8:932 10:212 8:854 10:123 9:011 10:302

Table 3. Transverse deflections v (mm) along the beam of example 2

No. x (cm) Linear analysis Nonlinear analysis

Independent of axial loading Px, px Tension Compression

Without s.d. With s.d. Without s.d. With s.d. Without s.d. With s.d.

1 3:448 0:004 0:012 0:004 0:012 0:004 0:012

2 31:034 0:269 0:341 0:267 0:339 0:271 0:344

3 65:517 1:064 1:217 1:054 1:206 1:075 1:228

4 100:000 2:197 2:431 2:174 2:406 2:221 2:455

5 134:483 3:517 3:832 3:479 3:789 3:558 3:874

6 168:966 4:922 5:315 4:864 5:253 4:981 5:378

7 200:000 6:204 6:669 6:129 6:589 6:281 6:752
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using the Analog Equation Method, a BEM based method. The evaluation of the shear

deformation coefficients is accomplished from the aforementioned stress functions using

only boundary integration. The main conclusions that can be drawn from this investigation

are
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Fig. 8. Axial displacement u of the beam of example 2
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Fig. 9. Clamped beam of example 3
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(i) The numerical technique presented in this investigation is well suited for computer aided

analysis for beams of arbitrary doubly symmetric composite cross section.

(ii) The significant influence of geometrical nonlinear analysis especially in thin walled beam

elements subjected in intense transverse loading is verified.

(iii) In some cases the discrepancy between the results of the linear and the nonlinear analysis

demonstrates the significant influence of the axial loading.

(iv) The remarkable increment of all the deflections and the axial displacements due to the

influence of the shear deformation effect demonstrates its significant influence in nonlinear

analysis, especially in thin walled beam elements.

(v) The developed procedure retains the advantages of a BEM solution over a pure domain

discretization method since it requires only boundary discretization.
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Fig. 10. Deflections w of the beam of example 3
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Fig. 11. Deflections v of the beam of example 3

Table 4. Transverse deflections w, v (cm) along the beam of example 3

No. x (cm) Linear Analysis Nonlinear Analysis

Deflection w Deflection v Deflection w Deflection v

Without s.d. With s.d. Without s.d. With s.d. Without s.d. With s.d. Without s.d. With s.d.

1 3:448 0:017 0:058 0:032 0:068 0:008 0:056 0:016 0:064

2 31:034 1:064 1:381 1:917 2:202 0:52 1:269 0:922 1:931

3 65:517 3:005 3:536 5:414 5:892 1:464 3:196 2:587 4:986

4 100:000 3:871 4:473 6:974 7:516 1:884 4:024 3:326 6:312
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