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Summary. The existence of global smooth solutions for a binary nonreacting mixture of Grad type is
proved by using the Kawashima condition. The propagation of acceleration waves is also investigated. The
characteristic speeds and the amplitude equation are derived.

1 Introduction

In the general theory of a hyperbolic system of balance laws, the requirement of a convex
entropy density leads to the locally well-posedness of the initial value problem, that is the
system has a unique local (in time) smooth solution for smooth initial data, provided that the
fluxes and the productions are smooth enough. However, these smooth solutions may develop
singularities, shocks or blowup in a finite time so that the existence of the global smooth
solutions is not ensured.

On the other hand, the presence of production terms may lead to the existence of global
smooth solutions owing to the competition between the dissipation and the hyperbolicity. More
precisely, if the dissipation dominates the hyperbolicity, we expect that the smooth solutions
exist for all time and converge to a constant state. This kind of system is called dissipative.

One way to identify whether a hyperbolic system with productions is dissipative is given by
the so-called Kawashima condition, firstly introduced by Shizuta and Kawashima [1], [2], or
genuine coupling [3]. Roughly speaking, if we consider a general one-dimensional hyperbolic
system of balance laws

a,FOU) +0,F(U) =f(U), (1)

the Kawashima condition asserts that in the equilibrium manifold any characteristic
eigenvector d is not in the null space of V. f, that is

Vof -dl,, #0. (2)

For a strictly dissipative system satisfying the Kawashima condition Hanouzet and Natalini [1]
have proved the global existence of smooth solutions. This result has been generalized by Yong
[4] in the case of 7-dimensional systems. Recently, Ruggeri [5], [6] has analyzed the existence
of global smooth solutions for a binary mixture of Euler fluids. He has proved that the


Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: No
     Embed Thumbnails: No
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 657.638 847.559 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice


204 E. Barbera and G. Valenti

Kawashima condition is satisfied only in presence of chemical reactions, while in absence of
them, the global existence remains an open problem.

In our opinion this is due to the fact that in mixtures of Euler fluids, viscosity and heat
conduction are both neglected so that the dissipative effects are due only to the chemical
reactions and to the diffusion. These two dissipative effects prevail over the hyperbolicity but, if
chemical reactions are also neglected, the dissipation is not sufficiently strong to dominate the
hyperbolicity, and consequently the Kawashima condition is violated.

Therefore, it seems reasonable to us to investigate the existence of global smooth solu-
tions for binary mixtures of ideal gases taking into account the effects of viscosity and of
heat conduction. In fact, by using the model proposed by Heckl and Miiller [7] in the
context of Grad’s theory, we prove that the Kawashima condition holds also in absence of
chemical reactions. On the other hand, Ruggeri [8] has proved that the Kawashima
condition is satisfied for an ideal viscous heat conductive gas described by the Grad’s
theory.

Since the Kawashima condition has an interpretation in terms of the acceleration waves [9],
[10], finally we analyze the propagation of these waves in a binary nonreacting mixture of ideal
gases.

2 Field equations

Let us consider a binary nonreacting mixture of ideal monatomic gases, described by the model
proposed in [7]. This model, based upon the Grad’s theory, contains an extended set of vari-
ables. In fact, in addition to the classical ones, also the diffusion flux and the concentration of
one constituent as well as the stress deviators and the heat fluxes of both constituents are
assumed as field variables.

We restrict our analysis to the one-dimensional case so that the field equations describing a
binary nonreacting mixture are given by

% Ao (3.1)
3(60;) 8[90(;); wl_y, (3.2)
a(gf) + a% {p (mﬁlc + m%(l - c)) T+ 60 + 62 + p(vZ + %uz)} =0, (3:3)
ey oo o4 pofw + | =~z (3:4)

9 k k 9 c 7] ) k k
8t{3p(m16+m2(1 C))T—i—p(l) +1_Cu>]+ax{2<q +q' )+ 5pc s Tu

k k
+5p<—C+—(1—C)>T7J+20'(1)(7)+u)+20’<2)(U— ¢ u>
my me 1—-c¢

c 5 1-2c 9 ¢ 9\ _
—|—p—1_cu (21}+ l_cu>+pv(v —l——l_cu =0, (3.5)
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where

p = p; + py is the density of the mixture,
p; and py are the densities of the two constituents,

Wp 0@ . .
=2V A0 s the barycentric velocity,

1) and v®@ are the velocities of the two constituents,

¢ =2 is the concentration of the first constituent,

u =Y — v is the diffusion velocity of the first constituent,

k is the Boltzmann constant,

m, and ms are the two molecular masses,

T is the temperature of the two constituents,

o) and 6@ are the components of the deviatoric part

of the stress tensors of the two constituents,

qW and ¢'@ are the components of the heat fluxes of the two constituents,

while the production terms read as follows:

Z:LYIIZ, Z:2H<3)+5M ,
my + me my + my
. 4 . .
HY = 6n(v = v1), H® = 0 (3m, V12 — (2my + 3mp)Y12),
(M1 +my)
4 4
g® = TR gylz _yley o g6) - TR (3, vI2 (3, + 2my) V1),
(M1 + M) (M1 4 my) @
(4) 22 22 @) dmmi 12 2 2\ 112
HY =6n(Ys —Y{?), K¥ = s(dmimaYy® — (3m7 + 4mymg +m3)Y)?),
(m1 +my)

KW = dmmy (V3 = YY), KW = dmmy (Y52 — Y72),

16mmema dnm?
@ - AR yll gO - 2 =(4mymsY3? — (mi + 4mymy + 3m3) Y1?).
(my +my)? (my +mg)?

The constants Y; depend on the strength of the interaction between particles of the two con-
stituents and they are defined as [7]

z
B .
le[ = /fx/; S1n Gﬁa COS2 H/gadgﬁo(,
0

n

5
Y;ﬁ = /fyl; sin 0, cos* 05,d0,,
0

where 0p, = (7 — 74,)/2, with 75, the scattering angle, while f,5 = c.59°F , with g, the effective
cross section for aff -scattering into the solid angle element sin 04,d0g,de and g = c* — cf the
relative velocity of molecules « and f8 . In the case of Maxwellian molecules, considered therein,
Jap 1s a function of 0, alone.

The system under consideration (3) is a set of nine equations in the nine field variables,
that is
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T
U= (p,c,v,u, T, a<”,0<2),q(1)7q<2>) : (5)

In particular, Egs. (3.1, 3, 5) represent the conservation laws of mass, momentum and energy of
the whole mixture, while (3.2, 4) are the balance laws of mass and momentum of the first
constituent, and (3.6-9) are the balance laws of the stress deviators and the heat fluxes of the
two constituents, respectively.

More precisely, system (3) belongs to the class of hyperbolic conservative systems (1) with
dissipation due to the presence of production terms, which can be transformed into the quasi-
linear form

AU, +AU)U, =F(U), (6)
with A©) = Og—;}m and A = g—g

On the other hand, since A is non singular, system (6) may be recast into the normal form

U, +AU)U, =f(U), (7)

with A = (A°)'A and £ = (A°) " f.

3 Entropy law and structure of the system

System (3) is an hyperbolic system compatible with the entropy law

pn) | 0
Jy 2 =Y 8
5 g Pt =2, (8)
where
o1 = pin; + pany is the entropy density of the mixture, (9.1)
3 Kk LT k | 16@g® 1 g@g®
Ny=5 —WT——Inp, — 25—~
2 m, m 4 k22 5 2
x x P (ML) p2T3
is the entropy density of the constituent o, (9.2)
¢ =p1(n —no)u + »Y + @ is the entropy flux of the mixture, (9.3)
@ 9 g0
o = QT ~F :%p% is the entropy flux of the constituent o, (9.4)

P e W =@\ ) _m ®) (1))
s=F_° np_ HY + 2"y oH
71— 2kT2[< T oo heliT e

2 1—c
0D S g6)e®,0| 2 [(go 1@ ) g0y
+( 1 )" ¢ BI2T? T e
C
2K ®gg@ 1 (K<4) N mK(@)q(z)q@)} 95)

is the entropy production of the mixture.
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Due to the complex structure of the system under consideration, we limit our analysis to
mixtures in which the difference between molecular masses of the two constituents is negligible,
namely m; ~ mg = m . This “equal masses assumption” is the same considered in [5] for
mixtures of Euler fluids and, for this particular case, it was proved that the first and the second
sound are uncoupled [11].

Let us show that & = —pn is a convex function with respect to F(*) at least in a neighborhood
of the equilibrium state. In fact, by considering / as a function of the densities F(*), the Hessian
matrix % evaluated in equilibrium state

F© gF(
Uy = (py,c0,0,0,T5,0,0,0,0)" (10)
reads
Ph
OF ) oF©) o
53¢ 1 0 0 3 0 0 0
2(1=co)py  (1=co)pg 2e0
1 ! 0 0 0 0 0 0
(1=co)py (1—co)poco
21 21 99,
0 0 0 0 0 0o ——2Po__
2(1—60)80 2(1—00)60 (1760)8%
0 0 0 o 2P __ZP0
2(1—60)80 260(1—00)80 608% (176‘0)8%
A 0 0 0 Sfp; 0 0 0 0
m 28() 280
0 0 0 0 9o 0 0 0
26086
0 0 0 0 0 o0 P 0
2(176‘0)&%
4 2
0 0 0 Iy 0o 2
Coé&y 56080
4 2
0 0 900 . 9P -0 0 0 0 ~
(I—co)eg  (1—co)eg 5(1—co)e;

(11)

where 2¢) = S%pOTO denotes the density of internal energy of the mixture at equilibrium. Then,

it is easy to see that the matrix

FoF | is positive definite so that & is a convex function with

respect to F¥) at least in a neighborhood of the equilibrium state.
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Then, in order to prove that system (3) is a strictly entropy dissipative system [1], we firstly

introduce new variables, the so-called entropy variables defined as

o
~oF’

(12)

Since & is a convex function with respect to F'*) in a neighborhood of the equilibrium state,

hereafter we neglect the second order terms in the dissipative fluxes. Therefore, after some
tedious manipulations, the entropy variables assume the form

k[5 p(1—c¢) cu gV +q® 9 a? 5
W, = —|Z+1 2 D —
! m[2+ " s }Jr(l—c;)T”+ pETz U T3 T 31— )T
2
_%{qm _Lqm}vs _ 29 s,
3p(L)°T3 l-c 15p(1 —¢)(£)"13
k c U 1 c 2
W, — X4 _ . W _ @)% _ W _
2T m " ¢ (1- c)Td +3pc%T2 [G 1-¢ }U 15pc(%)2T3[ 1
1 c 1 f 20 q? f
Wy ==(v— w) — @ _ _ .
? T(W 176w> p(1 —C)%Tzq 3p(1 —c)LT? 15p(1 — ¢) (%) TSJ
2
+ q(l) +q(2) 1)2,
30(%)2?3[ |
U c 2 c
W, = _ 1 _ g?| — 1) @)
T =0T pC%TZ[q l1-c¢ } 3pcLre [0 1-¢ }U
1 c
_ 1 _ @) |2
q - |\v,
15pc(%)2T3{ 1-c¢ }
= _L _ q(l) +q<2)
= 2
gy
o) 2g1)
6= - v
2pckT? 5pc(§)2T3
0-(2) 2q(2>
W= =0k 5o = o (P
p ml” Bp(l—c)(£)"T
291
W q

2¢@

o= Bp(1 —c)(£)°T8

(13)

Now we can split W into two sets of variables W = (f/, V) corresponding to the conservation

and the balance laws, respectively, namely
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Wy
Wy
Ws
Wa
V= v=|w|. (14)
W3
Ws
Ws
Wy
Consequently it is possible to prove the existence of a positive definite matrix B(W) such that
QW) =-B(W)(V —Vy), (15)

where Vi denotes V evaluated in the equilibrium state (10), Q(W) represents the non-null
productions, while B is given by

B(W)
3 3 2 2
470 . 8Zv? - 8? MAC) 70
470 - 87v? _ 8? - 70 70
ol —— — — — —_ . — I
A¢S) NEAC) AC) 5K ., 7267 K - o Z0O°
70 AC) AC) 5K , Z0? 5K , Z20°
el ‘2( +3>“‘2< ‘3>”‘(z+2H 4> _<2 2 ==
(16)
with
~ 9 k
Z=(1-¢)Z, ® =50 + 307, 0=—T,
m
H=—[cHY + (1 -c)H®], H=—(1-c)H® =1 C—{(l—c)H(4)+cH(5)}7
A 2 -2 2
K=—[cKV +(1-c)K?], K= W(l —o)K®, K =L¢—[(1-c)KW 4 cK®)]
(17)

The positive definiteness of the matrix B is guaranteed by the sign of the coefficients (4), which
in the case of the “equal masses assumption” reduce to
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Z =2yl >0, HY =6r(Y3! — ¥{)<0,

H® =H® =n(3Y}2 —5Y]%)<0, H® =n(3Y}2 —1}?),

HW = 6r (Y5 — Y2)<0, KW = 4nm (V3! — v11)<0, (18)
K@ = KO = 2mm (Y% — 2Y12)<0, KO =2mmYs* >0,

KW = dnm (Y2 — Y22)<0,

so that the system under consideration is strictly entropy dissipative [1].
Finally, as a consequence of the positive definiteness of the matrix B, the entropy production
(9.5), which can be expressed in terms of V as [1]

L =V-BV, (19)

is a positive quantity.

4 Kawashima condition

As system (3) is compatible with a convex entropy law and it is strictly dissipative, we verify the
Kawashima condition in order to investigate the existence of global smooth solutions.

In order to check the Kawashima condition (2), we consider the characteristic problem
associated to system (6), given by

(A - ;A<°>)d -0, (20)

where the eigenvalues A satisfy the following characteristic equation:

B — =3 k, =2 J E \2
2164 —2bvA —43—T4 +45—Tvi + 8| —T
m m m

2
x {15p2 (5&4 - ZG%TIZ + 15(7%T> ) —2p {5 (3122 - 45%7") (a<1> + a<2>)

+ 144I(q<1> + q<2>)] + 315(a<1> + o<2>)2} =0, (21)

with 2 =2 —v.
Equation (21) evaluated in the equilibrium state reduces to

5 8k 5 1k 13 -V9% k 134+V9% k
A<A2 - gETO) (Az — 5ETO) <A2 — T%To) (,12 - T%T()) =0, (22)

from which we derive the following expressions for the eigenvalues:

2k 1k
=0, Jgg= iZ\/—_——T; Ay = i\/————Yg,
’ 3m ’ 5m
13 —v94 1 4
dor= | BV b e = |2 EVIAE
7 5 m ' 5 m
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Consequently, by virtue of Eq. (20), the right eigenvectors associated to the eigenvalues (23)
read

2Ty 5 k 5 k !
d=(1,0,00220 2651 21— c)E1y,0,0
1 <a I ’3[)0, 300m 0 3( Co)m 0, Y, ) )
d2,3,4,5 - <07 lvova’ovp(] (;“ - ET())’_[)O ()L - ETO)7 (24)

15 Tk 15 Tk r
AN (LI A B} (R R v
g 7o <A 3m 0)’ 470 <A 3m °)> :

A Blm/(,, 9k 4 44 9
dsnso = (1,0,2,0 2= (22 2500} 26002, 2(1 = e0)s
6,7,8,9 < 9 7p07 79[)0 k (A Em O)agco a9( CO)/L7

5 k 5 ) k T
gcoi(iz —3%T0>,§(1 —CO)A<12 —S%T())) .

Finally, from system (3), we deduce

Vufly
000 0 0 0 0 0 0
000 0 0 0 0 0 0
000 0 0 0 0 0 0
000 —copgZ O 0 0 0 0
000 0 0 0 0 0 0
=Py CoH(l) + (1 _CO)H(Z) COH(S)
000 0 0 p” - 0 0
000 0 0 (1—co)H®) (1—co)HW +coH®) 0
m m
000 _PPkToZ 0 0 coK W +(1—co)K® cd(@
m m2 m2
000 PC0PkToZ 0 0 (1—co)K® (1—co)K@ 4coK®
m m2 m2

(25)

and, taking into account Eq. (24), we easily obtain
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k
Vuf -di|y= 10nP0WT0

T
Vuf -dz3as |0: %P(z)

0

0

0

0

0 ;

oAl
(1 —co)A™

0

0
0
0
0

—24Y 2

0

(=) (61— ¥ v

(7% = £Ty) (642 — Y12 + 3Y§?)

—57 [2%%1/}2 + g(gz - g %TO) (24" + YQZ)}
5 [Z%TOY}Z + §<AZ - g %T()) (241 + Ygz)}
0
0
0
0
2P0 0 )
20 A
2(1 —cp)rAt2
Beo (47 — 3LT,)AM

5(1 — co) (4% — 3ET)A™2

m

213

(26)
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where

A = (= V) + (1 a5 - V),
(27)
A = oo (Y% = Y92) + (1 — o) (Y72 — Y37,

which are nonzero as a consequence of the definition of the Y;.

Therefore, in the equilibrium manifold all right eigenvectors are not in the null space of Vyf ,
namely the Kawashima condition is satisfied. Consequently, since system (3) is strictly dissi-
pative, we may conclude that binary mixtures of nonreacting ideal gases of Grad’s type admit
global smooth solutions if the initial data are sufficiently small.

5 Acceleration waves

Let’s consider a moving curve Z() , usually called wave front, across which the field variables
are continuous whereas their first derivatives may be discontinuous [12]. As it is well known,
the normal speed of propagation V is equal to the characteristic eigenvalue evaluated in the
unperturbed field U, whereas the jump of the normal derivative of the field vector IT is
proportional to the right eigenvector d evaluated in U,, that is

V=AU,), (28.1)
I1=06U =T11d(U,). (28.2)
If we consider as unperturbed field U, the equilibrium state defined in (10), it is possible to

establish the following relation between the acceleration waves and the Kawashima condition
(2) [9, 10], i.e.,

Ofly=Vuf - -oU|yxVyf-d|,#0, (29)

which holds for all the waves. This relation implies that, even if the production vanishes in
equilibrium ( Slo = 0) , all the acceleration waves transport the disturbance of normal deriv-
ative of the production (6], # 0).

As it is well known, the amplitude IT of the jump satisfies the Bernoulli equation [12]

% +a ()% 4+ b(H)IT = 0, (30)

where % denotes the time derivative along bicharacteristic while, owing to the choice U, = Uy ,
the coefficients @ and b become constants and they are given, respectively, by

a = (VU)» . d)o,

. 81
b=—1- (Vuf)o -dy.
Therefore, the solution of the Bernoulli equation (30) reads
1o —bt
) e (32)

T b—Tale ' — 1)’

Iy being the initial value of the amplitude.
From Eq. (32) we observe that if a # 0 the discontinuity becomes unbounded so that the
acceleration waves may evolve into shock waves at the critical time
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1 1
te=—1 33
c b n (1 i 21—}0) ( )
provided that the initial amplitude IT, satisfies the condition
b1
—1<——= 4
<= Ty <0. (34)

In our case, by virtue of Eq. (28.1), the characteristic velocities coincide with the eigenvalues
(23).

It is easy to ascertain that the characteristic velocities A, 4g, A7, Ag and A9 are the same
obtained for one single fluid described by Extended Thermodynamics of 13 moments [11] or,
equivalently, by the Grad’s theory. On the contrary, the characteristic speeds As, A3, A4, and A5
are peculiar of the whole mixture. This result seems a natural consequence of the “equal masses
assumption”. Therefore, if the difference between molecular masses is negligible, it is possible to
distinguish the properties concerning the single fluid from the ones characteristic of the whole
mixture. An analogous result was also obtained for mixtures of Euler fluids [13].

In order to derive the amplitude of the jump (32), firstly we calculate the left eigenvectors
corresponding to the characteristic velocities (23), that are

1 py Hml 5m 1
==(1 Po 2
h L<’O’O’O’T0’ 4k Ty 4kTy 00)

l L1000, o 3m (L=c)( = 5T0) _3m?eo(i — 5To)
2,34,5 _L T AR poT?2 T4 k2 poT? ’
3m’ (1= co)A(# =535 To)  3m’col(# =55 To)
8 ks poTs T8k poT} 7 #)

A = 5 s o
6,789 KTy "6k 72 3 k2 T2

29 2 32
%(1 0.7p0; o 5mpo (22 —2LTy) 1m? 2

m

3 k2 T2 6 kP T3 "6 K T3

1m? 22 1m? A(A* = 3ETy) 1m? A(2 skTo))

where the scalar factors L, L and L , obtained requiring the orthonormality condition, are given
by

15
L=—
47
. 183m 1 [, 27k
L=——— =T
1OlcT0</1+13 0) (36)
— 136m 1/, 15k

Using the characteristic equation (21), the expressions of the right (24) and left eigenvectors (35)
and the coefficients a and b, given by Eq. (31), assume the following form:
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a1 =0, ag345=0, agrgy=

5 (702kT, — 335mi2
27po \ 18kTy —5mi2 |’

107
by = W”O {cod™ + (1= ¢)A2},

Py 2
bosas = 25 (mi2 + kT, 37
A T om(18ma2 + 2TkT,) { ( 0) 37

x [2(1 = co)AM +200A" + Y32 + (2TmA® — 7l~cT0)Y112},

7512 py

borgy = — 2P0
S8 S umaZ + 15k T,

{coA™ + (1 —c)A™}.
Therefore, we may observe that the contact wave and the ones related to the whole mixture
propagating with normal speeds g, A3, A4 and A5 are locally exceptional, namely

Vui-d|, =0. (38)
In these cases the amplitude equation (30) becomes linear so that its solution (32) reduces to
I1(t) = He . (39)

As it is well-known, despite of the nonlinearity of the system under consideration, shocks never
occur across the wave front [12], [14], [15].

On the contrary, the acceleration waves propagating with speeds Ag, 47, A and g satisfy the
genuine nonlinearity (a # 0) so that they may evolve into shock waves provided that the
condition on the initial amplitude (34) holds.
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