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Summary. In this paper, the change of the elastic fields induced by the interface energies and the interface

stresses from the reference configuration to the current configuration is considered. It is emphasized that

the governing equations taking into account the interface energy effect should be established within the

framework of finite deformation in the first place, and then the approximations of governing equations for

a finitely deformed multi-phase elastic medium by an infinitesimal strain analysis can be formulated. Hence

it can be seen that the asymmetric interface stress has to be used in the Young-Laplace equation.

According to the above mentioned formalism, analytical expressions of the size-dependent effective moduli

of a particle-filled composite material with interface energy effect are derived. It is shown that, different

from the results obtained by previous researchers, the liquid-like surface/interface tension, as a residual

stress-type term, also influences the effective property of the composite.

1 Introduction

The concept of surface free energy in solids was first introduced by Gibbs [1]. Since then this

concept was further developed by many researchers (e.g., [2]–[12]). As the characteristic size of a

solid approaches the nano-scale, for instance, for nano-size structures and nanocomposites, the

surface/interface energy effect on its mechanical and physical properties becomes substantial and

thus needs to be taken into account in the deformation analysis. In this regard, two kinds of

fundamental equations are necessary in the solution of boundary-value problems for stress fields

with surface/interface effect. The first is the surface/interface constitutive relations, and the

second is the discontinuity conditions of the stress across the interface, namely, the Young-

Laplace equations. The above fundamental equations can be used to predict the effective moduli

of a composite material with surface/interface energy effect. However, even if an infinitesimal

analysis is employed, these equations should be established within the framework of finite

deformation in the first place. The reasons for this are: (i) In the study of the mechanical

behavior of a composite material or a structure, what we are concerned with is the mechanical

response from the reference configuration to the current configuration. During the deformation

process, the size and the shape of the interface will change, hence the curvature tensor in the

governing equations will change, too. This means that the deformation will change the residual
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elastic field induced by the interface energy, and the effect of the interface energy manifests itself

precisely through the change of the residual elastic field due to the change of configuration.

Therefore, this is essentially a finite deformation problem. (ii) For the interface energy model,

there should be a residual elastic field due to the presence of the interface energy (and the

interface stress) in the material, even though there is no external loading. Thus, by taking into

account the change of the residual elastic field due to the change of configuration, the influence

of the liquid-like surface tension on the effective properties of a composite material can also be

included. In this paper, we will focus on the discussions of the interface energy model. (iii)

Recently, Huang andWang [13] derived the constitutive relations for hyperelastic solids with the

surface/interface energy effect at finite deformation. These constitutive relations are expressed in

terms of the free energy of the interface per unit area at the current configuration, denoted by c.
In particular, for an isotropic interface, c can be written as a function of J1 and J2, where

J1 ¼ tr Us ¼ tr Vs; J2 ¼ det Us ¼ det Vs ð1Þ

and Us and Vs are the right and left stretch tensors of the interface,respectively. In the case of

small deformation, the interface strain can be approximately expressed as

Es ¼
1

2
ur0s þr0suð Þ ¼ Us � i0; ð2Þ

where r0s is the surface gradient operator on the reference configuration j0. ur0s is the

displacement gradient of the interface, and i0 is the second-rank identity tensor in the tangent

plane of the interface in the reference configuration. Thus, Eq. (1) can be written as

J1 ¼ 2þ tr Es; J2 ¼ 1þ tr Es þ det Es: ð3Þ

For an isotropic interface, it can be shown that when the deformation is small, the interface

Piola-Kirchhoff stresses of the first and second kind can be expressed as

Ss ¼ J2
@c
@J1
þ J2

@c
@J2
þ c

� �
i0 þ J2

@c
@J1

Es � J2
@c
@J1
þ J2

@c
@J2
þ c

� �
r0suð Þ; ð4Þ

Ts ¼ J2
@c
@J1
þ J2

@c
@J2
þ c

� �
i0 � J2

@c
@J1
þ 2J2

@c
@J2
þ 2c

� �
Es; ð5Þ

and the Cauchy stress of the interface can be given by

rs ¼
@c
@J1
þ J2

@c
@J2
þ c

� �
i0 þ

@c
@J1

Es: ð6Þ

Therefore, even if the infinitesimal deformation approximation is used, Ss, Ts and the Cauchy

stress of the interface rs are not the same.This situation is completely different from that in the

three dimensional analysis in classical elasticity, in which there is no residual stress in

the reference configuration. This means that in the study of the interface energy effect on the

mechanical properties of a heterogeneous material, only starting from a finite deformation

theory can we correctly choose an appropriate infinitesimal interface stress to be used in the

governing equations.

In the following, we shall derive the approximate expressions of the changes of the

interface stress and the Young-Laplace equation due to the change of configuration under

infinitesimal deformation. As an application of the present theory, we also give the analytical

expressions for the effective moduli of a particle-reinforced composite. It is shown that a

liquid-like surface/interface tension also affects the effective moduli, which has not been

discussed in the literature.
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2 Infinitesimal deformation approximation

It is well known that in the infinitesimal analysis in classical elasticity, the governing equations,

such as the equilibrium equations, are based on one configuration. However, in order to study

the interface energy effect, the residual elastic field induced by the interface energy should be

taken into account. As was mentioned before, in the study of the macroscopic response of a

composite material or a structure, we are usually not interested in the interface induced residual

elastic field itself in the reference configuration or in the current one, but the change of this

residual elastic field from the former to the latter. Obviously, the difference of the Cauchy stress

(in the bulk material as well as at the interface) based on Eulerian description can not be used to

describe this change. This is because after and before deformation, the Cauchy stresses are not

in the same configuration, so they are not comparable. Hence the Lagrangian description is

preferable. The generalized Young-Laplace equation based on the Lagrangian description was

given by Huang and Wang [13], and can be expressed in terms of the interface Piola-Kirchhoff

stress of the first kind as follows:

N � S0
� �� �

�N ¼ �Ss : b0;

P0 � S
0

� �� �
�N ¼ �Ss � r0s;

ð7Þ

where the symbol �½ �½ � denotes the discontinuity of a quantity across the interface, S0 is the first

kind Piola-Kirchhoff stress in the bulk material. P0 ¼ I�N�N, and I is the unit tensor in

three-dimensional space. N is the unit normal vector to the interface in the reference config-

uration j0. b0 is the curvature tensor of the interface in j0.

It is seen that the change of the residual elastic field induced by the interface energy can be

described by the difference of the above equation, which gives

N � DS0
� �� �

�N ¼ �DSs : b0;

P0 � DS0
� �� �

�N ¼ �DSs � r0s;
ð8Þ

where D denotes the difference of the quantities between the current and reference configura-

tions. The above discussion indicates that in order to take into account the interface energy

effect correctly, the interface Piola-Kirchhoff stress of the first kind Ss should be utilized in the

analysis. This is the key point of the present paper, and it seems to be ignored by previous

researchers in the study of the effective properties of a heterogeneous material with interface

energy effect.

Now an infinitesimal deformation approximation can be performed as follows. In the case of

infinitesimal deformation, DS0 in Eq. (8) can be approximated by the difference of the bulk

Cauchy stress between the current and reference configurations, and Ss can be expressed in terms

of the free energy of the interface c by Eq. (4). In order to simplify the discussion, we can further

linearize the expression of the interface free energy. For this, c will be expanded as follows:

c ¼ c0 þ c1 J1 � 2ð Þ þ c2 J2 � 1ð Þ þ 1

2
c11 J1 � 2ð Þ2 þ c12 J1 � 2ð Þ J2 � 1ð Þ þ 1

2
c22 J2 � 1ð Þ2 þ . . .:

ð9Þ

In the above expression, c0 is equivalent to the surface tension of a liquid-like material. J1 � 2

and J2 � 1 are first-order small quantities. If we only keep the first-order small quantities in

Eq. (4) and neglect higher-order small quantities, then from

J2
@c
@J1
þ J2

@c
@J2
þ c

� �
¼ c�0 þ c�0 þ c�1

� �
tr Es ð10Þ
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and

J2
@c
@J1
¼ c1 þ c0 þ c11 þ c12ð Þtr Es ð11Þ

we have

Ss ¼ c�0i0 þ c�0 þ c�1
� �

tr Esð Þi0 � c�0r0suþ c1Es; ð12Þ

rs ¼ c�0i0 þ c�1 tr Esð Þi0 þ c1Es; ð13Þ

where c�0 ¼ c0 þ c1 þ c2; c�1 ¼ c1 þ 2c2 þ c11 þ 2c12 þ c22. Gurtin and Murdoch [5] have also

previously derived a similar expression by assuming that the interface stress is an isotropic

linear function of the interface strain. Here, we have derived the interface stress in terms of

the interface energy, and will emphasize the change of the interface stress due to the change

of configuration in the following discussion. We also apply this theoretical framework to

predict the effective moduli of heterogeneous media with the interface energy effect. In the

reference configuration j0, the ‘‘residual’’ Piola-Kirchhoff stress of the first kind of the

interface is given by

Ssj0¼ c�0i0: ð14Þ

So, in the case of infinitesimal deformation, the difference of the interface Piola-Kirchhoff stress

of the first kind between the current and reference configurations, DSs, can be expressed as

DSs ¼ c�0 þ c�1
� �

tr Esð Þi0 � c�0r0suþ c1 Es: ð15Þ

It can be seen that, in general, at least three independent material parameters c�0, c�1 and c1

are needed in the above equation. Only for some special cases, for example, a spherical

inhomogeneity embedded in an infinite matrix material subjected to axisymmetric loading, can

r0su be expressed as a symmetric second-order tensor in two-dimensional space. Then Eq. (15)

becomes

DSs ¼ c�0 þ c�1
� �

tr Esð Þi0 � c�0 � c1

� �
Es: ð16Þ

The right hand side of the above expression can be formally written as ks trEsð Þi0 þ 2lsEs,

where ks and ls are called interface moduli, which are given by

ks ¼ c�0 þ c�1;

ls ¼ �
1

2
c�0 � c1

� �
¼ � 1

2
c0 þ c2ð Þ:

ð17Þ

It is interesting to note that in some cases ls may be negative. This is because in general the

surface/interface energy c0 at j0 is positive, since otherwise a liquid or a solid would gain energy

upon fragmentation (e.g., [9, page 595]), and c2 is the change rate of the interface energy due to

the change of the interface area, and the negative ls has been confirmed by Shenoy [14] in his

atomistic calculations. Substituting DSs in Eq. (15) or (16) into Eq. (8) yields the discontinuity

conditions of the traction across the interface in the reference configuration j0. These dis-

continuity conditions, together with other governing equations, can be used to predict the

macroscopic mechanical response of composites with the interface energy effect.

3 Effective moduli of a particle-filled composite

As an illustrative example of the above theoretical framework, in this section, we study the

effective properties of a composite reinforced by spherical particles. There have been many
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models in classical micromechanics which can be used to predict effective moduli of composites

(e.g., [15]–[18]). There also have been many works for inhomogeneities with imperfect interface

bonding conditions or interface effects (e.g., [19]–[24]). Previously, Sharma and Ganti [25] have

calculated the effective bulk moduli of spherical particle-filled composites with the interface

effect using the composite spheres assemblage model (CSA, [26]), and Duan et al. [23] have

calculated the effective bulk and shear moduli of such composites using the composite spheres

assemblage model, the Mori-Tanaka method (MTM, [27]) and the generalized self-consistent

method (GSCM, [28]). The difference between the present work and those of Sharma and Ganti

[25] and Duan et al. [23] is that here, starting from the finite deformation theory proposed by

Huang and Wang [13], we have derived the infinitesimal deformation approximations of the

interface constitutive relation and the Lagrangian description of the Young-Laplace equation

by considering the change of configuration. Hence we can explicitly demonstrate the necessity

of using the asymmetric interface stress in the Young-Laplace equation and show the influence

of the residual surface/interface tension c�0 on the effective elastic moduli. For the present

inhomogeneity problem with the interface energy effect, if we take the inhomogeneity together

with the interface as an ‘‘equivalent inhomogeneity’’, then the micromechanical schemes for

two-phase composites are readily applicable. In this case, the volume averages of the stress and

strain for the ‘‘equivalent inhomogeneity’’ must be calculated on the matrix side due to the

discontinuity of the stress across the interface. Therefore, the key point is how to derive the

stress discontinuity conditions across the interface correctly. This paper takes into account

the change of the interface stress in Eq. (8) and Eq. (15) due to the change of configuration, and

the interface moduli are directly related to the parameters of the interface energy, thus pro-

viding an in-depth understanding of the interface energy effect.

Now consider a two-phase composite composed of a matrix and randomly distributed

spherical inhomogeneities. The radius of the inhomogeneity is assumed to be a. The effective

stiffness tensor of the composite can be expressed as

�L ¼ L0 þ f L� � L0ð Þ : A; ð18Þ

where L0 and L� are the stiffness tensors of the matrix and the ‘‘equivalent inhomogeneity’’ (i.e.,

an inhomogeneity together with the interface), f is the volume fraction of the inhomogeneities,

and A denotes the fourth-order strain concentration tensor of the equivalent inhomogeneity. If

we use the Mori-Tanaka approximation method (e.g., [29]), then A is given as

A ¼ A0 : 1� fð ÞI 1ð Þ þ fA0
h i�1

; ð19Þ

where I 1ð Þ is the fourth-order unit tensor, and A
0 is the strain concentration tensor of the

equivalent inhomogeneity in an infinite matrix corresponding to dilute distribution of inho-

mogeneities. If the matrix and particles are all isotropic and the inhomogeneities are randomly

distributed, then the composite material is statistically isotropic and the elastic moduli in

Eq. (18) can be written as

�L ¼ 3 �KIm þ 2�lIs;

L0 ¼ 3K0Im þ 2l0Is;

L� ¼ 3K�Im þ 2l�Is;

ð20Þ

where K0, K� and �K are the bulk moduli of the matrix, the equivalent inhomogeneity and the

composite, respectively. l0, l� and �l are shear moduli of the matrix, the equivalent inhomo-

geneity and the composite, respectively. Im ¼ 1
3
I� I, Is ¼ I 1ð Þ � Im. Eq. (18) can be further

decoupled into
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�K ¼ K0 þ f K� � K0ð ÞAm;

�l ¼ l0 þ f l� � l0ð ÞAs;
ð21Þ

where Am and As are the constants in the strain concentration tensors corresponding to the bulk

and shear moduli, respectively. They are given by

Am ¼
K0

K0 þ 1� fð Þ K� � K0ð Þxm

; As ¼
l0

l0 þ 1� fð Þ l� � l0ð Þxs

; ð22Þ

where

xm ¼
3K0

3K0 þ 4l0

; xs ¼
6 K0 þ 2l0ð Þ

5 3K0 þ 4l0ð Þ : ð23Þ

It can be seen that the key point is to calculate the elastic moduli K� and l� of the equivalent

inhomogeneity. To this end, Eqs. (8) and (15) are needed. For the spherical inhomogeneity of

radius a, r0su can be expressed in terms of the physical components (ur, uh, uu) in a spherical

polar coordinate system

r0su ¼
@uh

r@h
þ ur

r

� �
eh � eh þ

@uu

r@h

� �
eh � eu þ

1

r sin h
@uh

@u
� cot h

uu

r

� �
eu � eh

þ 1

r sin h
@uu

@u
þ cot h

uh

r
þ ur

r

� �
eu � eu: ð24Þ

For axisymmetric loading, uu ¼ 0, and ur and uh are not dependent on u, hence r0su is a

symmetric tensor:

r0su ¼
@uh

r@h
þ ur

r

� �
eh � eh þ cot h

uh

r
þ ur

r

� �
eu � eu: ð25Þ

In this case, Eq. (15) can be replaced by Eq. (16). Noting that in the reference configuration, the

curvature tensor on the surface of the sphere with radius a is

b0 ¼ �
1

a
i0; ð26Þ

Eq. (8) can be written as

rrr½ �½ �jr¼a ¼
1

a2
c�0 þ 2c�1 þ c1

� �
2ur þ uh cot hþ @uh

@h

� �				
r¼a

;

rrh½ �½ �jr¼a ¼
1

a2
c�0 þ c�1
� �

uh þ c�1 þ c1

� �
uh cot2 h� @

2uh

@h2
� @uh

@h
cot h

� �


� c�0 þ 2c�1 þ c1

� � @ur

@h

�				
r¼a

: ð27Þ

In order to calculate the bulk modulus K� of the equivalent inhomogeneity, let us consider the

inhomogeneity problem where a spherical inhomogeneity is embedded in an infinite medium

under a hydrostatic loading with the remote strain

E1 ¼ 1

3
EmI: ð28Þ

In this case, the displacement and stress fields in the inhomogeneity and matrix are given by

ui
r ¼ Fir þ Gi=r

2;

ri
rr ¼ 3KiFi � 4liGi=r

3:
ð29Þ
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The superscript i ¼ 1; 0 denotes the quantities of the inhomogeneity and matrix, respectively,

F1, F0, G1 and G0 are constants to be determined. In addition to the displacement continuity

condition at the interface r ¼ a, the elastic solution needs to satisfy the stress discontinuity

condition in Eq. (27), that is,

r0
rr � r1

rr

� �		
r¼a
¼ 2

a2
c�0 þ 2c�1 þ c1

� �
urjr¼a

� �
: ð30Þ

From the above conditions, the non-singular condition at the origin and the condition at

infinity, the constants in Eq. (29) can be determined and thus the bulk modulus K� of the

equivalent inhomogeneity can be given by

K� ¼
tr r�h i
3tr e�h i

				
r¼a

¼ K1 þ
2 c�0 þ 2c�1 þ c1

� �
3a

: ð31Þ

In the above expression, r�h i and e�h i represent the volume averages of the stress and strain of

the equivalent inhomogeneity that includes the inhomogeneity and the interface.

The shear modulus l� of the equivalent inhomogeneity can be calculated by imposing a pure

deviatoric remote strain at infinity,

E1 ¼ Ee e3 � e3 �
1

2
e1 � e1 þ e2 � e2ð Þ


 �
; ð32Þ

where e1, e2 and e3 are the base vectors in a rectangular Cartesian coordinate system. From the

solution of Lur’e [30], the displacement and stress fields in the inhomogeneity and matrix can be

expressed by

u1
r ¼ 12m1Ar3 þ 2Br

� �
P2 cos hð Þ;

u0
r ¼ Eer þ

2 5� 4m0ð Þ
r2

C� 3

r4
D

� �
P2 cos hð Þ;

u1
h ¼ 7� 4m1ð ÞAr3 þ Br

� �dP2 cos hð Þ
dh

;

u0
h ¼

1

2
Eer þ

2� 4m0ð Þ
r2

Cþ 1

r4
D


 �
dP2 cos hð Þ

dh
;

r1
rr ¼ 2l1 �6m1Ar2 þ 2B

� �
P2 cos hð Þ;

r0
rr ¼ 2l0 Ee �

4 5� m0ð Þ
r3

Cþ 12

r5
D


 �
P2 cos hð Þ;

r1
rh ¼ 2l1 7þ 2m1ð ÞAr2 þ B

� �dP2 cos hð Þ
dh

;

r0
rh ¼ 2l0

1

2
Ee þ

2 1þ m0ð Þ
r3

C� 4

r5
D


 �
dP2 cos hð Þ

dh
:

ð33Þ

The superscripts 1 and 0 denote the quantities of the inhomogeneity and matrix, respectively. m1

and m0 are Poisson ratios of the inhomogeneity and matrix, respectively. P2 cos hð Þ is the second-
order Legendre polynomial. A, B, C and D are constants to be determined. Again, in addition to

the displacement continuity condition at the interface r ¼ a, the elastic solution needs to satisfy

the stress discontinuity condition in Eq. (27). Then, the unknown constants can be determined

Heterogeneous material with interface energy effect 157



in a way similar to that for the bulk modulus. The shear modulus l� of the equivalent inho-

mogeneity can be given by

l� ¼
r�h ie

3 e�h ie

					
r¼a

¼ l1Lþ L0 þ L1 þ L2

Lþ L3
;

L ¼ 10 4l0 7� 10m1ð Þ þ l1 7þ 5m1ð Þ½ �;

L0 ¼ 5 4l0 10m1 � 7ð Þ þ 3l1 7� 15m1ð Þ½ � c�0 � 2c1 � c�1
� �

=a;

L1 ¼ 12l0 10m1 � 7ð Þ þ 5l1 91� 139m1ð Þ½ � c1 þ c�1
� �

=a;

L2 ¼ 10 10m1 � 7ð Þ c�0 � 2c1 � c�1
� �2þ 3 c1 þ c�1

� �2þ 4 c�0 � 2c1 � c�1
� �

c1 þ c�1
� �h i

=a2;

L3 ¼ �4 10m1 � 7ð Þ 5c�0 þ 7c1 þ 12c�1
� �

=a;

ð34Þ

where r�h ie and e�h ie are the effective average stress and the effective average strain of the

equivalent inhomogeneity, respectively.

It can be easily seen that K� and l� are not only functions of the elastic moduli of the

inhomogeneity, but also the functions of the size of it. Substituting the obtained K� and l� into
Eq. (21), we obtain the analytical expressions of the effective moduli �K and �l of the composite:

�K ¼ 1

3

12K0l0 1� fð Þ þ 3K1 3K0 þ 4l0 fð Þ þ 2 3K0 þ 4l0 fð Þ c�0 þ 2c�1 þ c1

� �
=a

3K0 f þ 4l0 þ 3K1 1� fð Þ þ 2 1� fð Þ c�0 þ 2c�1 þ c1

� �
=a

" #
; ð35Þ

�l ¼ l0 þ
15l0 f 1� m0ð Þ l1 � l0ð ÞL� l0L3 þ L0 þ L1 þ L2½ �

1� fð Þ LL4 þ 10 L5 þ L6ð Þ þ 2 4� 5m0ð ÞL2½ � þ 15l0 f 1� m0ð Þ Lþ L3ð Þ ;

L4 ¼ 2l1 4� 5m0ð Þ þ l0 7� 5m0ð Þ;

L5 ¼ 2l0 7� 10m1ð Þ 5m0 � 1ð Þ � 3l1 15m1 � 7ð Þ 4� 5m0ð Þ½ � c�0 � 2c1 � c�1
� �

=a;

L6 ¼ 2l0 7� 10m1ð Þ 19� 11m0ð Þ þ l1 91� 139m1ð Þ 4� 5m0ð Þ½ � c1 þ c�1
� �

=a:

8>>>>>>>><
>>>>>>>>:

ð36Þ

It is noted that the above effective bulk modulus can also be obtained by using the composite

sphere assemblage model (e.g., [31]).

4 Discussion

In the following, we discuss two special cases, namely, the effective moduli of a porous material

containing nano-voids and a two-phase composite where the interface is liquid-like. First, for

the porous material containing spherical nano-voids, the effective moduli are

�Kvoid ¼
1

3

12K0l0 1� fð Þ þ 2 3K0 þ 4l0 fð Þn3

3K0 f þ 4l0 þ 2 1� fð Þn3


 �
; ð37Þ

�lvoid ¼
l0

2

4 1� fð Þm1l2
0 þ 4 2m2 � fm1ð Þl0n1 þ 42m4l0n2 þ m1 f þ 2m3ð Þn2n3

2 2fm3 þm1ð Þl2
0 þ 4 fm3 þm2ð Þl0n1 þ 21m4l0n2 þ 1� fð Þm3n2n3


 �
;

m1 ¼ 7� 5m0; m2 ¼ 5� 4m0; m3 ¼ 4� 5m0; m4 ¼ 1� m0;

n1 ¼ c�0 þ c�1
� �

=a; n2 ¼ c1 � c�0
� �

=a; n3 ¼ c�0 þ 2c�1 þ c1

� �
=a:

8>>>>><
>>>>>:

ð38Þ
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Second, if the interface of a two-phase composite containing spherical inhomogeneities be-

haves like that of a liquid, namely, c�0 ¼ c0, c�1 ¼ c1 ¼ 0, then the effective moduli of the

composite are

�K c0ð Þ ¼
1

3

12K0l0 1� fð Þ þ 3K1 3K0 þ 4l0 fð Þ þ 2 3K0 þ 4l0 fð Þc0=a

3K0 f þ 4l0 þ 3K1 1� fð Þ þ 2 1� fð Þc0=a


 �
; ð39Þ

�l c0ð Þ ¼ l0 þ
15l0 f 1� m0ð Þ l1 � l0ð ÞL� l0L�3 þ L0 þ L1 þ L�2

� �
1� fð Þ LL4 þ 10L5 þ 2 4� 5m0ð ÞL�2

� �
þ 15l0 f 1� m0ð Þ Lþ L�3

� � ;

L�2 ¼ 10 10m1 � 7ð Þc2
0=a

2;

L�3 ¼ �20 10m1 � 7ð Þc0=a:

8>>>>>><
>>>>>>:

ð40Þ

This means that the surface/interface tension c0 does affect the effective moduli of the com-

posite.

In order to compare the above results with those obtained by other interface models, let

us consider an interface with the following properties: The displacement across the interface

is continuous, but the traction is allowed to have a discontinuity across the interface;

moreover, we assume that there is no residual elastic field induced by the interface tension

when the material is not subjected to any external loading. This kind of interface can

also be regarded as an equivalency of a thin and stiff interphase (e.g., [20], [32]).

Under infinitesimal deformation, the constitutive relation of the above interface can be

written as

rs ¼ k0s trEsð Þi0 þ 2l0sEs: ð41Þ

It can be seen that Eq. (41) can be obtained directly by setting c�0 ¼ 0 in Eqs. (12), (13) and

(17), with

k0s ¼ c�1; l
0
s ¼

1

2
c1: ð42Þ

In this case, there is no need to distinguish between the interface Piola-Kirchhoff stress of

the first kind Ss and the Cauchy stress of the interface rs. Hence we can apply the infin-

itesimal deformation formulation from the outset.

Based on Eq. (41), the effective bulk and shear moduli of the composite filled with spherical

particles can easily be obtained by simply setting c�0 ¼ 0 in Eqs. (35) and (36). Obviously, the

effective moduli obtained this way are not influenced by the residual interface tension. In

particular, it can be seen from Eqs. (39) and (40) that the effective moduli of the composite

material with a liquid-like interface will be the same as those of a perfectly-bonded composite

material, if Eq. (41) is utilized.

Figures 1 and 2 show the variations of the effective bulk and shear moduli predicted in

Eqs. (37) and (38) for polypropylene containing spherical voids. The bulk modulus of the

matrix material is K0 = 2:5 GPa, and the shear modulus is l0= 0:5 GPa. It is assumed that

the surface is liquid-like with a surface tension c0 ¼ 0:05 J=m2. The volume fractions of the

voids are assumed to be f ¼ 20% and f ¼ 30%, respectively. In the figures, �K0 and �l0 are the

effective bulk and shear moduli of the material without the surface energy effect. It is seen

from these figures that the surface effect decreases with the increase of the size of the voids,

and can be neglected when the radius of the void is larger than 30 nm. Several points should

be mentioned:
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(i) In general, the displacement gradient of the interface is not symmetric. For instance, for a

cylindrical inclusion embedded in an infinite matrix, the displacement gradient of the

interface can be expressed in terms of the physical components (ur,uh,uz) in a cylindrical

polar coordinate system (r, h, z):

r0su ¼
1

r

@uh

@h
þ ur

r

� �
eh � eh þ

1

r

@uz

@h
eh � ez þ

@uh

@z
ez � eh þ

@uz

@z
ez � ez: ð43Þ

Obviously,under an anti-plane shear deformation, Eq. (43) is not a symmetric tensor. In

this case, an asymmetric Piola-Kirchhoff stress Eq. (15) has to be used in Eq. (8).

(ii) In this paper, we only used the Mori-Tanaka approximation method to predict the

effective moduli of a composite. As was pointed out by Weng [33], for spherical inclusions,

the effective moduli derived from the Mori-Tanaka method are identical to the Hashin-

Shtrikman bounds [34]. Actually, once K� and l� are obtained, the effective moduli can

also be calculated by using other micromechanical schemes such as the generalized self-

consistent method [28], the double-inclusion method [16], and the IDD estimate [35]. This

will not be further discussed here.

(iii) Although only inhomogeneities with the same radius were considered in the above dis-

cussion, the method can also be applied to the materials with inhomogeneities of different

sizes. As K� and l� are related to the size of the inhomogeneity, inhomogeneities with

different radii should be treated as different ‘‘equivalent inhomogeneity’’.

(iv) We have assumed that the interface is elastically isotropic. However, in many materials

such as single crystals, the interface may be anisotropic. In this case, the interface con-

stitutive relations for anisotropic materials given by Huang and Wang [13] should be used,

and the effective moduli of the composite can still be predicted by using the above pro-

cedure. The only difference is that there are more material parameters and the expressions

of the effective moduli may become complicated.

5 Concluding remarks

Beginning with the finite deformation analysis of a multi-phase hyperelastic medium, the

interface energy effect on the macroscopic mechanical behavior of a composite is studied.

Particular emphasis is placed upon the approximate formulation of a finitely deformed multi-

phase elastic medium by an infinitesimal deformation analysis. It is noted that due to the

existence of the interface energy, even under no external loading, there is still a ‘‘residual elastic

field’’ induced by the interface stress. During the deformation process of a composite from the

reference configuration to the current configuration, the changes of the size and shape of the

interface result in the change of this ‘‘residual elastic field’’. The novelty of the present paper is

that the governing equations depicting the change of the ‘‘residual elastic field’’ due to the

change of configuration are derived under infinitesimal deformation approximation, leading to

the use of the asymmetric interface stress in the prediction of the effective properties of het-

erogeneous materials with interface energy effect. Therefore, the influence of the residual sur-

face/interface tension can also be taken into account. The theoretical framework is applied to

obtain the analytical expressions of the effective moduli of a composite containing spherical

inhomogeneities. It is shown that the mechanical behavior of the composite exhibits size-

dependent effect when the interface energy effect is considered. The results in this paper can find

application in the studies of nanocomposites.
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