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Summary. Based on the transformation toughening theory an approximate solution is developed for

predicting the stress intensity factor for a crack interacting with an inclusion of arbitrary shape and size

under I/II mixed mode loading conditions. The transformation strains in the inclusion induced by the

crack tip field and the remotely applied stresses are evaluated based on the Eshelby equivalent inclusion

theory. As validated by detailed finite element analyses, the solution is applicable with good accuracy for

the inclusion of arbitrary shape and large size under mixed mode loadings.

1 Introduction

The interaction between a crack and an inclusion has been extensively studied over years

because it is evidently important for understanding the mechanisms of strengthening and

toughening, material damage and fracture for composite materials discontinuously reinforced

by particles or fibers. However, only a few and highly idealized cases, such as circular or

elliptical inclusion, have been treated analytically due to the complexity of this kind of prob-

lems [1]–[5]. Most of the studies have been performed by numerical approaches, such as finite

element method [6]–[9], boundary element method [7], [10]–[12], and singular integral equation

method [13], [14]. Although these numerical analyses provide some insight into understanding

interactions between crack and inclusion, these numerical results are limited to fixed calculation

parameters. No generalizations could be drawn from these numerical results because of the

intricacy of the results in the individual situations. Thus, the knowledge of the interaction

between a crack and an inclusion comes by slow accumulation of results for special cases,

rather than by establishment of general propositions.

An exacts analytical solution for the interaction between a crack and an inclusion of arbi-

trary configuration is very difficult to obtain from the linear theory of elasticity. Hence, an

approximate analytical solution is desirable in practice. In our previous studies [15], [16],

approximate solutions for mode I and mode II cracks near or partially penetrating an inclusion

of arbitrary shape have been obtained based on transformation toughening theory and Eshelby

equivalent inclusion theory. As validated by numerical examples, these approximate solutions

have fairly good accuracy. However, although these solutions are applicable for an inclusion of

arbitrary shape, the inclusion must be located in the crack tip field which is controlled by the
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remotely applied stress intensity factor. Therefore, the size of the inclusion must be very small

compared with the crack length. This limits the application of these solutions.

In the present study, we assume that the stress fields acting on an inclusion are

approximated by superposition of the crack tip field and the remotely applied stresses. Then

the transformation strains induced by I/II mixed mode crack and remotely applied stresses

are evaluated based on Eshelby equivalent inclusion method, from which a generally

applicable approximation solution for the interaction between the mixed-mode crack and an

inclusion of arbitrary shape and size is derived based on the transformation toughening

theory. It is shown that, in comparison with corresponding numerical results, the present

solution has good accuracy for the inclusion of large size. When the inclusion size is small as

compared with the crack length and the inclusion locates in the crack tip field, the present

solution reduces to previous ones [16], [17].

2 Model and formulation

Figure 1 shows a plane structure containing a crack and an inclusion of arbitrary shape sub-

jected to remotely applied stress r0
ij. Commonly, mode I and mode II stress intensity factors

(SIFs) will be developed due to unsymmetry of the applied load and the shape of inclusion with

respect to the crack line. Assume that the mode I and mode II SIFs are K0
I and K0

II in the

absence of inclusion. The near tip SIFs will be changed due to the presence of the inclusion,

denoted by K
tip

I and K
tip

II , respectively. The goal of the present study is to seek approximate

solutions of K
tip

I and K
tip

II for the inclusion of arbitrary shape and size. The plane strain

condition will be considered in the following.

If the elastic constants of the inclusion differ from those of the matrix material, a trans-

formation strain eT will be induced by the crack tip stress field and the remotely applied

stresses due to the inhomogeneity between matrix material and the inclusion. Now, consider a

differential element dA located at (r; h ) within the inclusion. According to the Eshelby

equivalent inclusion approach [18], [19], the equivalent transformation strain in dA can be

expressed by

eT ¼ ½ðCi �CmÞSþ Cm��1ðCi � CmÞeA; ð1Þ

Ci

x

r
θ

y Cm

0
ijσ

Fig. 1. The mechanical model
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where S is the Eshelby tensor, dependent solely upon the inclusion shape and the Poisson’s

ratio of the matrix material. Ci and Cm are the elastic tensors of the inclusion and matrix

material, respectively. eA is the applied strain in the absence of the inclusion. As shown in (1),

the equivalent transformation strain eT in dA varies with the applied strain eA, and is not zero

for an inhomogeneous inclusion (Ci 6¼ Cm).

For simplicity, it is assumed that the inclusion and matrix material are isotropic and their

Poisson’s ratios are the same, denoted by m. Then we have

Ci ¼ aCm; ð2Þ

where

a ¼ Ei=Em: ð3Þ

Ei and Em are the Young’s moduli of the inclusion and matrix material, respectively.

Substituting Eq. (2) into (1) yields

eT ¼ LeA; ð4Þ

where

L ¼ ½ða� 1ÞSþ I��1ð1� aÞ: ð5Þ

I is the unit tensor. Thus, the tensor L relates the equivalent transformation strain eT in the

inclusion to the applied strain eA without going into the details of the form of the Ci and Cm

tensors.

For a differential element with circular section inside the inclusion, the components of the

Esbelby tensor are given by [20]

S1111 ¼ S2222 ¼
5� 4m

8ð1� mÞ ; S1122 ¼ S2211 ¼
4m� 1

8ð1� mÞ ;

S1133 ¼ S2233 ¼
m

2ð1� mÞ ; S1212 ¼
3� 4m

4ð1� mÞ ;

S1313 ¼ S2323 ¼
1

2
:

ð6Þ

And other components are zero. Substituting Eq. (6) into (5) yields

L1111 ¼ L2222 ¼
ð1� aÞð1� mÞð3� 4mþ 5a� 4maÞ
ð1þ a� 2mÞð1þ 3a� 4maÞ ;

L1122 ¼ L2211 ¼ �
ð1� aÞ2ð1� mÞð1� 4mÞ
ð1þ a� 2mÞð1þ 3a� 4maÞ ;

L1133 ¼ L2233 ¼
ð1� aÞ2m
ð1þ a� 2mÞ ; L3333 ¼ ð1� aÞ;

L1212 ¼
4ð1� aÞð1� mÞ
ð1þ 3a� 4maÞ ; L1313 ¼ L2323 ¼

2ð1� aÞ
1þ a

:

ð7Þ

Other components of the L tensor are zero.

In our previous works, it was assumed that the size of the inclusion is small compared to the

crack length and other dimensions of the crack body, and that the inclusion is located in the

crack tip field controlled by the remotely applied SIF. For the present model shown in Fig. 1,

the size of the inclusion may be so large such that it may be partially outside of the crack tip

Mixed mode crack-inclusion interaction 3



field. In this case, we assumed that the stresses acting on the inclusion could be approximately

expressed by

rij �
K0

I
ffiffiffiffiffiffiffiffi

2pr
p ~rijðhÞ þ

K0
II
ffiffiffiffiffiffiffiffi

2pr
p e

erijðhÞ þ r0
ij: ð8Þ

The first and second terms are the crack tip fields which are applicable for r! 0, and the third

term is the remotely applied stress. When r! 0 the remotely applied stresses are trivial

compared to the singular crack tip stress, while for r!1 the crack tip fields tend to be zero,

the remotely applied stress is prevail. By using the well-known expressions of the crack tip stress

field, the non-zero applied strains acting on the inclusion can be expressed by

eA
11 ¼

K0
I 1þ mð Þ

Em

ffiffiffiffiffiffiffiffi

2pr
p cos

h
2

1� 2mð Þ � sin
h
2

sin
3h
2

� �

� K0
IIð1þ mÞ

Em

ffiffiffiffiffiffiffiffi

2pr
p sin

h
2

2ð1� mÞ þ cos
h
2

cos
3h
2

� �

þ 1� m2

Em

r0
11 �

m 1þ mð Þ
Em

r0
22;

eA
22 ¼

K0
I 1þ mð Þ

Em

ffiffiffiffiffiffiffiffi

2pr
p cos

h
2

1� 2mð Þ þ sin
h
2

sin
3h
2

� �

þ K0
IIð1þ mÞ

Em

ffiffiffiffiffiffiffiffi

2pr
p sin

h
2

2mþ cos
h
2

cos
3h
2

� �

þ 1� m2

Em

r0
22 �

m 1þ mð Þ
Em

r0
11;

eA
12 ¼

1þ mð Þ
Em

ffiffiffiffiffiffiffiffi

2pr
p cos

h
2

K0
I sin

h
2

cos
3h
2
þ K0

II 1� sin
h
2

sin
3h
2

� �� �

þ ð1þ mÞ
Em

r0
12

ð9Þ

for plane strain.

Substituting Eqs. (9) and (7) into (4) we have

eT
11 ¼

ð1� aÞð1� mÞ
ð1þ a� 2mÞð1þ 3a� 4maÞ ð3� 4mþ 5a� 4maÞeA

11 � ð1� aÞð1� 4mÞeA
22

� �

;

eT
22 ¼ �

ð1� aÞð1� mÞ
ð1þ a� 2mÞð1þ 3a� 4maÞ ð1� aÞð1� 4mÞeA

11 � ð3� 4mþ 5a� 4maÞeA
22

� �

;

eT
12 ¼

4ð1� aÞð1� mÞ
ð1þ 3a� 4maÞ eA

12

ð10Þ

for plane strain condition.

Based on the transformation toughening theory [17], [21], the enhancement in the SIFs for

mode I and mode II cracks due to a transformed differential element of area dA are given by

dK
tip

I ¼ 1

4
ffiffiffiffiffiffi

2p
p Em

1� m2
r�3=2X1ðeT

ac; hÞdA; ð11Þ

dK
tip

II ¼
1

16
ffiffiffiffiffiffi

2p
p Em

1� m2
r�3=2X2ðeT

ac; hÞdA; ð12Þ

where

X1ðeT
ac; hÞ ¼ ðeT

11 þ eT
22Þ cos

3h
2
þ 3eT

12 cos
5h
2

sin hþ 3

2
ðeT

22 � eT
11Þ sin h sin

5h
2
; ð13Þ

X2ðeT
ac; hÞ ¼ �ð5eT

11 þ 3eT
22Þ sin

3h
2
þ 2eT

12 3 cos
7h
2
þ cos

3h
2

� �

þ 3ðeT
22 � eT

11Þ sin
7h
2
: ð14Þ

Substituting Eqs. (10) and (13) into (11) and Eqs. (10) and (14) into Eq. (12), respectively, we

have

4 Z. Li et al.



dK
tip

I

dA
¼ K0

I

p
r�2 C1 cos

h
2

cos
3h
2
þ C2 sin2 h cos h

� �

þ K0
II

p
r�2 C2 sin h 1� 3

2
sin2 h

� �

� C1

2
sin

h
2

cos
3h
2

� �

þ 1
ffiffiffiffiffiffi

2p
p r�3=2 C1ðr0

11 þ r0
22Þ cos

3h
2
þ 2C2 sin h ðr0

22 � r0
11Þ sin

5h
2
þ 2r0

12 cos
5h
2

� �� �

; ð15Þ

dK
tip
II

dA
¼ K0

II

p
r�2 C3 cos h� 1

4
C1 cos 2hþ 3

8
C2 cos 3h

� �

þ K0
I

2p
r�2 C1 cos

h
2

sin
3h
2
þ 1

2
C2 sin h cos 2hþ 1

3

� �� �

þ 1

2
ffiffiffiffiffiffi

2p
p r�3=2 �C1ðr0

11 þ r0
22Þ þ

1

3
ðr0

22 � r0
11Þ

� �

sin
3h
2

�

þ C2ðr0
22 � r0

11Þ sin
7h
2
þ 2

3
C2r

0
12 cos

3h
2
þ 3 cos

7h
2

� ��

; ð16Þ

where

C1 ¼
1� að Þ 1� 2mð Þ

1þ a� 2m
;

C2 ¼
3 1� að Þ

2 1þ 3a� 4mað Þ ;

C3 ¼
ð1� aÞð11� 22mþ 19a� 40maþ 32m2aÞ

16ð1þ a� 2mÞð1þ 3a4maÞ :

ð17Þ

For the extreme case where Ei=Em is either very large or zero, corresponding to a stiff

inclusion or a hollow, we have

C1 ¼ 2m� 1; C2 ¼
3

4m� 3
; C3 ¼

19� 40mþ 32m2

16ð�3þ 4mÞ ða!1Þ ð18Þ

and

C1 ¼ 1; C2 ¼
3

2
; C3 ¼

11

16
ða ¼ 0Þ: ð19Þ

If the shape of the inclusion is known, the DK
tip

I and DK
tip

II can be calculated by

DK
tip

I ¼
Z

A

dK
tip

I dA; ð20Þ

DK
tip

II ¼
Z

A

dK
tip

II dA: ð21Þ

The integrals of Eqs. (20) and (21) extend over the area of the inclusion. As seen from Eqs. (15)

and (16), there is a coupling effect between mode I and mode II loads when the inclusion is

unsymmetric with respect to the crack line.

Mixed mode crack-inclusion interaction 5



3 Numerical examples and discussion

Two basic assumptions have been used in the previous derivations: one is that the Eshelby

inclusion theory can be approximately used for each differential element in an inclusion,

such that this theory can be extended to an inclusion of arbitrary shape; the other is that

the stresses acting on the inclusion are approached by Eq. (8), which is accurate only when

the distance between the inclusion and the crack tip is either very large or very small.

Although the former has been validated by a number of numerical examples in our previous

studies [15]–[17], the latter assumption is still to be substantiated. Hence, in the following

numerical examples, the size of the inclusion is chosen in the same order as the crack

length. The validations of the present solutions are performed by detailed finite element

analysis. The details for the calculation of the crack tip SIF by FE-analysis were described

in our previous works [15], [16]. In the following, the crack tip SIFs calculated from the

present solution and the FE-analysis are normalized by the remotely applied SIF, which is

the SIF in the absence of an inclusion for the crack body subjected to the same remotely

applied load.

Figure 2 shows a center-crack plane with a rectangular inclusion symmetrics with respect to

the crack line under biaxial tension loadings ðr0
11 ¼ r0

22Þ. In this case, only mode I SIF is present

and Eq. (20) reduces to

DK
tip

I ¼ K0
I

p

Z

A

r�2 C1 cos
h
2

cos
3h
2
þ C2 sin2 h cos h

� �

þ 1
ffiffiffiffiffiffi

2p
p r�3=2 C1ðr0

11 þ r0
22Þ cos

3h
2

� �� 	

dA:

ð22Þ

The first term is the result obtained by Li and Chen [16], representing the effect of the crack tip

field; the second term represents the influence of the remotely applied stresses on the crack tip

SIF. As shown in Fig. 2, the agreement between the prediction of (22) and the FE-analyses is

fairly good. The results of (22) in the absence of the second term are also displayed. As shown

in Fig. 2, the predicting accuracy of (22) is improved due to the introduction of the remotely

applied stresses.

Figure 3 displays the interaction between a crack and a hard circular inclusion ða ¼ 2Þ under
pure mode II loading. Then Eq. (21) reduces to

1.4

1.2

1.0

0.8

0.6
543210

w/c=0.2
a/c=0.2
L/c=2

FE-results
Eq. (22)
Li and Chen [16]

a2c
2L

w

Ei / Em

K
Iti

p / 
K

I0

Fig. 2. The interaction between a
crack and a rectangular inclusion

under biaxially tensile loading
ðr0

11 ¼ r0
22; r

0
12 ¼ 0Þ as a function of

the modulus ratios

6 Z. Li et al.



DK
tip
II ¼

K0
II

p

Z

A

r�2 C3 cos h� 1

4
C1 cos 2hþ 3

8
C2 cos 3h

� �

dA

þ 1

3
ffiffiffiffiffiffi

2p
p C2r

0
12

Z

A

r�3=2 cos
3h
2
þ 3 cos

7h
2

� �

dA: ð23Þ

The first term is the result obtained by Yang et al. [17], representing the effect of the crack

tip field; the second term represents the influence of the remotely applied stresses r0
12 on the

crack tip SIF. As shown in Fig. 3, when the crack approaches the hard inclusion, the near

tip SIF decreases remarkably. The predictions of Eq. (23) are also in good agreement with

the FE-results.

Figure 4 shows an infinite plane containing a circular inclusion and a crack subjected to

far-field tension perpendicular to the line connecting the centers of the inclusion and the crack.

The normalized mode I and mode II SIFs for crack tip A calculated from (20) and (21) for a

hard inclusion ða ¼ 2Þ as functions of the crack orientation angle h are shown in Fig. 5, and as

functions of the modulus ratio are shown in Fig. 6 for fixed crack orientation angle ðh ¼ 600Þ.

K
II

ti
p / K

II
0

1.2

1.1

1.0

0.9

0.8

0.7

0.6

1.61.20.60.4
0.5

1.81.41.00.80.20.0

Ra2c

R/c=1

FE-results
Eq.(23)

(a-R)/ R

Fig. 3. The interaction between a

crack and a hard circular inclusion
ða ¼ 2Þ under pure mode II loading as

a function of the distance between the
crack tip and the inclusion

d

2a
a

a

θ

d = 2.2a

A

Fig. 4. A circular inclusion and an inclined

crack subject to far-field tension

Mixed mode crack-inclusion interaction 7



As compared with the corresponding FE-results, all the results shown in Figs. 5 and 6 appear to

be in good agreement. Note that the K
tip

I and K
tip

II in Figs. 5 and 6 are normalized by K0
I , which

is the SIF for the crack orientation angle h ¼ 0 in the absence of the inclusion.

4 Conclusions

A generally applicable approximation solution is developed to predict the interaction be-

tween I/II mixed-mode crack and an inclusion. As validated by detailed finite element

analyses, the present solution has good accuracy for the inclusion of arbitrary shape and

large size due to introducing the effect of the remotely applied stresses on the inclusion. For

the inclusion with small size and located in the crack tip field, the present solution reduces

to the existing one.
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1.4

1.2

1.0

0.8

0.6

0.00.20.40.60.81.0
Ei / Em Em / Ei
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FE-results for K 
tip  

FE-results for K 
tip 

Eq. (20) 
Eq. (21) N

or
m

al
iz

ed
 S

IF
s 

θ = 600 

I

II

Fig. 6. The normalized SIFs (near the

crack tip A) for the model shown in
Fig. 4 as functions of the modulus

ratios at fixed crack incline angle
h ¼ 600

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2
806040200

FE-results for  K 
tip

FE-results for  K 
tip

Eq. (20) 
Eq. (21) 

Angle θ  (degree)  

N
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m
al
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ed

 S
IF

s
I

II

Fig. 5. The normalized SIFs (near the

crack tip A) for the model shown in
Fig. 4 as functions of the crack incline

angle h at fixed modulus ratio a ¼ 2
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