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Summary. The excitation of Lamb waves with piezoelectric wafers is analytically modeled with help of the

Fourier transform method combined with the Residue theorem for the inverse transform. The calculation

utilizes a decomposition of the load in a symmetric and an antisymmetric part and leads to the well known

Rayleigh-Lamb-frequency equation. A solution for the whole waveguide continuum including the exci-

tation zone is given. It is shown that the solution satisfies not only the underlying partial differential

equations but also the given boundary conditions which has not been verified before.

1 Introduction

The fast and efficient detection of hidden structural damages of plates and shells is the main

goal of structural health monitoring (SHM) systems. SHM allows to adjust maintenance

intervals in accordance to the real requirements so that a reduction of the operating costs is

expected. From an economical point of view, aerospace structures are of special interest for

improved inspection techniques, since a considerable amount of life cycle costs is due to in-

spection and repair and since damage can lead to catastrophic failure. Moreover, the increasing

application of fiber reinforced plastics in lightweight aerospace structures is currently de-

manding for advanced monitoring systems.

Actually, various SHM systems are under development. Passive systems monitor plates and

shells for acoustic emissions which are generated from impacts or newly developing or pro-

pagating cracks. In contrast, active systems interact with the structure and analyze the reac-

tions. Examples of active systems are the conventional ultrasonic testing methods and, more

recently under development, testing procedures based on Lamb waves. The latter technology

benefits from the fact that Lamb waves spread out over large areas of the plate and shell

structures under investigation so that they do not need to be scanned.

The main research fields in Lamb wave testing are the correct interpretation of the sensed

signals and the development of small, lightweight and low cost transducers for Lamb wave

generation and sensing. A multitude of Lamb wave transducers exists, e.g., wedge-, interdigital-,

electromagnetic-, capacitive micro machined ultrasonic (CMU) transducers and piezoelectric

wafers. In order to develop and optimize these transducers, a fundamental knowledge of the

mechanical problem related with Lamb wave generation is necessary. This work aims to

contribute to this field of research.
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After the description of free, time harmonic plane strain waves in an elastic layer by Lamb

[1], Victorov [2] investigated Lamb waves with help of the Fourier transform. More recent work

using this method was presented by other authors, cf. [3]–[6]. Alternative approaches have been

developed in parallel. In [7] and [8], the resulting fields in the waveguide were expressed by the

mode expansion technique which makes use of the eigenmodes of free Lamb waves. Achenbach

and Xu [9] described the generation of waves in elastic layers by time harmonic point loads

using a membrane carrier wave. To the knowledge of the authors, this publication is the only

one with a solution for the resulting fields which is valid throughout the entire waveguide

continuum. Further work has been done by Badi et al. [10] who used an equivalent circuit

model for describing a CMU-transducer and by Wilcox et al. [11] who defined the excitability

of guided waves.

In this work an analytical model for the excitation of Lamb waves with piezoelectric wafers

(PW) will be presented. The mechanical system consists of one piezoelectric wafer which is

bonded to the upper surface of a plate. In case of wave generation, shear stresses are transfered

from the wafer to the plate structure. The mathematical approach for the problem solution

makes use of the common Fourier transform and is combined with the Residue theorem.

Starting point is a recent paper of Giurgiutiu [6].

The organization of the manuscript is as follows. In the first Section, the governing equations

and boundary conditions of the underlying problem are derived. Then, a solution in the wave

number domain is specified. After that the application of the Residue theorem for inverse

transform is sketched. In the last Section the whole solution procedure is exemplarily shown for

the above-mentioned loading case, and it will be verified that the solution satisfies the given

boundary conditions. This is only possible because a closed form solution for the entire con-

tinuum of the waveguide, containing the excitation zone, has been derived.

2 Description in the time domain

2.1 Lamé-Navier differential equations for elastic infinite plates

The governing differential equations are derived from Newton’s second law, using Hooke’s law

for homogeneous isotropic elastic materials and assuming small strains:

ðkþ lÞ@ijfuj½x; y; z; t�g þ l@llfui½x; y; z; t�g þ qf i½x; y; z; t� ¼ q€ui½x; y; z; t�; ð1Þ

where ui is the displacement field, k and l are the Lamé constants, q and f i are density and

body force. Equations (1) are known as the Lamé-Navier differential equations. The partial

derivative is written here using the following definition:

@a1:::anf:g :¼ @n

@a1:::@an

f:g: ð2Þ

For the sake of brevity the dependence of the variables is dropped in the following expressions,

if they do not change or are not important for understanding.

The displacement field ui can be separated in a curl free scalar field u and a divergence free

vector field Wi with the help of Helmholtz’s theorem

ui ¼ @ifug þ �igh@gfWhg; ð3Þ

where �igh is the permutation tensor.

With this separation the Lamé-Navier differential equations can be split into two sets of

potential equations standing for longitudinal and transversal waves in solids. Following Lamb
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[1] we assume a plain strain state and a time harmonic solution ui½x; y�e�ixt for the analysis of

plates in the x-y-plane. Therefore Eq. (3) takes the form:

ux½x; y� ¼ @xfu½x; y�g þ @yfWz½x; y�g;

uy½x; y� ¼ @yfu½x; y�g � @xfWz½x; y�g;

uz½x; y� ¼ 0:

ð4Þ

Neglecting furthermore the effect of body forces we get the following set of potential equations

for waves in infinite elastic plates:

@xxfug þ @yyfug þ x2 q
2lþ k

u ¼ 0;

@xxfWzg þ @yyfWzg þ x2 q
l

Wz ¼ 0: ð5Þ

2.2 Piezoelectric actuator

Lamb waves can be generated by piezoelectric wafers, which are bonded to the surface of the

plate. If a voltage is applied to the PW, it is contracting or expanding and is therefore gen-

erating a shear stress at the interface between actuator and plate [6]. This is illustrated in Fig. 1.

The stress tensor can be expressed as

Tij ¼ lð@jfuig þ @ifujgÞ þ k@lfulgdij; ð6Þ

where dij is the Kronecker-tensor.

Setting Tyy½x; y ¼ d� ¼ 0 and Tyx½x; y ¼ d� ¼ s½x� we get the following boundary conditions:

ðkþ 2lÞ@yyfu½x; y ¼ d�g � 2l@xyfWz½x; y ¼ d�g þ k@xxfu½x; y ¼ d�g ¼ 0;

lð@yyfWz½x; y ¼ d�g þ 2@xyfu½x; y ¼ d�g � @xxfWz½x; y ¼ d�gÞ ¼ s½x�:
ð7Þ

The potential differential equations (5) and boundary conditions (7) describe the entire pro-

blem.

3 Solution in the wave number domain - Fourier transform

A common method for solving such surface load problems is to apply the Fourier transform
~f ðkÞ ¼

R1
�1 f ðxÞe�ikxdx [2], [12].

After obtaining the transform from (5), we get now a set of ordinary differential equations of

second order in y for every held wavenumber k:

y yPZT actuator

plate

x x

(x,t)

–a a

t

2d

Fig. 1. Modeling of a piezoelectric wafer actuator bonded to a steel plate (left) with a stress boundary

condition (right)
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@yyf~u½k; y�g þ p2 ~u½k; y� ¼ 0;

@yyf ~Wz½k; y�g þ q2 ~Wz½k; y� ¼ 0;
ð8Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kl2 � k2
p

, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt2 � k2
p

, kl2 ¼ x2 q
2lþk and kt2 ¼ x2 q

l.

Equations (8) have the general solution

~u ¼ A1 sin½py� þ A2 cos½py�;

~Wz ¼ B1 sin½qy� þ B2 cos½qy�:
ð9Þ

Those parts of Eqs. (9) containing the free constants A2 and B1 describe symmetric solutions,

and terms including A1 and B2 contribute to antisymmetric solutions with respect to the plate

mid surface. In order to evaluate the unknown constants A1;A2;B1, and B2 the transformed

stress condition at the boundary is used:

ðkþ 2lÞ@yyf~u½k; y ¼ d�g � 2ikl@yf ~Wz½k; y ¼ d�g � k2k~u½k; y ¼ d� ¼ 0;

lð@yyf ~Wz½k; y ¼ d�g þ 2ik@yf~u½k; y ¼ d�g þ k2 ~Wz½k; y ¼ d�Þ ¼ ~s½k�:
ð10Þ

The symmetric (superscript S) and antisymmetric (superscript A) cases are now considered

separately. Then, Eqs. (10) yield an inhomogeneous linear system of equations, from which the

unknown constants are evaluated. The decomposition of the load is shown in Fig. 2. The

complete solution of the transformed problem can be written as:

~ux½k; y� ¼
NA

x ½k; y�
DA½k� ~sA½k� þ NS

x ½k; y�
DS½k� ~sS½k� ð11Þ

and

~uy½k; y� ¼
NA

y ½k; y�
DA½k� ~sA½k� þ

NS
y ½k; y�
DS½k� ~sS½k�; ð12Þ

by which the subsequent quantities are introduced:

NA
x ½k; y� ¼ qð�ðk2 � q2Þ sin½dp� sin½qy� þ 2k2 sin½dq� sin½py�Þ; ð13Þ

NS
x ½k; y� ¼ qððk2 � q2Þ cos½dp� cos½qy� � 2k2 cos½dq� cos½py�Þ; ð14Þ

NA
y ½k; y� ¼ �ikð2pq cos½py� sin½dq� þ ðk2 � q2Þ cos½qy� sin½dp�Þ; ð15Þ

NS
y ½k; y� ¼ �ikð2pq cos½dq� sin½py� þ ðk2 � q2Þ cos½dp� sin½qy�Þ; ð16Þ

DA½k� ¼ lð4k2pq cos½dp� sin½dq� þ ðk2 � q2Þ2 cos½dq� sin½dp�Þ; ð17Þ

DS½k� ¼ lð4k2pq cos½dq� sin½dp� þ ðk2 � q2Þ2 cos½dp� sin½dq�Þ: ð18Þ

y

x

y

x

y

x

–a a –a a –a a

t (x,t) ta (x,t)

−ta (x,t) −ts (x,t)

ts (x,t)

= +

Fig. 2. Decomposition of the boundary condition into symmetric and antisymmetric parts
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4 Solution in the time domain – inverse Fourier transform

4.1 Residue theorem

In order to obtain the solution in the time domain one has to calculate the inverse Fourier

transform: f ½x� ¼ 1
2p

R1
�1

~f ½k�eikxdk. This is the most difficult part of the solution process, and in

most cases the direct integration does not work. A common method is to use the Residue

theorem, see for example [2], [12] and recently [6]. According to this theorem the integral over a

closed path in the complex plane is equal to 2pi times the sum of the residues of the enclosed

poles. If some poles lie on the path of integration only the half is added. One obtains

I

C

F½k�dC ¼
Z

C1

F½k�dC1 þ
Z1

�1

F½k�dk

¼ 2pi
Xn

i¼1

Res½F½k�; k ¼ k0ci� þ pi
Xm

l¼1

Res½F½k�; k ¼ k0rl�; ð19Þ

where F½k� is a complex function with complex poles at k0c and real poles k0r. The path of

integration has to be chosen properly, so that all integrals
R

C1
F½k�dC1 with exception of the path

integral along the real axis evaluate to zero. Then
R1
�1 F½k�dk can be replaced by a sumof residues.

In the next two Subsections the integral along path C1 is investigated in detail.

4.2 Branch cut

The integrand of Eq. (19) contains root functions, namely the values p and q in Eqs. (11) and

(12), which have been introduced in (8). In this case we additionally have to investigate branch

cuts, for details see [13]. Graff [12] states that the evaluation of the integrals along the branch

cuts is most formidable. For a similar problem Victorov [2] gives a solution for the displace-

ment field at the surface of the plate outside of the excitation zone.

In our investigations we will show in the following that the additional integrals along the

branch cuts evaluate to zero. First we determine the locations of the branch cuts. For the root

function p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kl2 � k2
p

it lies on fkjkl � jkjg and for q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt2 � k2
p

on fkjkt � jkjg. Now we

are able to select the path of integration, see Fig. 3. The path in the upper half plane along the

branch cut can be parameterized using k ¼ rueip ¼ �ru with ru > 0 and in the lower half plane

k ¼ rle
�ip ¼ �rl with rl > 0. Because there are two branch cuts at the negative axis, the path of

integration has to be divided. We get the following additional integrals:

Iu1 ¼
Zkt

ru¼1

~ux½�ru; y�eið�ruÞxð�druÞ;

Iu2 ¼
Zkl

ru¼kt

~ux½�ru; y�eið�ruÞxð�druÞ;

Il1 ¼
Zkt

rl¼kl

~ux½�rl; y�eið�rlÞxð�drlÞ;

Il2 ¼
Z1

rl¼kt

~ux½�rl; y�eið�rlÞxð�drlÞ:

ð20Þ
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In the case under consideration adding up Iu1 and Il2 yields zero and Iu2 plus Il1 is zero, too.

This is not a matter of course and holds only because of the special structure of the functions

given in Eqs. (11)–(18), which is the result of the underlying mechanical problem.

4.3 Integration of the semi-circle

An investigation of the behavior of the semi circle integral is necessary, because it is not evident

that this integration gives zero, if the radius tends to infinity. The given boundary condition ~s½k�
has crucial influence.

Even with the simplest integrand one has to make case distinctions. This will be shown by the

subsequent example. Consider an integral f ½x� ¼ 1
2p

R1
�1 eikxdk. There are no residues in k 2 C.

The semi circle is parameterized with k ¼ Reiu where R!1 and u 2 ½0; p�, therefore dk can

be replaced by iReiudr. For x > 0 the integral tends to zero if R!1. If we solve for x < 0 we

only get zero, if we integrate along a semi circle in the lower half space: k ¼ Re�iu. For x ¼ 0

the integral does not vanish, it tends to �1 if R!1. Because of Eq. (19) we get the solution

f ½x� ¼ d½x�, which is the Dirac distribution. Summarizing we state that at least three case

distinctions have to be investigated: (i) x > 0, (ii) x < 0 and (iii) x ¼ 0.

In the next Section the whole solution process is demonstrated for a given stress distribution

s½x�.

5 An example

We investigate an applied shear stress in the form

s½x� ¼ s0ð2H½x� � H½xþ a� � H½x� a�Þ; ð21Þ

where H½x� is the Heaviside step function, see Fig. 6. The Fourier transform gives

–kl–k0r1 –kt kl kt k0r1 Re(k)

Im(k)

–k0rn k0rn

R

Gsc

Gl2 Gl1

Gu2Gu1

Fig. 3. Sketch of the selected path of integration
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~s½k� ¼
�i4s0 sin2½a

2
k�

k
: ð22Þ

After the integration along the branch cuts evaluate to zero, we have to survey in which cases

the integrals of Eqs. (11) and (12) along the semi-circle vanish. Therefore Eq. (22) has to be

converted to

~s½k� ¼ is0

k
ðeiak � 2þ e�iakÞ: ð23Þ

Now we are able to split the integral (19) into three parts with identical limits, using Eqs. (11)–

(12) and (23):
I

C

F½k�dC ¼
I

C

1

2p
NA

x ½k; y�
DA½k� þ

NS
x ½k; y�
DS½k�

� �
1

2
~s½k�eikxdC

¼
I

C

1

2p
NA

x ½k; y�
DA½k� þ

NS
x ½k; y�
DS½k�

� �
is0

2k
eikðxþaÞdC

þ
I

C

1

2p
NA

x ½k; y�
DA½k� þ

NS
x ½k; y�
DS½k�

� �

� is0

k

� �

eikxdC

þ
I

C

1

2p
NA

x ½k; y�
DA½k� þ

NS
x ½k; y�
DS½k�

� �
is0

2k
eikðx�aÞdC; ð24Þ

where ~sA½k� ¼ ~sS½k� ¼ 1
2
~s½k�. This is exemplarily done for ux and has to be repeated for uy.

We make different case distinctions for each integral in Eq. (24). It is evident that these are (i)

x > �a , (ii) x ¼ �a and (iii) x < �a, e.g. for the first integral.

Subsequently we will give the explicit inverse transform only for the first case of the first

integral, all other cases work the same way. The path integral along the semi-circle in the upper

half plane evaluates to zero, thus we can write using the expression Res½N½k�=
D½k�; k ¼ kn� ¼ N½kn�=D0½kn� for the residue of a fraction at the simple pole kn:

u11
x ½x; y� ¼

Z1

�1

1

2p
NA

x ½k; y�
DA½k� þ

NS
x ½k; y�
DS½k�

� �
is0

2k
eikðxþaÞdk

¼ � s0

4

 
Xm

j¼1

NA
x ½k ¼ nj; y�

@kfDAh½k ¼ nj�g
einjðxþaÞ

þ
Xn

l¼1

NS
x ½k ¼ fl; y�

@kfDSh½k ¼ fl�g
eiflðxþaÞ

!

; ð25Þ

where DAh½k� ¼ DA½k�k and DSh½k� ¼ DS½k�k. The values n and f are simple poles of the fractions
NA

x ½k;y�
DAh½k� and

NS
x ½k;y�

DSh ½k� , respectively. Among others these sets of poles contain all zeros from DA½k� and
DS½k�, which are the already known eigenvalues of the Rayleigh-Lamb-frequency equation for

the free Lamb wave. If we sum up over all zeros (negative and positive) we get standing waves,

summation over positive values (including zero) gives waves, which are travelling away from

the source.

Since these poles are independent from y, we do not only get the inverse transformed

results at the surface of the plate but also the complete vector field ui½x; y�, which is calcu-

lated from
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ui ¼
X3

n¼1

ðun1
i þ un2

i þ un3
i Þ: ð26Þ

In Eq. (26) the term un2
i denotes the second case for the n-th integral that is needed for

evaluating the displacement ui.

All following results are calculated for a steel plate with the parameters d ¼ 2:4 mm,

a ¼ 4:5 mm, Y ¼ 210 GPa, m ¼ 0:3, q ¼ 7800 kg
m3, s0 ¼ 100 kPa and x ¼ 12000p Hz. At the

given frequency, only two propagating modes exist, namely the symmetric S0 mode and the

antisymmetric A0 mode. In Fig. 4 the displacements along the surface are plotted. Another

interesting plot is given in Fig. 5, where the displacements of the asymmetric mode along

the thickness of the plate (x-coordinate fixed) are given. It can be seen that

uA
y ½x; y ¼ d� ¼ uA

y ½x; y ¼ �d� and uA
x ½x; y ¼ d� ¼ �uA

x ½x; y ¼ �d� is valid. Since we have com-

puted the complete displacement vector field, it is possible to validate the given boundary

condition, using Eq. (6). A plot of s½x� and the calculated stress Tyx½x; y ¼ d� is shown in Fig. 6.

6 Conclusions

A closed solution for excited Lamb waves in homogeneous isotropic elastic plates due to time

harmonic loading through piezoelectric wafers was presented. This solution is valid for the

whole continuum and satisfies the underlying differential equations and boundary conditions.

As in the solution given by Achenbach and Xu [9], it is necessary to compute the eigenvalues of

the Rayleigh-Lamb-frequency equation. Since this is not possible in a closed form, numerical

algorithms of the program Mathematica have been applied.
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