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Summary. The refined theory of transversely isotropic beams is proposed on the basis of the classical

elasticity theory. By using E-L solution and Lur’e method, the refined theory provides the solutions of

transversely isotropic beams without ad hoc assumptions. Exact solutions, including a fourth-order part

and a transcendental part, are obtained for beams with homogeneous boundary conditions, whereas

approximate solutions are derived for beams under transverse surface loadings by dropping terms of high

order. It is shown that the displacements and stresses of the beam can be represented by the angle of

rotation and the deflection of the neutral surface. In this paper, separate discussions are given to the cases

in which characteristic roots are distinct or equal to each other. To the authors’ knowledge, the latter has

not been covered in the literature. To illustrate the application of the beam theory developed, three

examples are examined: a cantilever beam under end loading, a simply supported beam under uniform

loading, and a cantilever beam under linear loading. Results show that the refined theory of transversely

isotropic beams can be degenerated into that of isotropic beams by omitting anisotropic terms.

1 Introduction

Due to the wide use of anisotropic composite materials, the study of anisotropic elasticity

becomes increasingly important. Transversely isotropic material is a noticeable kind of

anisotropic material. Lekhnitskii-Hu-Nowacki (LHN) solution [1]–[3] and Elliott-Lodge (E-L)

solution [4], [5] are well known general solutions for transversely isotropic body. Wang and

Wang [6] pointed out that LHN solution and E-L solution are complete if the elastic region is

z-convex (a z-convex domain is a domain which intersects each line, parallels to z-axis at an

open interval or does not intersect the line) and characteristic roots s2
0, s2

1 and s2
2 are distinct.

Furthermore, Wang and Shi [7] gave a new form of E-L solution for s2
1 ¼ s2

2, and proved the

completeness of LHN solution and the new E-L solution in such cases that s2
0, s2

1 and s2
2 are

equal to each other.

Without employing ad hoc assumptions, Cheng [8] presented a method for the solution of

three-dimensional elasticity equations, and with the method deduced directly a refined theory

of the plate from Boussinesq-Galerkin solution and Lur’e method [9]. A parallel development of

Cheng’s theory has been obtained by Barrett and Ellis [10] for the isotropic plates under trans-

verse surface loadings (only homogeneous cases are considered in the previous works). By using

LHN solution, Wang [11], [12] extended it for the transversely isotropic body and obtained the

refined theory of transversely isotropic plate problems and plane problems. Wang and Shi [13]
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derived a new thick plate theory by using Papkovich-Neuber solution and Lur’e method [9]

without ad hoc assumptions, and derived shear theory of plates from the refined plate theory.

Their work was also extended to transversely isotropic plates by Yin andWang [14] through E-L

solution. Xu and Wang [15] applied results [13] to the problem of a transversely isotropic

piezoelectric plate, and derived approximate equations for the plate under transverse loadings.

As an extension of Cheng’s theory, the refined theory was developed for the rectangular

elastic beam problems [16]–[18]. Then the refined theory of beams in the coupling fields was

investigated, for example, magnetoelastic beams [19], piezoelectric beams [20] and thermoelastic

beams [21]. Moreover, the exact equations for the beam without transverse surface loadings

and the approximate equations for the beam under transverse surface loadings were derived

from the refined beam theory, respectively.

It is the purpose of this paper to extend our previous work [16]–[21] to transversely isotropic

beams, and present a systematic method for the derivation of the refined theory of transversely

isotropic beams. In this paper, discussions are given to both the case 1 s2
1 6¼ s2

2 and the case 2

s2
1 ¼ s2

2. To the authors’ knowledge, the case 2, which can be directly reduced to isotropic

beams, has not been studied in the literature.

The paper is organized as follows: In the next section, E-L solution of the plane stress

problem is given in light of the work [6], [7]. In Sect. 3, by using E-L solution and Lur’e method,

the refined theory of transversely isotropic beams is derived for both the case 1 and the case 2

without ad hoc assumptions. In virtue of the refined theory developed in Sect. 3, the exact

equations are obtained for the beams with homogeneous boundary conditions in Sect. 4. It is

shown that the equations can be decomposed into two governing differential equations: the

fourth-order equation and the transcendental equation. Then in Sect. 5, the approximate

equations are derived for the beams under transverse loadings. Finally, three examples are

examined to illustrate the application of the theory proposed in this paper.

2 The general solution of transversely isotropic elasticity

For a narrow rectangular straight beam, the width in the y-direction is stress free. Therefore, it

is plausible to set the components of stress ry ¼ sxy ¼ syz ¼ 0. This is a plane stress assump-

tion. In a fixed rectangular coordinate system, let z-axis be perpendicular to the isotropic plane

(x� y plane) of the beam. We assume that the beam length in x-direction is l, the beam width

in y-direction is 1, the beam height in z-direction is h, and l� h� 1. The constitutive

equations of two-dimensional elasticity are:

rx ¼ �c11ux;x þ �c13uz;z; rz ¼ �c13ux;x þ �c33uz;z; sxz ¼ �c44 uz;x þ ux;z

� �
; ð1Þ

where rx, rz, sxz, ux and uz are the components of stress and displacement, respectively, �c11,

�c13, �c33 and �c44 are the elastic stiffness constants, and the comma in the subscript denotes the

partial derivative with respect to the spatial variable. For the plane stress problem, �c11, �c13, �c33

and �c44 in Eqs. (1) should be replaced by, respectively,

c11 ¼ �c11 �
�c2

12

�c11
; c13 ¼ �c13 �

�c12�c13

�c11
; c33 ¼ �c33 �

�c2
13

�c11
; c44 ¼ �c44:

In the absence of body force, the equilibrium equations of elasticity plane stress problem

denoted by ux and uz are expressed as

c11ux;xx þ c44ux;zz þ c13 þ c44ð Þuz;xz ¼ 0; c13 þ c44ð Þux;xz þ c44uz;xx þ c33uz;zz ¼ 0: ð2Þ
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According to E-L solution for transversely isotropic elasticity [7], the components of dis-

placements can be expressed in two cases as follows:

2.1 The case 1, s2
1 6¼ s2

2

When s2
1 6¼ s2

2, the solutions of Eqs. (2) can take the form

ux ¼ /1 þ /2ð Þ;x; uz ¼ k1/1 þ k2/2ð Þ;z; ð3Þ

where the constants k1 and k2 satisfy

c11

c44 þ c13 þ c44ð Þki

¼ c13 þ c44 1þ kið Þ
c33ki

¼ s2
i i ¼ 1; 2ð Þ; ð4Þ

and s2
1 and s2

2 are two characteristic roots of the following quadratic algebra equation of s2,

c33c44s4 þ c2
13 þ 2c13c44 � c11c33

� �
s2 þ c11c44 ¼ 0: ð5Þ

We obtain the two roots s2
1 and s2

2 of the algebra equation (5) and assume that they are distinct.

So the potential function /i satisfies the following equation:

r2
i /i ¼ 0 i ¼ 1; 2ð Þ ð6Þ

with r2
i ¼ @2

z þ s2
i @

2
x.

According to Wang and Wang [6], it can be further proved that k1k2 ¼ 1. Lekhnitskii [1]

proved that the numbers s1 and s2 for any transversely isotropic body can be real or complex

(with a real part different from zero), but can not be purely imaginary.

2.2 The case 2, s2
1 ¼ s2

2

When s2
1 ¼ s2

2, the solutions of Eqs. (2) are expressed in a different form,

ux ¼ u1 þ zu2ð Þ;x; uz ¼ u1 þ zu2ð Þ;z�ku2; ð7Þ

and the potential function ui satisfies the following equation:

r2
sui ¼ @2

zui þ s2@2
xui ¼ 0; ð8Þ

where

k ¼ 2
c13 þ 2c44

c13 þ c44
;

c11

c13 þ 2c44
¼ c13 þ 2c44

c33
¼ s2: ð9Þ

It is proved that E-L solution in different cases is complete for z-convex domains (like the

domain considered here) [6], [7]. Thus the completeness of solutions (4) and (7) can be guar-

anteed in the case of rectangular straight beams which are of interest in this paper.

3 The refined theory of transversely isotropic beams

As we know, the problem of beams may be decomposed into two fundamental problems: the

extension of a beam and the bending of a beam. In the case of bending of a beam, the beam is

subjected only to anti-symmetrical loadings and edge conditions, thus only odd functions of z

are required for ux and even functions of z for uz.
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3.1 The case 1, s2
1 6¼ s2

2

Based on Lur’e method [9] and with these requirements satisfied, treating Eqs. (6) as an

ordinary differential equation in z with constant coefficients, one obtains the following

symbolic solution of Eqs. (6):

/i x; zð Þ ¼ sin siz@xð Þ
si@x

gi xð Þ; ð10Þ

where gi is unknown function of x yet to be determined. The operators sin siz@xð Þ=si@x and

cos siz@xð Þ, which must be interpreted as representing series in powers of operators siz@xð Þ2,
have the following symbolic expressions:

sin siz@xð Þ
si@x

¼ z 1� 1

3!
s2

i z2@2
x þ

1

5!
s4

i z4@4
x � � � �

� �
;

cos siz@xð Þ ¼ 1� 1

2!
s2

i z2@2
x þ

1

4!
s4

i z4@4
x � � � �

� �
:

ð11Þ

Substituting Eq. (10) into Eq. (3), one obtains

ux ¼
sin s1z@xð Þ

s1
g1 þ

sin s2z@xð Þ
s2

g2; uz ¼ k1 cos s1z@xð Þg1 þ k2 cos s2z@xð Þg2: ð12Þ

From Eqs. (12), we can get the angle of rotation and the deflection of the neutral surface,

w ¼ �ux;z z¼0j ¼ �g1;x � g2;x; w ¼ uz z¼0j ¼ k1g1 þ k2g2: ð13Þ

In terms of Eqs. (13), it can be found to be

g01 ¼
k2wþw0

k1 � k2
; g02 ¼ �

k1wþw0

k1 � k2
: ð14Þ

For the sake of simplicity, the differential symbol ‘‘¢’’ denotes differentiation with respect to x.

From Eqs. (12) and (14), the final expressions for the displacements are

k1 � k2ð Þux ¼ k2
sin s1z@xð Þ

s1
� k1

sin s2z@xð Þ
s2

� �
w
@x

þ sin s1z@xð Þ
s1

� sin s2z@xð Þ
s2

� �
w;

k1 � k2ð Þuz ¼ k1k2 cos s1z@xð Þ � cos s2z@xð Þ½ � w
@x

þ k1 cos s1z@xð Þ � k2 cos s2z@xð Þ½ �w:
ð15Þ

Using Hooke’s law, from Eqs. (15) the components of stress can be indicated as

k1 � k2

c44
rx ¼ k2 1þ k1ð Þs2

1

sin s1z@xð Þ
s1

� k1 1þ k2ð Þs2
2

sin s2z@xð Þ
s2

� �
w

þ 1þ k1ð Þs2
1

sin s1z@xð Þ
s1

� 1þ k2ð Þs2
2

sin s2z@xð Þ
s2

� �
w0;

k1 � k2

c44
rz ¼ � k2 1þ k1ð Þ sin s1z@xð Þ

s1
� k1 1þ k2ð Þ sin s2z@xð Þ

s2

� �
w

� 1þ k1ð Þ sin s1z@xð Þ
s1

� 1þ k2ð Þ sin s2z@xð Þ
s2

� �
w0;

k1 � k2

c44
sxz ¼ k2 1þ k1ð Þ cos s1z@xð Þ � k1 1þ k2ð Þ cos s2z@xð Þ½ �w

þ 1þ k1ð Þ cos s1z@xð Þ � 1þ k2ð Þ cos s2z@xð Þ½ �w0;

ð16Þ
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3.2 The case 2, s2
1 ¼ s2

2

After the same manipulation as in case 1, the components of displacement and stress in terms of

the angle of rotation and the deflection of the neutral surface can be expressed as

ux ¼ �
sin sz@xð Þ

s

w
@x

þ 1

k
z@x cos sz@xð Þ � sin sz@xð Þ

s

� �
f ;

uz ¼ cos sz@xð Þw� s2

k
z@x

sin sz@xð Þ
s

f ;

ð17Þ

rx

c44
¼ �s2 sin sz@xð Þ

s
w�w0ð Þ þ 2s2

k
sin sz@xð Þ

s
þ z@x cos sz@xð Þ

� �
f 0;

rz

c44
¼ sin sz@xð Þ

s
w�w0ð Þ þ 2

k
sin sz@xð Þ

s
� z@x cos sz@xð Þ

� �
f 0;

sxz

c44
¼ � cos sz@xð Þ w�w0ð Þ � 2s2

k
z@x

sin sz@xð Þ
s

f 0;

ð18Þ

where

f 0 ¼ �w�w0: ð19Þ

4 Exact equations: no transverse surface loadings

Making use of the refined theory of transversely isotropic beams obtained in the previous

section, we will investigate the rectangular straight beam with homogeneous boundary con-

ditions on the upper and lower surfaces in this section. Namely, the following boundary

conditions are prescribed:

sxz ¼ 0; rz ¼ 0 at z ¼ �h=2: ð20Þ

Corresponding to the discussion in the previous section, analysis will be given separately to two

cases.

4.1 The case 1, s2
1 6¼ s2

2

Substituting the stress expressions in Eqs. (16) into the boundary conditions (20) of beams, we

get the following equations:

� k2 1þ k1ð ÞCS1 � k1 1þ k2ð ÞCS2½ �w� 1þ k1ð ÞCS1 � 1þ k2ð ÞCS2½ �w0 ¼ 0;

k2 1þ k1ð ÞSN1 � k1 1þ k2ð ÞSN2½ �wþ 1þ k1ð ÞSN1 � 1þ k2ð ÞSN2½ �w0 ¼ 0:
ð21Þ

The differential operators SNi and CSi are defined by

SNi ¼ sin
sih@x

2

� �.
si; CSi ¼ cos

sih@x

2

� �
:

Equations (21) are differential equations with respect to unknown deflection and angle of

rotation of the neutral surface. Let L0 be the determinant of the 2� 2 operator coefficient

matrix of Eqs. (21), there is

L0 ¼ � k1 � k2ð Þ 1þ k1ð Þ 1þ k2ð Þ SN1CS2 � SN2CS1ð Þ@x; ð22Þ
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and Lij i; j ¼ 1; 2ð Þ be the co-factors of the matrix. The solutions of Eqs. (21) are

w

w

" #

¼
L22 �L12

�L21 L11

" #
n1

n2

" #

; ð23Þ

and ni satisfies

L0ni ¼ 0 i ¼ 1; 2ð Þ: ð24Þ

In Appendix B of Ref. [19], it is proved that the solutions of Eqs. (24) can be decomposed into

two parts which are governed by a fourth-order equation and a transcendental equation,

respectively. That is, ni can be rewritten as

ni ¼ n 1ð Þ
i þ n 2ð Þ

i ; ð25Þ

where the superscripts ‘‘ 1ð Þ’’ and ‘‘ 2ð Þ’’ indicate the fourth-order part and the transcendental

part, respectively, and n 1ð Þ
i and n 2ð Þ

i have to satisfy the following governing differential equations

of the beam problem, respectively,

@4
xn 1ð Þ

i ¼ 0; SN1CS2 � SN2CS1ð Þ n
2ð Þ

i

@3
x

¼ 0; ð26Þ

then the angle of rotation and the deflection of the neutral surface can also be decomposed into

two parts, respectively,

w ¼ w 1ð Þ þ w 2ð Þ; w ¼ w 1ð Þ þw 2ð Þ: ð27Þ

The solutions corresponding to these two parts will be given separately in the following dis-

cussions.

4.1.1 The fourth-order equation

n 1ð Þ
i satisfies the following fourth-order equation:

@4
xn 1ð Þ

i ¼ 0: ð28Þ

From Eqs. (23), the corresponding solutions of w 1ð Þ and w 1ð Þ have the form

w 1ð Þ

w 1ð Þ

" #

¼
L22 �L12

�L21 L11

" #
n 1ð Þ

1

n 1ð Þ
2

" #

: ð29Þ

By using Eqs. (28) and (29), we can get

w 1ð Þ ¼ 1þ
1þ k1ð Þ 1þ k2ð Þ s2

2 � s2
1

� �

8 k1 � k2ð Þ h2@2
x

� �
@xw 1ð Þ; ð30Þ

where

@4
xw 1ð Þ ¼ 0; ð31Þ

and from Eqs. (16), the normal stress and shear stress can be found to be

r 1ð Þ
x ¼ �

c44 1þ k1ð Þ 1þ k2ð Þ s2
2 � s2

1

� �

k1 � k2
z w 1ð Þ
� �00

; r 1ð Þ
z ¼ 0;

s 1ð Þ
xz ¼ �

c44 1þ k1ð Þ 1þ k2ð Þ s2
2 � s2

1

� �

2 k1 � k2ð Þ
h2

4
� z2

� �
w 1ð Þ
� �000

:

ð32Þ

By the same arguments made in Cheng [8], Eqs. (32) constitute a first-order refined theory of

transversely isotropic beams in the case 1 with the differential governing equation (31), which
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can satisfy two edge conditions along the boundary of beams and coincide with the corre-

sponding expressions of classical elasticity.

4.1.2 The transcendental equation

n 2ð Þ
i satisfies the transcendental equation

SN1CS2 � SN2CS1ð Þ n
2ð Þ

i

@3
x

¼ 0; ð33Þ

and the related solutions of w 2ð Þ and w 2ð Þ become

w 2ð Þ

w 2ð Þ

" #

¼
L22 �L12

�L21 L11

" #
n 2ð Þ

1

n 2ð Þ
2

" #

: ð34Þ

Substituting Eqs. (34) into the stress expressions (16) gives

r 2ð Þ
x ¼

@4U
@x2@z2

; r 2ð Þ
z ¼

@4U
@x4

; s 2ð Þ
xz ¼ �

@4U
@x3@z

; ð35Þ

where the function U x; zð Þ has the form

U
c44 1þ k1ð Þ 1þ k2ð Þ ¼ � sin

s1h@x

2

� �
sin s2z@xð Þ

s1s2
� sin

s2h@x

2

� �
sin s1z@xð Þ

s1s2

� �
1

@3
x

n 2ð Þ
1

þ cos
s1h@x

2

� �
sin s2z@xð Þ

s2
� cos

s2h@x

2

� �
sin s1z@xð Þ

s1

� �
1

@3
x

n 2ð Þ
2 ; ð36Þ

and U satisfies the following equations:

r2
1r2

2U ¼ 0; ð37Þ

U ¼ 0; @U=@z ¼ 0 at z ¼ �h=2: ð38Þ

Equation (35) satisfy two edge conditions along the boundary of beams, and yet satisfy exactly

all the fundamental equations in theory of transversely isotropic elasticity. Combining the

fourth-order solution of Eqs. (32) and the transcendental solution of Eqs. (35), we arrive at a

second-order refined theory for the bending transversely isotropic elastic beams with the two

differential governing equations (31) and (37). It is important to note that the equilibrium

equations (2) are satisfied by any solution of the refined elastic beam theory.

4.2 The case 2, s2
1 ¼ s2

2

Likewise, we apply boundary conditions (20) to Eqs. (18), and then obtain the differential

equations with respect to unknown deflection and angle of rotation of the neutral surface:

�CSþ 1

k
s2h@xSN

� �
wþ CSþ 1

k
s2h@xSN

� �
w0 ¼ 0;

k� 2

k
SN þ 1

k
h@xCS

� �
wþ � kþ 2

k
SN þ 1

k
h@xCS

� �
w0 ¼ 0;

ð39Þ

where the differential operators SN and CS have the form

SN ¼ sin
sh@x

2

� �.
s; CS ¼ cos

sh@x

2

� �
: ð40Þ

It is not difficult to write out the determinant of the operator coefficient matrix of Eqs. (39),
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L0 ¼ �
2hc44

k
1� sin sh@xð Þ

sh@x

� �
1

@2
x

	 

@4

x: ð41Þ

After going through the similar procedure, one can see that Eqs. (24), (25) and (27) still hold in

the case 2. But the transcendental equation takes a different form from Eqs. (26) which may be

changed into

@4
xn 1ð Þ

i ¼ 0; 1� sin sh@xð Þ
sh@x

� �
1

@2
x

n 2ð Þ
i ¼ 0: ð42Þ

Similarly, the solutions corresponding to these two equations will be presented separately as

follows.

4.2.1 The fourth-order equation

n 1ð Þ
i satisfies the following fourth-order equation:

@4
xn 1ð Þ

i ¼ 0: ð43Þ

After the same manipulation as in case 1, we can obtain w and w which satisfy the following

equations:

w 1ð Þ ¼ 1þ 1

k
s2h2@2

x

� �
@xw 1ð Þ; @4

xw 1ð Þ ¼ 0: ð44Þ

From Eqs. (18), the normal stress and shear stress can be found to be

r 1ð Þ
x ¼ �

8c44s2

k
z w 1ð Þ
� �00

; r 1ð Þ
z ¼ 0; s 1ð Þ

xz ¼ �
c44s2

4k
h2

4
� z2

� �
w 1ð Þ
� �000

: ð45Þ

4.2.2 The transcendental equation

n 2ð Þ
i satisfies the following transcendental equation:

1� sin sh@xð Þ
sh@x

� �
1

@2
x

n 2ð Þ
i ¼ 0: ð46Þ

Repeating the procedure in the case 1 leads to the expressions of the normal stress and shear

stress

r 2ð Þ
x ¼

@4U
@x2@z2

; r 2ð Þ
z ¼

@4U
@x4

; s 2ð Þ
xz ¼ �

@4U
@x3@z

; ð47Þ

where U x; zð Þ is given as

� k
2c44

U ¼ �h

s
cos

sh@x

2
sin sz@xð Þ þ 2z

s
sin

sh@x

2
cos sz@xð Þ

� �
n 2ð Þ

1

@2
x

þ h sin
sh@x

2
sin sz@xð Þ � 2

s@x

cos
sh@x

2
sin sz@xð Þ þ 2z cos

sh@x

2
cos sz@xð Þ

� �
n 2ð Þ

2

@2
x

;

ð48Þ

and U satisfies the following equations:

r2
sr2

sU ¼ 0; ð49Þ

U ¼ 0; @U=@z ¼ 0 at z ¼ �h=2: ð50Þ
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Combining the fourth-order solution of Eqs. (45) and the transcendental solution of Eqs. (47),

we arrive at a second-order refined theory for the bending transversely isotropic elastic beams

with the two differential governing equations (44) and (49) in case 2.

As a special case, an isotropic elastic beam is used to verify the correctness of the results

obtained in this subsection. For an isotropic elastic beam, it is known that

c11 ¼ c33 ¼
E

1� m2
; c13 ¼

mE

1� m2
; c44 ¼

E

2 1þ mð Þ ; s2 ¼ 1; k ¼ 4

1þ m
: ð51Þ

where E and m are the Young’s modulus and Poisson’s ratio of isotropic materials, respectively.

It can be shown that all results of the second-order refined theory of transversely isotropic

beams given in this subsection can reduce to the corresponding results for isotropic beams

obtained in [17].

5 Approximate equations: transverse surface loadings

In this section a rectangular straight beam with transverse surface loadings is considered. The

boundary conditions are given as

sxz ¼ 0; rz ¼ �q=2 at z ¼ �h=2: ð52Þ

5.1 The case 1, s2
1 6¼ s2

2

Substituting the stress expressions in Eqs. (16) into the boundary conditions (52) of the beam,

we get the following nonhomogeneous matrix equation:

� k2 1þ k1ð ÞCS1 � k1 1þ k2ð ÞCS2½ �w� 1þ k1ð ÞCS1 � 1þ k2ð ÞCS2½ �w0 ¼ 0;

� k2 1þ k1ð ÞSN1 � k1 1þ k2ð ÞSN2½ �w� 1þ k1ð ÞSN1 � 1þ k2ð ÞSN2½ �w0 ¼ k1 � k2

2c44
q:

ð53Þ

Simplifying Eqs. (53) leads to

L0w ¼ � k2 1þ k1ð ÞCS1 � k1 1þ k2ð ÞCS2½ � k1 � k2

2c44
q;

L0

@x

w ¼ � 1þ k1ð ÞCS1 � 1þ k2ð ÞCS2½ � k1 � k2

2c44
q:

ð54Þ

Equations (54) are the exact governing equation for w and w in the beam problem subjected to

the transverse surface loadings. Since these equations are of infinite order, however, they are

not applicable in most cases. Using Taylor series of the trigonometric functions in Eqs. (11) and

then dropping all the terms associated with h4 or the higher orders, we arrive at the following

equations

Dw0000 ¼ 1� 5aþ c
40 k1 � k2ð Þh

2@2
x

� �
q; Dw000 ¼ 1þ 5b� c

40 k1 � k2ð Þh
2@2

x

� �
q; ð55Þ

where

a ¼ k1 1þ k2ð Þs2
2 � k2 1þ k1ð Þs2

1; b ¼ 1þ k2ð Þs2
2 � 1þ k1ð Þs2

1; c ¼ k2 � k1ð Þ s2
1 þ s2

2

� �
;

and

D ¼ h3

12

c44 1þ k1ð Þ 1þ k2ð Þ s2
2 � s2

1

� �

k1 � k2
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is the flexural rigidity of transversely isotropic beams in case 1. Equations (55) form the basic

equations of an approximate first-order theory for the bending problem of the beam under the

transverse loadings, in which boundary conditions can be prescribed at both upper and lower

surfaces. It should be pointed out that Eqs. (16) in the previous section are still valid.

5.2 The case 2, s2
1 ¼ s2

2

In the same way, applying the stress expressions in Eqs. (18) into the boundary conditions (52)

and simplifying the results, one gets

L0w ¼ �CSþ 1

k
s2h@xSN

� �
q

2
;

L0

@x

w ¼ CSþ 1

k
s2h@xSN

� �
q

2
: ð56Þ

Using Taylor series of the trigonometric functions and then truncating all the terms associated

with h4 or the higher orders, we arrive at the following equations:

Dw0000 ¼ 1� 20þ 3k
40k

s2h2@2
x

� �
q; Dw000 ¼ 1þ 20� 3k

40k
s2h2@2

x

� �
q; ð57Þ

where

D ¼ 2c44s2h3

3k

is the flexural rigidity of transversely isotropic beams in the case 2. Likewise, the solutions (57)

can be safely reduced to the results for isotropic elastic beams obtained in [17] in terms of

Eqs. (51).

6 Several examples

To illustrate the application of the theory developed in the previous sections, three examples are

considered: a cantilever beam with a transverse concentrated loading applied at the free end, a

simply supported beam with a constant transverse distributed loading, and a cantilever beam

with a linear transverse distributed loading. Analysis on these three examples will be given

separately to two cases. It should be noted that the same examples for isotropic elastic beams

have been discussed by Gao and Wang [16].

6.1 The case 1, s2
1 6¼ s2

2

By dropping all the terms associated with h4 or the higher orders in Eqs. (53), we arrive at the

following equations:

w�w0 � h2

8 k1 � k2ð Þ aw00 þ bw000ð Þ ¼ 0; w0 �w00 ¼ 3q

2c44h
: ð58Þ

According to the stress expressions in Eqs. (16), assuming q is a linear function and omitting all

the terms associated with h4 or the higher orders, one can obtain the expressions of the moment

and shear force

Mx ¼ �
c44h3

60 k1 � k2ð Þ 5aþ cð Þw0 þ 5b� cð Þw00½ �; Qx ¼ �
2

3
c44h w�w0ð Þ: ð59Þ
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6.1.1 The end loaded cantilever beam

Considering a cantilever beam of uniform cross-section loaded by a transverse shear force of

magnitude Q0 at x ¼ 0 and clamped at x ¼ l. For the present theory, the boundary conditions

are

5aþ cð Þw0 0ð Þ þ 5b� cð Þw00 0ð Þ ¼ 0; w 0ð Þ �w0 0ð Þ ¼ � 3Q0

2c44h
; w lð Þ ¼ w lð Þ ¼ 0: ð60Þ

From Eqs. (58) and (60), the solution for the deflection of the neutral surface is obtained as

w ¼ 2 k1 � k2ð ÞQ0l3

aþ bð Þc44h3
�x3

l3
þ 3

x

l
� 2

� �
� 3Q0l

2c44h
1� x

l

� �
: ð61Þ

6.1.2 The uniformly loaded and simply supported beam

The second example is a beam of uniform cross-section which is simply supported at x ¼ �l

and which carries a uniformly distributed load of intensity q ¼ q0. The boundary conditions for

the present theory are

5aþ cð Þw0 �lð Þ þ 5b� cð Þw00 �lð Þ ¼ 0; w �lð Þ ¼ 0: ð62Þ

From Eqs. (58) and (62), we obtain the solution for the deflection of the neutral surface

w xð Þ ¼ k1 � k2ð Þq0l4

2 aþ bð Þc44h3

x4

l4
� 6

x2

l2
þ 5

� �
þ 3 5aþ cð Þq0l2

20 aþ bð Þc44h
1� x2

l2

� �
: ð63Þ

6.1.3 The linearly loaded cantilever beam

As a third example, a uniform cantilever beam clamped at x ¼ l is considered. The beam is

subjected to a linearly distributed load q xð Þ ¼ q0x, where q0 is a constant. For the present

theory, the boundary conditions are

5aþ cð Þw0 0ð Þ þ 5b� cð Þw00 0ð Þ ¼ 0; w 0ð Þ �w0 0ð Þ ¼ 0; w lð Þ ¼ w lð Þ ¼ 0: ð64Þ

From Eqs. (58) and (64), we have

w xð Þ ¼ k1 � k2ð Þq0l5

10 aþ bð Þc44h3

x5

l5
� 5

x

l
þ 4

� �
þ q0l3

4 aþ bð Þc44h
a 1� x3

l3

� �
þ 3b 1� x

l

� �� �
: ð65Þ

For the three examples, comparing with the results for isotropic beams [16], we find that the

solutions for the deflection of the neutral surface have almost the same conformation for both

isotropic and transversely isotropic beams.

6.2 The case 2, s2
1 ¼ s2

2

After the same manipulation as the case 1, we arrive at the following equations:

w�w0 � 1

8
s2h2 4þ k

k
w00 þ 4� k

k
w000

� �
¼ 0; w0 �w00 ¼ 3q

2c44h
: ð66Þ
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According to the stress expressions in Eqs. (18), omitting all the terms associated with h4 or the

higher orders, we obtain the following expressions of the moment and shear force for the

present case:

Mx ¼ �
c44s2h3

60k
20þ 3kð Þw0 þ 20� 3kð Þw00½ �; Qx ¼ �

2

3
c44h w�w0ð Þ: ð67Þ

For the sake of simplicity, results for the three examples are presented in the following without

any detailed derivation.

6.2.1 The end loaded cantilever beam

w ¼ kQ0l3

4c44s2h3
�x3

l3
þ 3

x

l
� 2

� �
� 3Q0l

2c44h
1� x

l

� �
: ð68Þ

6.2.2 The uniformly loaded and simply supported beam

w xð Þ ¼ kq0l4

16c44s2h3

x4

l4
� 6

x2

l2
þ 5

� �
þ 3 20þ 3kð Þq0l2

160c44h
1� x2

l2

� �
: ð69Þ

6.2.3 The linearly loaded cantilever beam

w xð Þ ¼ kq0l5

80c44s2h3

x5

l5
� 5

x

l
þ 4

� �
þ q0l3

32c44h
4þ kð Þ 1� x3

l3

� �
þ 3 4� kð Þ 1� x

l

� �� �
: ð70Þ

Once again the results described above reduce to the corresponding results for isotropic beams

[16]. These results also indicate that the deflection of the neutral surface for transversely iso-

tropic beams can be obtained from the corresponding part for isotropic beams by replacing the

related elastic stiffness constants through Eqs. (51).

7 Conclusion

In this paper, the refined theory for rectangular straight transversely isotropic beams has been

deduced systematically and directly from elasticity theory. Based on E-L solution and Lur’e

method, the refined theory yields the solutions for transversely isotropic beams without ad hoc

assumptions. Discussions are given separately to the two cases s2
1 6¼ s2

2 and s2
1 ¼ s2

2, since they

are provided with different types of general solutions [6], [7].

On the basis of the refined theory developed in the present paper, solutions are obtained

for transversely isotropic beams with homogeneous boundary conditions and transverse

surface loadings, respectively. For the beams with homogeneous boundary conditions, the

refined theory provides exact solutions which satisfy all of the governing equations.

Employing the results in [17], we decompose the exact solutions into two parts: the fourth-

order equation and the transcendental equation. However, for the beams under transverse

loadings, only approximate solutions are reached, by truncating those terms associated with

h4 or the higher orders. It is further shown that the refined theory of the transversely

isotropic beams in this paper can be reduced to the corresponding results for isotropic beams

obtained in [17].
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In the purpose of illustrating the application of the refined beam theory developed in this

paper, three examples are considered: a cantilever beam with a transverse concentrated load

applied at the free end, a simply supported beam with a constant transverse distributed load,

and a cantilever beam with a linear transverse distributed load. Results for these three examples

can be safely reduced to the corresponding results for isotropic beams [17]. Hence, the results

obtained here are considered reliable as a basis for more general applications.
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