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Summary. Through generalizing the method developed by the refined theory of straight beams, a refined

theory of rectangular curved beams is derived by using Papkovich-Neuber (shortened form P-N) solution

in polar coordinate system and Lur’e method without ad hoc assumptions. It is shown that the dis-

placements and stresses of the beam can be represented by four displacement functions. For the beam

under surface loads, the approximate governing differential equations are derived directly from the refined

beam theory and are almost the same as those of other well-known theoretical models. To illustrate the

application of the beam theory developed, a pure bending curved beam is examined, which indicates that

the stress expressions derived are an exact solution and are consistent with the results gained by exact beam

theory of elasticity.

1 Introduction

The curved beam theory has been studied for many years, and more and more works on curved

beams with various cross-section shapes are investigated by the following researchers, i.e.,

Timoshenko [1], Love [2], Southwell [3], Freiberger and Smith [4]. The bending theory of Euler-

Bernoulli curved beams has been well established [5]. The deflections and the stress resultants

are commonly determined using Castigliano’s theorem. These results, however, are not valid

when the curved beams are thick, because the Euler-Bernoulli theory neglects the effect of

transverse shear deformation. The more refined Timoshenko theory must be used instead.

Chianese and Erdlach [6] and Kardomateas [7] studied a plane stress problem of curved beam

with a rectangular cross-section. Using the mathematical similarity, Lim et al. [8] presented the

exact relationships between the deflections and stress resultants of Timoshenko curved beams

and that of the corresponding Euler-Bernoulli curved beams, which enable a straight conver-

sion of the familiar Euler-Bernoulli’s solutions into Timoshenko’s.

Cheng [9] gave a refined plate theory from Boussinesq-Galerkin elasticity solution and

Lur’e method [10] without ad hoc assumptions. A parallel development of Cheng’s theory by

Barrett and Ellis [11] has been obtained for the isotropic plates under transverse surface

loadings (only homogeneous cases are considered in the previous works). Wang and Shi [12],

Zhao and Wang [13] derived a new thick plate theory by using P-N solution and Lur’e

method without ad hoc assumptions, and obtained the shear theory of plates from the refined

plate theory. Recently, several extensions have been found in the rectangular beam problems

of among elastic beams [14], [15], magnetoelastic beams [16], piezoelectric beams [17] and

thermoelastic beams [18], and the refined theory of beams in the coupling fields has been

obtained. Moreover, the exact equations for the beam without transverse surface loadings
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and the approximate equations for the beam under transverse loadings are derived from the

refined beam theory, respectively.

This paper presents the theory for a curved beam of narrow rectangular cross-section by

using the straight beam method developed by Gao and Wang [14]–[18]. In the next Section,

based on elasticity theory, the refined theory of curved beams is derived by using P-N solution

in polar coordinate system and Lur’e method [10] without employing ad hoc assumptions, and

the displacements and stresses of the beam can be represented by four displacement functions.

In Sect. 3, based on the refined theory of curved beams, the approximate governing differential

equations are derived for the curved beam under surface loads. Finally, by comparing its form

with that of the known exact beam theory of elasticity, an example is examined to illustrate the

application of the refined theory.

2 Lur’e method

We consider an isotropic curved beam with a constant narrow rectangular cross-section and a

circular axis as a plane stress problem in a fixed polar coordinate system r; hð Þ, denoting by a

and b the inner and the outer radii of the boundary, and taking the width of the rectangular

cross section as unity. In the absence of body force, the equilibrium equations of the elasticity

plane stress problem expressed by displacements ur and uh are

r2 � 1

r2

� �
ur �

2

r2

@uh

@h
þ 1þ m

1� m
@H
@r
¼ 0; r2 � 1

r2

� �
uh þ

2

r2

@ur

@h
þ 1þ m

1� m
1

r

@H
@h
¼ 0; ð2:1Þ

where r2 ¼ @2=@r2 þ 1=r � @=@r þ 1=r2 � @2=@h2 is a two-dimensional Laplacian operator in

polar coordinate system, H ¼ @ur=@r þ ur=r þ 1=r � @uh=@h, and m is Poisson’s ratio.

P-N solution of the governing equations (2.1) can be obtained as

ur ¼ Pr �
1þ m

4

@

@r
P0 þ rPrð Þ; uh ¼ Ph �

1þ m
4

1

r

@

@h
P0 þ rPrð Þ; ð2:2Þ

where the functions Pr r; hð Þ, Ph r; hð Þ and P0 r; hð Þ satisfy the following equations:

@2Pr

@r2
þ 1

r

@Pr

@r
þ 1

r2
@2

h � 1
� �

Pr �
2

r2
@hPh ¼ 0;

@2Ph

@r2
þ 1

r

@Ph

@r
þ 1

r2
@2

h � 1
� �

Ph þ
2

r2
@hPr ¼ 0;

r2P0 ¼ 0;

ð2:3Þ

where @h ¼ @=@h. Based on Lur’e method [10], we treat Eqs. (2.3) as an ordinary differential

equation in r with constant coefficients, and let

Pr ¼ rkf hð Þ; Ph ¼ rkg hð Þ: ð2:4Þ

Substitution of expressions (2.4) into Eqs. (2.3) leads to two differential equations for f hð Þ and
g hð Þ

k2 þ @2
h � 1

� �
f hð Þ � 2@hg hð Þ ¼ 0; k2 þ @2

h � 1
� �

g hð Þ þ 2@hf hð Þ ¼ 0: ð2:5Þ

To obtain a solution of Eqs. (2.5), the expression

k ¼ �1� i@h
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must be fulfilled. In terms of expressions (2.4), one obtains the following symbolic solution of

Eqs. (2.3):

Pr ¼ r sin Ug1 hð Þ þ r cos Ug2 hð Þ þ r2
0

r
sin Ug3 hð Þ þ r2

0

r
cos Ug4 hð Þ;

Ph ¼ r cos Ug1 hð Þ � r sin Ug2 hð Þ � r2
0

r
cos Ug3 hð Þ þ r2

0

r
sin Ug4 hð Þ;

P0 ¼ r2
0 sin Uf3 hð Þ þ r2

0 cos Uf4 hð Þ;

ð2:6Þ

where for simplicity we have put

U ¼ ln r=r0ð Þ@h; r0 ¼
ffiffiffiffiffiffi
ab
p

: ð2:7Þ

sin U and cos U have the following symbolic expressions

sin U ¼ U� 1

3!
U3 þ 1

5!
U5 � � � � ; cos U ¼ 1� 1

2!
U2 þ 1

4!
U4 � � � � : ð2:8Þ

In the Appendix, we can show that the harmonic function P0 always can satisfy the following

expression without loss of generality:

P0 þ rPr ¼ r2 sin Ug1 hð Þ þ r2 cos Ug2 hð Þ: ð2:9Þ

Substituting Eqs. (2.6) and (2.9) into Eqs. (2.2), one obtains

ur ¼
1� m

2
r sin Ug1 �

1þ m
4

r@h cos Ug1 þ
1� m

2
r cos Ug2

þ 1þ m
4

r@h sin Ug2 þ
r2

0

r
sin Ug3 þ

r2
0

r
cos Ug4;

uh ¼ r cos Ug1 �
1þ m

4
r@h sin Ug1 � r sin Ug2

� 1þ m
4

r@h cos Ug2 �
r2

0

r
cos Ug3 þ

r2
0

r
sin Ug4:

ð2:10Þ

The angle of rotation and the deflection of the neutral surface can be found to be

w ¼ � @uh

@r

����
r¼r0

¼ � g1 �
1þ m

4
g001 �

5þ m
4

g02 þ g3 þ g04

� �
;

w

r0
¼ ur

r0

����
r¼r0

¼ � 1þ m
4

g01 þ
1� m

2
g2 þ g4;

ð2:11Þ

where the differential symbol ‘‘ 0 ’’ denotes differentiation with respect to h. Equations (2.11)
can be expressed by the following expressions:

g3 ¼ �w�w0

r0
� g1 þ

7� m
4

g02; g4 ¼
w

r0
þ 1þ m

4
g01 �

1� m
2

g2: ð2:12Þ

From Eqs. (2.12) and (2.10), the final expressions for the displacements are
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ur ¼ �
r2

0

r
sin Uwþ r2

0

r
cos U

w

r0
� r2

0

r
@h sin U

w

r0

þ 1� m
2

r � r2
0

r

� �
sin Ug1 �

1þ m
4

1

r
r2 � r2

0

� �
@h cos Ug1

þ 1� m
2

1

r
r2 � r2

0

� �
cos Ug2 þ

1þ m
4

r þ 7� m
4

r2
0

r

� �
@h sin Ug2;

uh ¼
r2

0

r
cos Uwþ r2

0

r
sin U

w

r0
þ r2

0

r
@h cos U

w

r0

þ 1

r
r2 þ r2

0

� �
cos Ug1 �

1þ m
4

1

r
r2 � r2

0

� �
@h sin Ug1

� r þ 1� m
2

r2
0

r

� �
sin Ug2 �

1þ m
4

r þ 7� m
4

r2
0

r

� �
@h cos Ug2:

ð2:13Þ

Using Hooke’s law, from Eqs. (2.13) the stress components rr, rh and srh can be indicated as

rr ¼
E

1þ m
r2

0

r2
sin Uw� r2

0

r2
@h cos Uw� r2

0

r2
cos U

w

r0
� r2

0

r2
@2

h cos U
w

r0

�

þ 1þ m
2
þ r2

0

r2

� �
sin Ug1 þ

1þ m
4
� 5þ m

4

r2
0

r2

� �
@h cos Ug1

þ 1þ m
4

1� r2
0

r2

� �
@2

h sin Ug1 þ
1þ m

2
þ 1� m

2

r2
0

r2

� �
cos Ug2

� 1þ m
4
þ 5þ m

4

r2
0

r2

� �
@h sin Ug2 þ

1þ m
4
þ 7� m

4

r2
0

r2

� �
@2

h cos Ug2

�
; ð2:14Þ

rh ¼
E

1þ m
� r2

0

r2
sin Uwþ r2

0

r2
@h cos Uwþ r2

0

r2
cos U

w

r0
þ r2

0

r2
@2

h cos U
w

r0

�

þ 1þ m
2
� r2

0

r2

� �
sin Ug1 þ

3þ 3m
4
þ 5þ m

4

r2
0

r2

� �
@h cos Ug1

� 1þ m
4

1� r2
0

r2

� �
@2

h sin Ug1 þ
1þ m

2
� 1� m

2

r2
0

r2

� �
cos Ug2

� 3þ 3m
4
� 5þ m

4

r2
0

r2

� �
@h sin Ug2 �

1þ m
4
þ 7� m

4

r2
0

r2

� �
@2

h cos Ug2

�
; ð2:15Þ

srh ¼
E

1þ m
� r2

0

r2
cos Uw� r2

0

r2
@h sin Uw

�
� r2

0

r2
sin U

w

r0
� r2

0

r2
@2

h sin U
w

r0

� r2
0

r2
cos Ug1 �

1þ m
4
þ 5þ m

4

r2
0

r2

� �
@h sin Ug1

� 1þ m
4

1� r2
0

r2

� �
@2

h cos Ug1 þ
1� m

2

r2
0

r2
sin Ug2

� 1þ m
4
� 5þ m

4

r2
0

r2

� �
@h cos Ug2 þ

1þ m
4
þ 7� m

4

r2
0

r2

� �
@2

h sin Ug2

�
; ð2:16Þ
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where E is Young’s modulus. Equations (2.13)–(2.16) are the displacement and stress expres-

sions by four displacement functions w, w, g1 and g2.

3 Transverse surface loadings

Now let us consider the case that the curved beam is subjected only to the transverse surface

loadings, i.e.
srhjr¼a;b¼ 0; rrjr¼a¼ 0; rrjr¼b¼ q: ð3:1Þ

It is well-known that Love’s curved beam theory [2] based on Euler-Bernoulli hypothesis

disregards the effects of the shear deformation. It is also known as classic curved beam theory.

The governing differential equation of Love’s curved beam theory is as follows:
D

R3
1þ @2

h

� �2
w00 ¼ �Rq; ð3:2Þ

where the flexural rigidity D and the radii of approximate neutral axis R of curved beams are

D ¼ E b� að Þ3

12
; R ¼ b� a

ln b=að Þ : ð3:3Þ

Now the governing equations of the refined beam theory will be derived. Substituting the stress
expressions in Eqs. (2.14) and (2.16) into the boundary conditions (3.1) of the beam, we get the

following equations:

e2d @hSN � CSð Þwþ e2d 1þ @2
h

� �
SN

w

r0

þ �e2dCSþ 1þ m
4
þ 5þ m

4
e2d

� �
@hSN � 1þ m

4
1� e2d
� �

@2
hCS

� �
g1

þ � 1� m
2

e2dSN þ � 1þ m
4
þ 5þ m

4
e2d

� �
@hCS� 1þ m

4
þ 7� m

4
e2d

� �
@2

hSN

� �
g2 ¼ 0;

ð3:4Þ

� e�2d CSþ @hSNð Þw� e�2d 1þ @2
h

� �
SN

w

r0

� e�2dCSþ 1þ m
4
þ 5þ m

4
e�2d

� �
@hSN þ 1þ m

4
1� e�2d
� �

@2
hCS

� �
g1

þ 1� m
2

e�2dSN þ � 1þ m
4
þ 5þ m

4
e�2d

� �
@hCSþ 1þ m

4
þ 7� m

4
e�2d

� �
@2

hSN

� �
g2 ¼ 0;

ð3:5Þ

� e2d SN þ @hCSð Þw� e2d 1þ @2
h

� �
CS

w

r0

þ � 1þ m
2
þ e2d

� �
SN þ 1þ m

4
� 5þ m

4
e2d

� �
@hCS� 1þ m

4
1� e2d
� �

@2
hSN

� �
g1

þ 1þ m
2
þ 1� m

2
e2d

� �
CSþ 1þ m

4
þ 5þ m

4
e2d

� �
@hSN þ 1þ m

4
þ 7� m

4
e2d

� �
@2

hCS

� �
g2 ¼ 0;

ð3:6Þ

e�2d SN � @hCSð Þw� e�2d 1þ @2
h

� �
CS

w

r0

þ 1þ m
2
þ e�2d

� �
SN þ 1þ m

4
� 5þ m

4
e�2d

� �
@hCSþ 1þ m

4
1� e�2d
� �

@2
hSN

� �
g1

þ 1þ m
2
þ 1� m

2
e�2d

� �
CS� 1þ m

4
þ 5þ m

4
e�2d

� �
@hSN þ 1þ m

4
þ 7� m

4
e�2d

� �
@2

hCS

� �
g2

¼ 1þ mð Þq
E

;

ð3:7Þ
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where the differential operators SN and CS are defined by

SN ¼ sin d@hð Þ; CS ¼ cos d@hð Þ; d ¼ ln
ffiffiffiffiffiffiffiffi
b=a

p
:

Equations (3.4)–(3.7) can be expressed in matrix form as

AU ¼ Q; ð3:8Þ

where the vector U ¼ w;w=r0; g1; g2½ �T, Q ¼ 0; 0; 0; 1þ mð Þq=E½ �T (the superscript ‘‘T’’ denotes

the transpose), and A is a 4� 4 differential operator matrix. The ‘‘determinant’’ of A is rep-

resented by the operator A0, there is

A0 ¼ �
1þ m

2

� �2

1þ @2
h

� �2
@2

h sinh2 2d� sin2 2d@hð Þ
@2

h

� �
: ð3:9Þ

Based on Lur’e method [10], the solutions of the preceding matrix equation are

A0 �w=r0 ¼ A�42 � 1þ mð Þq=E; A0 � w ¼ A�41 � 1þ mð Þq=E; ð3:10Þ

where A�41 and A�42 are algebraic complements of the matrix A . The expressions of A�41 and A�42

are quite complicated, such that

4

1þ m

� �2

A�42 ¼ 4e�4d@hSN � CS �2@h SN � @hCSð Þ þ CSþ @hSNð Þ 1� @2
h

� �	 


þ 2e�2d e�2d � e2d
� �

@2
h SN � @hCSð Þ 2SN � CSþ @h CS2 � SN2

� �	 

þ e�2d e�2d � e2d

� �
@h �4SN � CS2 1þ @2

h

� �
� @h CS� @hSNð Þ 1� @2

h

� �	 


þ 4e�2d@hSN � CS @h CSþ @hSNð Þ 1þ @2
h

� �
� 2

1� m
1þ m

SN � @hCSð Þ 1þ @2
h

� �� �

e�2d � e2d
� �

@h 1þ @2
h

� �
�2

1� m
1þ m

CS SN þ @hCSð Þ � @h CS� @hSNð Þ
� �

:

Equations (3.10) are the exact governing equations for the curved beam subjected to the trans-

verse surface loadings. Since these equations are of infinite order, however, it is not applicable in

most cases. Accordingly, the infinite-order governing equation should be truncated to a finite

order. Of course the higher order terms are included in Eqs. (3.10), the higher precision would be

obtained.

For the refined theories of rectangular plates and beams [12], [15], the same exact governing

equations have been established. In order to compare their forms with those of other well-known

straight plate and beam theories, certain approximate manipulations need to be made. If these

governing equations are accurate up to the second-order terms with respect to plate or beam

thickness, then they are almost the same as those of Reissner plate theory or Timoshenko beam

theory. Furthermore, these equations are consistentwith those ofKirchhoffplate theory orEuler-

Bernoulli beam theory if all the terms containing plate or beam thickness are omitted.

The approximate manipulation given in rectangular plates and beams [12], [15] still holds good

in curved beams, while the infinite-order terms in Eqs. (3.10) are associated with d, but not beam
thickness. Using the Taylor series of the trigonometric functions in Eqs. (2.8), and then dropping

all the terms associated with d4 or higher orders, we arrive at the following equations:

2Ed3

3
1þ @2

h

� �2
w00 ¼ �r0q 1� dþ 1

2

11

3
� m

� �
d2 � 1

2

3

5
� m

� �
d3

� �
;

2Ed3

3
1þ @2

h

� �2
w0 ¼ �q 1� dþ 4

3
d2 � 1

3
d3

� �
:

ð3:11Þ
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Love’s beam theory is applicable to only thin or slender beams and should not be applied to

thick or deep beams, since it is based on the normality assumption of plane sections which are

to remain plane and normal to the deformed centreline of the curved beam, implying that the

effect of transverse shear deformation is neglected. In order to come to Love’s result, we

consider a slender curved beam with d� 1 . Therefore, the terms containing d in the right side

of Eqs. (3.11) are omitted in this case, then Eqs. (3.11) reduce to

2Ed3

3
1þ @2

h

� �2
w00 ¼ �r0q;

2Ed3

3
1þ @2

h

� �2
w0 ¼ �q: ð3:12Þ

Equations (3.12) form the governing equations for an approximate theory for curved beams

under transverse loadings.

From expressions (3.3), Eqs. (3.12) are similar to the governing differential equation (3.2) of

Love’s curved beam theory. However, the two approaches are appreciably different, the

coefficient of the right part of Eqs. (3.12) is r0, but not R . For this problem, both of the beam

theories equally overestimate the radii of neutral axis of curved beams less than 2% if

a < b < 2a . So r0 can be the radii of the neutral axis of narrow curved beams, the approximate

governing differential equations of new curved beam theory are almost the same as those of

classical curved beam theory [2].

4 Pure bending of curved beams

Considering a circular axis bent in the plane of curvature by couples M applied at the ends of a

curved beam. In this case, the bending moment is constant along the length of the beam, and

the stress distribution is the same in all radial cross sections. The boundary conditions are

srh r¼a;b

�� ¼ 0; rr r¼a;b

�� ¼ 0;

Zb

a

rhdr ¼ 0;

Zb

a

rhrdr ¼ �M: ð4:1Þ

Conditions (4.1) indicate that the convex and concave boundaries of the beam are free from

normal and tangential forces, and the normal stresses at the ends give rise to the couple M only,

so the stress functions depend on r only. We assume that the functions w, w, g1 and g2 are

w ¼ a1hþ a0; w ¼ b0r0; g1 ¼ c1hþ c0; g2 ¼ d0; ð4:2Þ

where the coefficients a0, a1, b0, c0, c1 and d0 are unknown constants to be determined later.

Substitution of Eqs. (4.2) into Eqs. (2.14)�(2.16) yields

rr ¼
E

1þ m
r2

0

r2
ln

r

r0
a1 �

r2
0

r2
a1 �

r2
0

r2
b0 þ

1þ m
2
þ r2

0

r2

� �
ln

r

r0
c1

�

þ 1þ m
4
� 5þ m

4

r2
0

r2

� �
c1 þ

1þ m
2
þ 1� m

2

r2
0

r2

� �
d0

�
;

rh ¼
E

1þ m
� r2

0

r2
ln

r

r0
a1 þ

r2
0

r2
a1 þ

r2
0

r2
b0 þ

1þ m
2
� r2

0

r2

� �
ln

r

r0
c1

�

þ 3þ 3m
4
þ 5þ m

4

r2
0

r2

� �
c1 þ

1þ m
2
� 1� m

2

r2
0

r2

� �
d0

�
;

srh ¼
E

1þ m
� r2

0

r2
a1hþ a0ð Þ � r2

0

r2
c1hþ c0ð Þ

� �
:

ð4:3Þ
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On substituting Eq. (4.3.3) into boundary condition (4.1.1), we obtain

a1 ¼ �c1; a0 ¼ �c0: ð4:4Þ

From Eqs. (4.4) and (4.3), the final expressions for the stress components can be indicated as

rr ¼
E

1þ m
r2

0

r2
�b0�

1þ m
4

c1þ
1� m

2
d0

� �
þ 1þ2 lnrð Þ1þ m

4
c1þ

1þ m
2

d0� lnr0c1ð Þ
� �

;

rh ¼
E

1þ m
�r2

0

r2
�b0�

1þ m
4

c1þ
1� m

2
d0

� �
þ 3þ 2 lnrð Þ1þ m

4
c1þ

1þ m
2

d0� lnr0c1ð Þ
� �

;

srh ¼ 0:

ð4:5Þ

These expressions constitute an exact solution of the problem only when the normal forces at

the ends of curved beams are distributed in the manner given by Eqs. (4.5.2). For any other

distribution of forces the stress distribution near the ends will be different from that given by

solution (4.5), but at larger distances this solution may still be valid. Therefore, in the cases

where Saint-Venant’s principle holds, the refined theory of curved beams should be a very

accurate one. More importantly, Eqs. (4.5) are identical with the corresponding results deduced

by Timoshenko and Goodier [19], if the coefficients of Eqs. (4.5) are replaced by the coefficients

A, B and C of the exact theory of curved beams [19], such that

E

1þ m
�r2

0b0 �
1þ m

4
r2

0c1 þ
1� m

2
r2

0d0

� �
¼ A;

E

4
c1 ¼ B;

E

4
d0 � ln r0c1ð Þ ¼ C: ð4:6Þ

So Eqs. (4.5) are changed into the corresponding results [19], which take the form

rr ¼ �
4M

N

a2b2

r2
ln

b

a
þ b2 ln

r

b
þ a2 ln

a

r

� �
;

rh ¼ �
4M

N
�a2b2

r2
ln

b

a
þ b2 ln

r

b
þ a2 ln

a

r
þ b2 � a2

� �
;

srh ¼ 0;

ð4:7Þ

where

N ¼ b2 � a2
� �2�4a2b2 ln

b

a

� �2

:

Similarly, for the cases of bending of curved beams by a horizontal load and a vertical load at

the end, we can choose an appropriate form of functions w, w, g1 and g2, whereby the stress

solutions of new beam theory are again transformed into those of exact beam theory of elas-

ticity.

5 Conclusion

In the above Sections, a refined theory of curved beams has been deduced systematically and

directly from elasticity theory by using P-N solution in polar coordinate system and Lur’e

method without ad hoc assumptions, and the displacements and stresses of the beam can be

represented by four displacement functions. For the beam under surface loads, the exact

governing differential equations are derived by using the refined theory of curved beams. By

omitting the higher order terms, the approximate governing differential equations of the refined

beam theory are almost the same as those of Love’s curved beam theory. For the pure bending
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curved beam, noticeably the stress expressions derived are consistent with the results gained by

elasticity. By comparing their forms with that of other well-known beam theories, such as

Love’s curved beam theory and exact curved beam theory, the new curved beam theory should

be a very accurate one, and can be degenerated or transformed into these curved beam theories.

Appendix

The method used in this Appendix is obtained by extending our previous work [16]. Next we

will prove that when P0 is defined according to Eq. (2.9), the general solution (2.2) is complete

without loss of generality.

First, from the nonuniqueness of P-N solution, Pr and P0 in Eqs. (2.2) can be changed to ~Pr

and ~P0, respectively, and

~Pr ¼ Pr þ
@A

@r
; ~P0 ¼ P0 þ

4

1þ m
A� r

@A

@r
; ðA:1Þ

in which Pr and P0 have the form of expressions (2.6), and A r; hð Þ is a harmonic function.

Therefore, we can set

A ¼ r2
0 sin Ua1 hð Þ þ r2

0 cos Ua2 hð Þ: ðA:2Þ

Now we come to prove that it is always possible to choose two functions a1 and a2 in Eq. (A.2)

so that Eq. (2.9), i.e.

~P0 þ r~Pr ¼ r2 sin U~g1 hð Þ þ r2 cos U~g2 hð Þ ðA:3Þ

may hold, in which

~g1 ¼ g1; ~g2 ¼ g2: ðA:4Þ

Substituting Eqs. (A.1) and (A.4) into Eq. (A.3), we get the following expression:

P0 þ
4

1þ m
Aþ rPr ¼ r2 sin Ug1 þ r2 cos Ug2: ðA:5Þ

Then inserting Eqs. (2.6) into Eq. (A.5), it will be seen that

A ¼ � 1þ m
4

r2
0 sin U g3 þ f3ð Þ � 1þ m

4
r2

0 cos U g4 þ f4ð Þ: ðA:6Þ

From expression (A.6) we know Eq. (A.3) holds when the expressions

a1 ¼ �
1þ m

4
g3 þ f3ð Þ; a2 ¼ �

1þ m
4

g4 þ f4ð Þ ðA:7Þ

in Eq. (A.2) are fulfilled.

For convenience ~Pr and ~P0 will still be written as Pr and P0, respectively. Thus Eq. (2.9)

holds. Consequently, if P0 is taken according to Eq. (2.9), the general solutions (2.2) hold

without loss of generality.
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