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Summary. A problem of reflection and transmission of a plane SH-wave incident at a corrugated interface

between a dry sandy half-space and an anisotropic elastic half-space is investigated. Rayleigh’s method of

approximation is applied to derive the reflection and transmission coefficients for the first and second order

approximation of the corrugation. The expressions for reflection and transmission coefficients for the first

order approximation of the corrugation are obtained in closed form for a special type of interface, and the

energy partition relation is derived. It is found that these coefficients are proportional to the amplitude of

corrugation and are functions of elastic properties of the half-spaces and also of the angle of incidence.

Numerical examples illustrating the effects of the sandiness, the anisotropy, the corrugation of the

interface, the frequency, and the angle of the incidence on the coefficients are presented.

1 Introduction

The theory of elastic waves finds numerous applications in seismology and geophysics. Seismic

signals are applied to investigate the internal structure of the Earth, and they are used in the

exploration of valuable materials, e.g., oils, water, minerals etc. The mathematical analysis of

seismic waves is mainly devoted to the study of propagation, reflection/refraction and

diffraction problems.

Irregularities, such as mountains, basins, mountain roots and salt and ore deposits, affect the

reflection and transmission of seismic waves. The interior boundaries of the Earth’s media are

not planar but are of undulated nature. The roughness or undulation of interfaces do affect the

energy partition between the reflected and transmitted waves. The problem of reflection and

transmission of waves at irregular interfaces was studied by Asano [1]–[3], Abubakar [4]–[6],

Dunkin and Eringen [7], Salvin and Wolf [8], Sumner and Deresiewicz [9], Gupta [10]–[12],

Zhang and Shinozuka [13], Tomar and Saini [14], Tomar and Kaur [15] and Kaur et al. [16]

among others.

Earth is very complex in nature and contains various types of rocks and materials with

amazing characteristics such as anisotropy, heterogeneity, sandiness etc. The effect of aniso-

tropy on reflection and transmission of elastic waves at a plane interface between two elastic

media was studied by Musgrave [17], Henneke [18], Daley and Hron [19], Saini and Singh [20],

Keith and Crampin [21], Rokhlin et al. [22], Mandal [23], Ruger [24], among others.
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Chakraborty and Chandra [25] studied the reflection and refraction of plane SH-waves at a

plane interface between a dry sandy layer and sedimentary rock (anisotropic of transversely

isotropic type).

In this paper, we analyze the problem of reflection and transmission of SH-waves at a

corrugated interface between a dry sandy half-space and an anisotropic elastic half-space.

Rayleigh’s method of approximation [26], [27, pp. 204–205] is applied to derive the reflection

and transmission coefficients for the first and the second order approximation of the corru-

gation, and the energy partition relation is also derived. It is found that the sandiness and the

anisotropic characteristics of the half-spaces, the corrugation of the interface, the frequency and

the angle of incidence have significant effect on the reflection and transmission coefficients.

2 Formulation of the problem and its solution

Let z ¼ fðxÞ be the equation of the corrugated interface separating a dry sandy half-space

denoted by H1 [�1 < z � fðxÞ� and an anisotropic elastic half-space denoted by H2

[fðxÞ � z <1�. In the equation of the corrugated interface, f is a periodic function of x,

independent of y and whose mean value is zero. The geometry of the problem is shown in Fig. 1.

The Fourier series representation of the function fðxÞ is

fðxÞ ¼
X1

n¼1

½fneink�x þ f�ne�ink�x�; ð1Þ

where fn and f�n are Fourier expansion coefficients, n is the series expansion order, the

wavelength of corrugation is 2p=k�, and i ¼
ffiffiffiffiffiffiffi
�1
p

. Introducing constants c1; cn and sn

f1 ¼ f�1 ¼
c1

2
; fn ¼

cn � isn

2
; f�n ¼

cn þ iSn

2
; n ¼ 2; 3; 4; :::
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Fig. 1. Geometry of the problem
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we obtain

f ¼ c1 cos k�xþ
X1

n¼2

½cn cos nk�x þ sn sin nk�x�: ð2Þ

A stress � strain relation for real earth material such as sand/soil was given by Weiskopff [28].

According to his theory, in an idealized soil the resistance to shear is much smaller than that in

a solid because of the slipping of granules on each other, and the resulting shearing deflection is

thus much greater. For such materials, the relation E=l ¼ 2ð1þ rÞ valid for a purely elastic

solid, where E is Young’s modulus, l is the modulus of rigidity and r is Poission’s ratio, may be

modified as follows:

E

l
¼ 2gð1þ rÞ:

Here, g > 1 corresponds to sandy materials and g ¼ 1 corresponds to an elastic solid.

Chakraborty and Chandra [25] applied Weiskopff’s theory to investigate the problem of

reflection and transmission of plane SH-waves at the boundary of a dry sandy layer and an

anisotropic elastic medium.

Neglecting body forces, the equation of motion for the plane SH-wave propagating in a

sandy elastic medium H1 is [29]:

l1

g
@2V1

@x2
þ @

2V1

@z2

� �
¼ q1

@2V1

@t2
; ð3Þ

where V1 is the y-component of the displacement vector, l1; q1 and g are, respectively, the

rigidity, the density and the sandiness of the medium. The shear wave velocity in H1 is

b1 ¼
ffiffiffiffiffiffi
l1

gq1

q
. Using the method of separation of variables, the time harmonic solution of Eq. (3)

for the SH-wave propagating in the positive direction of the x-axis is

V1 ¼ ½A0e�sz þ B0esz�eiðxt�k1xÞ;

where A0 and B0 are constants, x is the angular frequency, k1ð¼x sin e
b1
Þ is the horizontal

component of the wave number [10], e being the angle of incidence, and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 �
x2

b2
1

s
: ð4Þ

The equation of motion for the plane SH-wave in a transversely isotropic medium H2, in the

absence of body forces, is

N
@2V2

@x2
þ L

@2V2

@z2
¼ q2

@2V2

@t2
; ð5Þ

where V2 is the y-component of the displacement vector, and N; L and q2 are, respectively, the

elastic constants and the mass density. The shear waves velocities in H2 along the x- and z-axes

are b2 ¼
ffiffiffiffi
N
q2

q
and b02 ¼

ffiffiffiffi
L
q2

q
, respectively. The time harmonic solution of Eq. (5) for the

SH-wave propagating in the positive direction of the x-axis is

V2 ¼ ½C0e�qz þ D0eqz�eiðxt�k2xÞ;

where C0 and D0 are constants, k2 is the wavenumber defined by the law of refraction

k2 : k1 ¼ sin e : sin f , f being the angle of refraction and

SH-waves at a corrugated interface 3



q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

L
k2

2 �
x2

b2
2

 !vuut : ð6Þ

Let us assume that a ray of plane SH wave of unit amplitude propagating in the upper half

space H1 be incident at the corrugated interface z ¼ f making an angle e with the z-axis. Due to

corrugation of the interface, the reflection and refraction phenomena will be affected, and the

incident SH-wave will give rise to (i) a regularly reflected and a regularly refracted wave at

angles e and f with the z-axis in the upper and lower half-spaces H1 and H2, respectively, (ii) a

spectrum of nth order of irregularly reflected and irregularly refracted waves at angles en and fn

in the left side of regularly reflected and regularly refracted waves, respectively, and (iii) a

similar spectrum of irregularly reflected and irregularly refracted waves at angles e0n and f 0n in

the right side of regularly reflected and regularly refracted waves, respectively, at the corrugated

interface. The angle of refraction f is related to the incidence angle e through Snell’s law
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sin e

b1

¼ sin f

b2

: ð7Þ

The angles en; e0n; fn and f 0n are given by the following Spectrum theorem [1]:

sin en � sin e ¼ nk�b1

x
; sin e0n � sin e ¼ �nk�b1

x
;

sin fn � sin f ¼ nk�b2

x
; sin f 0n � sin f ¼ �nk�b2

x
: ð8Þ

The total displacement in the half-space H1 is then given by the sum of incident, regularly

reflected and irregularly reflected waves

V1 ¼ e�sz þ Besz þ
X1

n¼1

Bnesnze�{nk�x þ
X1

n¼1

B0nes0nze{nk�x

" #
e

ixðt�x sin e
b1
Þ
; ð9Þ

where sn ¼ {x cos en

b1
and s0n ¼

{x cos e0n
b1

:

0.00

0.40

0.80

1.20

1.60

2.00

A
m

pl
itu

de
 R

at
io

 D

E = 1.00

E = 1.10
E = 1.15 

E = 1.20

E = 1.30

0 10 20 30 40 50 60 70 80

Angle of incidence e

90

Fig. 3. Variation of the amplitude ratio D with the angle of incidence e for different values of g, where
g ¼ E

SH-waves at a corrugated interface 5



Similarly, the total displacement V2 in the half-space H2 is the sum of regularly refracted and

irregularly refracted waves,

V2 ¼ De�qz þ
X1

n¼1

Dne�qnze�{nk�x þ
X1

n¼1

D0ne�q0nze{nk�x

" #
e
{x t�x sin f

b2

� �

; ð10Þ

where qn ¼ {
ffiffiffi
N
L

q
x
b2

cos fn and q0n ¼ {
ffiffiffi
N
L

q
x
b2

cos f 0n:

The constants B; D; Bn; Dn; B0n and D0n are determined from the boundary conditions at the

interface.

3 Boundary conditions

The boundary conditions at the corrugated interface z ¼ f ensure the continuity of displace-

ment and traction, that is,
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(I) V1½ �H1
¼ V2½ �H2

;

(II) sm½ �H1
¼ sm½ �H2

;

where sm denotes the normal stress to the interface. The boundary condition (II) can be written

as

l1

g
@V1

@z
� @V1

@x
f0

� �
¼ L

@V2

@z
� N

@V2

@x
f0

� �
; ð11Þ

where f0 is the derivative of f with respect to x. Substituting Eqs. (9) and (10) in the above

boundary conditions, we obtain

e�sf þ B esf þ
X1

n¼1

Bnesnf e�{nk�x þ
X1

n¼1

B0n es0nf e{nk�x

¼ De�qf þ
X1

n¼1

Dne�qnfe�{nk�x þ
X1

n¼1

D0ne�q0nfe{nk�x; ð12Þ
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and

l1

g
�sþ {x sin e

b1

f0
� �

e�sf þ B sþ {x sin e

b1

f0
� �

esf þ
X1

n¼1

Bne�{nk�x sn þ {
x sin e

b1

þ nk�
� �

f0
� 	

esnf

"

þ
X1

n¼1

B0ne{nk�x s0n þ {
x sin e

b1

� nk�
� �

f0
� 	

es0nf

#

¼ L D �qþ {Nx sin f

Lb2

f0
� �

e�qf þ
X1

n¼1

Dne�{nk�x �qn þ
{N

L

x sin f

b2

þ nk�
� �

f0
� 	

e�qnf

"

þ
X1

n¼1

D0ne{nk�x �q0n þ
{N

L

x sin f

b2

� nk�
� �

f0
� 	

e�q0nf

#
: ð13Þ

From Eqs. (12) and (13), the reflection and transmission coefficients of nth order of approx-

imation of the corrugated interface can be determined.
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4 Solution of the first order approximation

We assume that the amplitude and the slope of corrugation of the interface z ¼ fðxÞ is so small

that higher powers of f can be neglected. The exponential functions involving f can then be

approximated as

e�sf ’ 1� sf: ð14Þ

In view of Eq. (14), the first order approximation for the coefficients B and D can be obtained

from Eqs. (12) and (13) by collecting the terms independent of x and f to both sides:

1þ B ¼ D; ð15Þ

sl1ð1� BÞ ¼ qgLD: ð16Þ

These equations provide the values of reflection coefficient B and transmission coefficient D at a

plane interface between sandy and anisotropic elastic half-spaces. Solving Eqs. (12) and (13) for

B and D, we obtain
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B ¼ l1s� Lgq

l1sþ Lgq
; D ¼ 2l1s

l1sþ Lgq
: ð17Þ

To find the solutions of the first order approximation for the coefficients Bn and Dn, we collect

the coefficients of e�{nk�x at both sides of Eqs. (12) and (13),

Bn � Dn ¼ ½ð1� BÞs� qD�f�n; ð18Þ

l1snBn þ LgqnDn ¼ �l1 s2 þ nk�x sin e

b1

� �
ð1þ BÞ þ Lg q2 þ nk�Nx sin f

Lb2

� �
D

� �
f�n: ð19Þ

Equating the coefficients of e{nk�x, we obtain the first order approximation for the coefficients

B0n and D0n,

B0n � D0n ¼ ½ð1� BÞs� qD�fn; ð20Þ

l1s0nB0n þ Lgq0nD0n ¼ �l1 s2 � nk�x sin e

b1

� �
ð1þ BÞ þ Lg q2 � nk�Nx sin f

Lb2

� �
D

� �
fn: ð21Þ

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Corrugation  k*c

0.00

0.04

0.08

0.12

0.16

0.20

0.24

A
m

pl
itu

de
 R

at
io

s 
 B

1 
an

d 
D

1

B1

D1

Fig. 8. Variation of the amplitude ratios B1 and D1 with the corrugation k�c

10 S. K. Tomar and J. Kaur



Equations (18)–(21) provide the values of Bn;Dn;B
0
n and D0n

Bn ¼
DBn

Dn

; Dn ¼
DDn

Dn

; B0n ¼
DB0n

D0n
; D0n ¼

DD0n

D0n
; ð22Þ

where

DBn
¼ �l1ð1þ BÞ s2 þ nk�x sin e

b1

� �
þ ð1� BÞLgs qn þ gLD q2 � qqn þ

nk�Nx sin f

Lb2

� �� �
f�n;

DDn
¼ �l1ð1þ BÞ s2 � qsn þ

nk�x sin e

b1

� �
� l1ð1� BÞssn þ gLD q2 þ nk�Nx sin f

Lb2

� �� �
f�n;

DB0n ¼ �l1ð1þ BÞ s2 � nk�x sin e

b1

� �
þ ð1� BÞLgs q0n þ gLD q2 � qq0n �

nk�Nx sin f

Lb2

� �� �
fn;

DD0n ¼ �l1ð1þ BÞ s2 � qs0n �
nk�x sin e

b1

� �
� l1ð1� BÞss0n þ gLD q2 � nk�Nx sin f

Lb2

� �� �
fn;

Dn ¼ l1sn þ Lgqn; D0n ¼ l1s0n þ Lgq0n:
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The values of B and D appearing in the above expressions are given by Eq. (17). Here Bn;B
0
n

and Dn;D
0
n are the reflection and transmission coefficients, respectively, for the first order

approximation of the corrugation.

5 Solution of the second order approximation

If the terms of higher order other than f2 are neglected, then

e�qf ’ 1� qfþ q2f2

2
; etc: ð23Þ

To find the solution of the second order approximation for B; D; Bn; Dn; B0n and D0n, we collect

the terms independent of x, the coefficients of e�{nk�x and the coefficients of e{nk�x at both sides

of Eqs. (12) and (13), after inserting Eq. (23), so that

ð1þ BÞð1þ s2fnf�nÞ þ snBnfn þ s0nB0nf�n ¼ Dð1þ q2fnf�nÞ � qnDnfn � q0nD0nf�n; ð24Þ
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sð1� BÞ½1þ s2fnf�n� � Bnfn s2
n � nk�ðkþ nk�Þ 1þ s2

n

2
fnf�n

� �� �
� B0nf�n

h
s02n þ nk�ðk� nk�Þ

� 1þ s02n
2

fnf�n

� ��
¼ Lg

l1

½Dqð1þ q2fnf�nÞ � Dnfn q2
n �

N

L
nk�ðkþ nk�Þ

�

� 1þ q2
n

2
fnf�n

� �	
� D0nf�n q02n �

N

L
nk�ðk� nk�Þ 1þ q02n

2
fnf�n

� �� 	�
; ð25Þ

sð1� BÞf�n � Bnð1þ s2
nfnf�nÞ � B0n

s02n
2

f2
�n ¼ Dqf�n � Dnð1þ q2

nfnf�nÞ � D0nq02n f2
�n; ð26Þ

ð1þ BÞðs2 þ knk�Þf�n �
s2

2
ð1� BÞknk�fnf2

�n þ Bnsnð1þ s2
nfnf�nÞ þ B0ns0nð1þ s02n fnf�nÞ

¼ Lg
l1

Df�n q2 þ N

L
knk� 1þ q2

2
fnf�n

� �� 	
� Dnqnð1þ q2

nfnf�nÞ � D0nq0nð1þ q02n fnf�nÞ
� �

;

ð27Þ
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sð1� BÞfn � Bn

s2
n

2
f2

n � B0nð1þ s02n fnf�nÞ ¼ Dqfn � Dn

q2
n

2
f2

n � D0nð1þ q02n fnf�nÞ ð28Þ

ð1þBÞðs2�knk�Þfnþ
s2

2
ð1�BÞknk�f�nf2

nþBnsnð1þ s2
nfnf�nÞþB0ns0nð1þ s02n fnf�nÞ

¼Lg
l1

Dfn q2�N

L
knk� 1þq2

2
fnf�n

� �� 	
�Dnqnð1þq2

nfnf�nÞ�D0nq0nð1þq02n fnf�nÞ
� �

;

where k¼ k1 sin e¼ k2 sin f ð29Þ

Equations (24)–(29) enable one to calculate the reflection and transmission coefficients for the

second order approximation of the corrugation.

6 Special case

For fn ¼ f�n ¼ 0; ðn 6¼ 1Þ and f1 ¼ f�1 ¼ c=2, the interface is given by z ¼ c cos k�x, where c is

the amplitude of the corrugation. From Eq. (22), we obtain the formulae for B1; D1; B01 and D01
for the first order approximation of the corrugation,
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B1 ¼
DB1

D1
; D1 ¼

DD1

D1
; B01 ¼

DB0
1

D01
; D01 ¼

DD0
1

D01
; ð30Þ

where the values of DB1
;DD1

;DB0
1
;DD0

1
, D1 and D01 are

DB1
¼ c

2
�l1ð1þ BÞ s2 þ k�x sin e

b1

� �
þ ð1� BÞLgs q1 þ LgD q2 � qq1 þ

k�Nx sin f

Lb2

� �� �
;

DD1
¼ c

2
�l1ð1þ BÞ s2 � qs1 þ

k�x sin e

b1

� �
� l1ð1� BÞs s1 þ LDg q2 þ k�Nx sin f

Lb2

� �� �
;

DB0
1
¼ c

2
�l1ð1þ BÞ s2 � k�x sin e

b1

� �
þ ð1� BÞLgs q01 þ LDg q2 � qq01 �

k�Nx sin f

Lb2

� �� �
;

DD0
1
¼ c

2
�l1ð1þ BÞ s2 � qs01 �

k�x sin e

b1

� �
� l1ð1� BÞs s01 þ LDg q2 � k�Nx sin f

Lb2

� �� �
;

D1 ¼ l1s1 þ Lgq1; D01 ¼ l1s01 þ Lgq01:
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From Eqs. (30) it follows that the coefficients for the first order approximation of the corru-

gation are proportional to the amplitude of the corrugated interface.

7 Particular cases

(a) When the sandy and anisotropy factors of the two media are neglected, then they become

isotropic elastic solid half-spaces. The problem then reduces to that of reflection and

refraction of SH-waves incident at a corrugated interface between two elastic half-spaces.

Plugging g ¼ 1 and N ¼ L ¼ l2 in Eqs. (4), (9) and (10), the values of s; q; sn; qn; s0n and

q0n reduce to

s ¼ i
x
b1

cos e; q ¼ i
x
b1

b2
1

b2
2

� sin2 e

 !1=2

;

sn ¼ i
x
b1

cos en; qn ¼ i
x
b1

b2
1

b2
2

� sin2 en

 !1=2

;

s0n ¼ i
x
b1

cos e0n; q0n ¼ i
x
b1

b2
1

b2
2

� sin2 e0n

 !1=2

:

The coefficients B1; D1; B01 and D01, in this case, become

B1 ¼
c

2D1
�l1ð1þ BÞ s2 þ k�x sin e

b1

� �
þ l2sq1ð1� BÞ þ l2D q2 � qq1 þ

k�x sin e

b1

� �� �
;

D1 ¼
c

2D1
�l1ð1þ BÞ s2 � qs1 þ

k�x sin e

b1

� �
� l1s s1ð1� BÞ þ l2D q2 þ k�x sin e

b1

� �� �
;

B01 ¼
c

2D01
�l1ð1þ BÞ s2 � k�x sin e

b1

� �
þ l2sq01ð1� BÞ þ l2D q2 � qq01 �

k�x sin e

b1

� �� �
;

D01 ¼
c

2D01
�l1ð1þ BÞ s2 � qs01 �

k�x sin e

b1

� �
� l1ss01ð1� BÞ þ l2D q2 � k�x sin e

b1

� �� �
;

D1 ¼ l1s1 þ l2q1; D01 ¼ l1s01 þ l2q01:

These formulae give the reflection and refraction coefficients for the first order approx-

imation of the corrugated interface between two uniform elastic half spaces. It can be

verified that by removing the sandy and anisotropy behaviors as explained above, the

boundary conditions (12) and (13) match with those of [1].

Further, if we replace the corrugated interface by a plane interface, i.e., if we put f ¼ 0 in

Eqs. (15), (16), (18) to (21), the problem reduces to that of reflection and refraction of SH-

waves incident at a plane interface z ¼ 0 between two homogeneous isotropic elastic half-

spaces. In this case, B1;D1;B
0
1 and D01 will vanish, since they are proportional to c. Setting

l1

l2
¼ m1 and b1

b2
¼ m2, the reflection and transmission coefficients at the plane interface, as

given by Eq. (17), become

B ¼
m1 cos e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 � sin2 e

q

m1 cos eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 � sin2 e

q ; D ¼ 2m1 cos e

m1 cos eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 � sin2 e

q ;

which are identical to those given in [30, p. 284] for the considered problem.
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(b) When we set g ¼ 1, the half-space H1 becomes homogeneously elastic. Thus, in this case,

plugging the values of s and q and using the relation N� ¼ N=l1 and L� ¼ L=l1, the

reflection and refraction coefficients at the plane interface B and D and at the corrugated

interface B1;D1;B
0
1 and D01 for the first order approximation of the corrugated interface

between uniform elastic and anisotropic media can be obtained from Eq. (30).

5 Energy partition equation

The expression for the energy flux for each of the incident, reflected and refracted waves is

obtained by multiplying the total energy per unit volume, which is twice the mean kinetic

energy density, by the velocity of propagation and the area of the wave front involved (see [31,

pp. 35, 166–167]). The area of the wave front is proportional to the cosine of the angle between

the normal and the vertical. Thus, using Snell’s law, Spectrum theorem and dividing the energy
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flux of the incident wave, the energy equation for the incident, regularly reflected, irregularly

reflected, regularly refracted and irregularly refracted SH-waves for the nth order approxima-

tion of the corrugation can be written as [5]

1 ¼jB2 j þ
X1

n¼1

cos en

cos e
jB2

n j þ
X1

n¼1

cos e0n
cos e

jB02n j þ
q2b2 cos f

q1b1 cos e
jD2 j

þ
X1

n¼1

q2b2 cos fn

q1b1 cos e
jD2

n j þ
X1

n¼1

q2b2 cos f 0n
q1b1 cos e

jD02n j : ð31Þ

The partition of energy at a plane interface between the sandy and anisotropic half-spaces can

be readily deduced from Eq. (31) by putting the values of the coefficients Bn;Dn;B
0
n and D0n

equal to zero, as they are proportional to the amplitude of the corrugated interface,

1 ¼jB2 j þ q2 b2
2 tan e

q1 b2
1 tan f

jD2 j :
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This relation is identical to that for the energy partition for the SH-wave incident at a plane

interface between the sandy layer and anisotropic half-spaces, given in [25] for the considered

problem.

In the present formulation, i.e., when n=1, from Eq. (31) it follows that

X6

i¼1

Ei � 1;

where E1 and E2 are the ratios of energy transmitted by the regularly reflected and refracted

waves to the energy transmitted by the incident wave. Similarly, E3;E5 and E4;E6 are ratios of

energy transmitted by irregularly reflected and irregularly refracted waves to the energy

transmitted by the incident wave for the first order approximation of the corrugation. The

energy ratios are then given by
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E1 ¼jB2 j; E2 ¼
q2b2 cos f

q1b1 cos e
j D2 j; E3 ¼

cos e1

cos e
j B2

1 j;

E4 ¼
q2b2 cos f1

q1b1 cos e
j D2

1 j; E5 ¼
cos e01
cos e

j B021 j; E6 ¼
q2b2 cos f 01
q1b1 cos e

j D021 j :

8 Numerical results and discussion

In order to study the effects of the sandy parameter, the anisotropy, the corrugation of the

interface, the frequency and the angle of the incidence on the reflection and transmission

coefficients, when a plane SH-wave is obliquely incident at the corrugated interface between the

two half spaces H1 and H2, we computed these coefficients for the model considered in Sect. 6.

For this purpose, we selected the following numerical values of the elastic parameters (see
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Chakraborty and Chandra [25]): N
l1
¼ 2:95; L

l1
¼ 2:75; q2

q1
¼ 2:5; and xc=bh1

= 0.10, where c is

the amplitude of corrugation, g ¼ 1:15, the angle of incidence e ¼ 450, and k�c = 0.00125.

(i) The effect of sandiness of the half-space H1: To study this effect on the reflection and

transmission coefficients at both the plane and corrugated interface, we selected,

g ¼ 1:00; 1:10; 1:15; 1:20 and 1:30. Figures 2 and 3 show the reflection and transmission

coefficients as functions of the angle of incidence at a plane interface between H1 and H2.

Note the significant effect g on these coefficients. Note that the values of the coefficients

decrease slowly with the increase of sandiness. Also, with the increase of the angle of

incidence (and that of the sandiness g from 1.00 to 1.15), the values of the coefficients

increase. Furthermore, when the sandiness g varies from 1.20 to 1.30, the values of the

reflection and transmission coefficients decrease considerably with the increase of the angle

of incidence.

Figures 4 to 7 depict the reflection and transmission coefficients as functions of the angle

of incidence e for the first-order approximation of the corrugated interface. The effect of
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sandiness on these coefficients is clearly visible. The values of the reflection and trans-

mission coefficients B1, B01 and D1, D01 decrease monotonically with the increase of the angle

of incidence e and increase monotonically with the increase of sandiness g. The behavior of
all these coefficients at the corrugated interface is similar. We also note from these figures

that the values of D1 and D01 are less than those of B1 and B01. However, the critical angles

are different for different values of g.
(ii) The effect of corrugation: As B and D are the reflection and transmission coefficients,

respectively, for the plane interface, it is obvious that they are independent of the corru-

gation parameter k�c. This is also clear from the analytical results shown in Eq. (17). Here,

we found that the coefficients B1, B01, D1 and D01 are strongly affected by the corrugation

k�c. Figures 8 and 9 show B1;D1;B
0
1 and D01 as functions of the corrugation k�c. Note that

the values of B1 and D1 increase with increase of k�c, while the values of B01 and D01 decrease

with increase of k�c. Also, the values of B1 and D01 are greater than those of D1 and B01.

(iii) The effect of frequency: Figures 10 to 14 show the effect of the frequency on the reflection

and transmission coefficients for both the plane and the corrugated interfaces. Note that
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the amplitude of the transmitted wave at the plane interface is greater than that of the

reflected wave at the plane interface, whereas the opposite behavior is found in the case of

the reflection and transmission coefficients for the first order approximation of corruga-

tion. Also, each coefficient B1; D1; B01 and D01 decreases with the increase of the angle of

incidence e and also increases with the increase of frequency xc=bh1
.

(iv) The effect of densities of the half-spaces H1 and H2: Figures 15 to 17 show the variation of

B; D and B1; D1 and B01; D01 with the angle of incidence e, respectively, when the density of

the upper half-space H1 increases slightly. It is found that the values of these coefficients

are affected by the variation of the density q1 of the half-space H1. The values of the

coefficients B; D and B01 increase while those of B1; D1 and D01 decrease with the increase of

density q1 of the upper half-space H1.

(v) The effect of anisotropy: Figures 18 to 20 show the variation of B; D; B1; D1;B
0
1 and D01

with the angle of incidence e for different values of the anisotropy factor N=L in the lower

half-space H2. These values are taken as N=L ¼ 1:0; 1:2 and 1:3: Note that there is a

significant effect of anisotropy of the half-space H2 on each coefficient. The values of the
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reflection and transmission coefficients at the plane interface B and D increase with in-

crease of anisotropy factor N=L. The values of the reflection coefficients B1 and B01 for the

first order approximation of the corrugation decrease with increase of anisotropy factor

N=L, while the transmission coefficients D1 and D01 for the first order approximation of the

corrugation increase with increase of the anisotropy factor N=L. The values of the re-

flection coefficients at the corrugated interface decrease with increase of the anisotropy

factor and the angle of incidence, whereas those of the transmission coefficients at the

corrugated interface decrease with the increase of the angle of incidence and decrease of

anisotropy factor.

(vi) Partition of energy: Figures 21 to 23 depict the variation of the reflected and transmitted

energy ratios of SH-waves with the angle of incidence e at the plane and the corrugated

interfaces for the first order approximation of corrugation. Note that the values of the

energy ratios of the refracted wave at the plane interface E2 are maximum in comparison

to all other energy ratios. Also, with the increase of sandiness factor of the upper half-

space H1, the values of the energy ratios of the reflected wave increase, while those of the
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refracted waves decrease. The sum of the energy ratios is found to be less than one. This is

obvious, since we are considering only the coefficients of the first order approximation of

corrugation.

9 Conclusions

Using Rayleigh’s method, the formulae for the reflection and transmission coefficients due to an

incident SH-wave at a corrugated interface separating a dry sandy layer and anisotropic elastic

semi-infinite media are obtained in closed form.

The reflection and transmission coefficients for the first order approximation of the corru-

gation given by Eqs. (22) and (23) depend on f�n and fn, i.e, on f, the amplitude of the

corrugation of the interface.
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From Eqs. (17) and (22) and numerical results we conclude that the reflection and trans-

mission coefficients strongly depend upon the sandy material, the anisotropy, the frequency and

the angle e of the incident SH-wave.

The reflection and transmission coefficients for the first order approximation of the corru-

gation are found to be affected by the sandy factor g. The effect is found least near normal

incidence. However, different critical angles occur at different values of g.
As the corrugation parameter increases, the values of B1 and D1 increase while that of B01 and

D01 decrease.

The reflection and transmission coefficients are found to be influenced by the frequency of the

incident wave. The values of each coefficient B1; D1; B01 and D01 at the corrugated interface

decrease with the increase of the angle of incidence and increase with the increase of the

frequency.

The increase of the density q1 of the upper half-space H1 has a pronounced effect on the

reflection and transmission coefficients. The values of the coefficients B; D and B01 increase with

the increase of density q1 in the upper half-space H1 while those of B1; D1 and D01 decrease with

the increase of density q1 in the upper half-space H1.
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Fig. 23. Variation of the energy ratios E5 and E6 for different sandy factors g ¼ 1:0; 1:2; 1:3, where
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There is a significant effect of the anisotropy in the lower half-space H2 on each coefficient,

whether for the plane interface or for the corrugated interface. The coefficients B1;B
0
1 decrease

with the increase of the anisotropy and the angle of incidence whereas those of D1;D
0
1 decrease

with the angle of incidence e and increase with the anisotropy.

With the increase of the sandiness parameter g in the upper half-space H1, the values of

energy ratios of the reflected waves E1;E3 and E5 increase while those of the refracted waves

E2;E4 and E6 decrease.

The problems treated by Asano [1], Savarensky [30] and Chakraborty and Chandra [25] were

obtained as particular cases.
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