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Summary. Surfaces and interfaces in solids may behave differently from their bulk counterparts, partic-

ularly when the geometry is on the nanoscale. Our objective in this work is to assess the overall behavior of

composites containing cylindrical inclusions with surface effects prevailing along the interfaces. In the

formulation, we first decompose the loadings into three different deformation modes: the axisymmetric

loadings, the transverse shear and the antiplane shear. For each deformation mode, we derive the energy

potential incorporating the surface effects. Using a variational approach, we construct the Euler-Lagrange

equation together with the natural transition (jump) conditions. The surface effects are represented by an

interface of a membrane type, with in-plane moduli different from those of either phase. The overall elastic

behavior of the composite is characterized by five constants. Four of them, except the transverse shear

modulus, are derived in simple closed forms using an approach of neutral inclusion. For the transverse

shear, we derive the value based on the generalized self-consistent method.

1 Introduction

The concept of surface stress dates back to more than one century ago by the celebrated

Young-Laplace equation in fluids [1]. Surface tension in fluids is defined as a force per unit

length along the perimeter of the interface. The concept of surface stress in solids, first intro-

duced by Gibbs [2], is defined through the change in excess free energy when the interface is

deformed at constant referential area. In contrast to fluids, surface stress may not be isotropic,

and it may depend on the crystallographic parameters of the solids joined at the interface.

Recent atomistic calculations indicate that a solid surface can be either elastically softer or

stiffer than their bulk counterparts [3]. The effect of surface stress has recently received

substantial attention in the materials physics community. Numerous studies focused on the

subjects of thin film stress evolution during deposition (see, for example, Cammarata et al. [4],

[5], Freund and Suresh [6] and the references contained therein).

A different application of surface effects is concerned with nanocomposites. The significance

of surfaces becomes important in nanoscaled structures due to their high surface-to-volume

ratios. The strain energy in these structures can be dramatically influenced by surface effects

and subsequently alters their local behavior and macroscopic properties. The objective of this

work is to explore the macroscopic behavior of nano-composites incorporating the surface

effect. Relevant to this line of research, Sharma et al. [7] derived solutions for the elastic state of

eigenstrained spherical inhomogeneities with surface effects using variational approaches. They
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found that surface elasticity can significantly change the local fields at nanosized inclusion.

Yang [8] derived the effective bulk and shear moduli of composites containing spherical

nanosized cavities at dilute concentrations, in which the surface behavior is simply modelled by

a constant residual tension. Sharma and Ganti [9] derived closed-form expressions for the

Eshelby’s tensor for spherical and cylindrical inclusions. Duan et al. [10], [11] derived the

interior and exterior field solutions for a spherical inhomogeneity with the interface stress effect

subjected to a uniform eigenstrain in the inclusion and/or to a remote uniform stress. In all

these studies, apart from the work of Sharma and Ganti [9] which considered the Eshelby

tensor to cylindrical inclusions, attention has been limited to spherical inclusions.

Our objective in this work is to assess the overall elastic behavior of composites with aligned

cylindrical inclusions with surface effects along the interfaces. We consider that the phase

constituents are elastically transversely isotropic and the interfacial property is taken as iso-

tropic. Macroscopically, the overall behavior will be transversely isotropic, characterized by

five effective constants for the nanocomposites. For the mechanical properties, we can

decompose the loadings into three different deformation modes: the axisymmetric loadings, the

transverse shear and the antiplane shear. We first derive the energy potential incorporating the

surface effects for each deformation mode. Using the variational approach, one can construct

the Euler-Lagrange equation together with the interface jump conditions. The interface con-

ditions are described as a continuity of tangential strain across the interface in conformity with

the coherent interface assumption as well as a jump condition in traction. The latter term comes

from the natural transition condition in the variational process.

Derivation of local fields and overall properties relies on construction of neutral inclusions,

or in the same spirit, on composite cylinder assemblages [12]. The four effective elastic constants

are derived in simple closed forms. The remaining transverse shear modulus, based on the

generalized self-consistent method, could also be calculated through simple algebra. The

analytic expressions for evaluation of overall properties may serve is selecting phase properties

and volume fractions that would yield desirable overall moduli.

The plan of the paper is as follows. In Sect. 2, we derive the free energy of the system for

three different loading types. By using a variational approach, Euler equations together with

the interface conditions are found. The effective mechanical properties are derived in Sect. 3.

The axisymmetric moduli and the antiplane shear modulus are derived using an idea of neutral

inclusions. For the effective transverse shear modulus, we derive the value using the generalized

self-consistent method. Numerical calculations are illustrated in Sect. 4 for field solutions as

well as for the effective moduli. Finally, some concluding remarks are made in Sect. 5.

2 Interface conditions with surface stress

Here we are concerned with the boundary of a circular cylinder, in which the interface between

the two sides (the inclusion and the matrix) is associated with a deformation dependent

interfacial energy G: The fiber composite is modeled here by a representative volume element

consisting of aligned circular cylindrical fibers of the same diameter, bonded to the matrix by a

coherent interface which has a deformation-dependent surface energy and thus allows for

discontinuous radial tractions. The composite cylinder model is adopted for evaluation of local

fields in the phases that are used in Sect. 3 in the derivation of overall moduli.

Both fiber and matrix phases are assumed to be transversely isotropic, with the z-axis of

symmetry. The phase constitutive relation can be written as
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rk
rz ¼ 2pke

k
rz; rk

hz ¼ 2pke
k
hz; rk

rh ¼ 2mke
k
rh;

where the index k ¼ f ;m denotes the inclusion and the matrix, respectively, and the coefficients

k; l;n;m;p are Hill’s moduli [13].

Surface/interface stress can be defined in various ways. A review of these effects was given by

Cammarata [17], see also the earlier works of Gibbs [2], Shuttleworth [15] and Herring [16]. The

interfacial or surface energy is positive definite. Two independent interface stresses have been

reported in the literature: one is associated with coherent interface in which the tangential

strains are equal on both sides of the phases, the other allows that different tangential strains

may occur at the interface [17]. In the present study we are concerned with the first mode of

deformation in which no atomic bonds are broken in the interface plane. Interface stresses can

be described as 2� 2ð Þ symmetric tensors in the tangent plane (strains normal to the surface are

excluded). The surface stress tensor, rs
ab; is related to the deformation dependent surface energy

G eab
� �

by [15], [18]

rs
ab ¼

@G

@es
ab

þ s0dab; ð2:2Þ

where es
ab is the 2� 2ð Þ surface strain tensor, dab is the Kronecker delta for surfaces and the

constant s0 is the residual surface tension. Equation (2.2) can be interpreted as modeling the

surface between the fiber and the matrix as an elastic skin, or interfacial thin layer that is

stretched over the bulk of two sides. In general those interface properties will be anisotropic

which depend on the crystallographic directions. Here in the sequel, the interface is taken as

elastically isotropic. The effect of residual tension s0 is not considered here. The surface moduli

can then be characterized by the surface Lamé constants ks and ls as [7], [9]

rs
ba ¼ 2lse

s
ba þ kse

s
ccdba: ð2:3Þ

Conventional summation rules apply unless otherwise stated. Note that the Greek indices take

on values of the interfacial component. For instance, for cylindrical inclusions, a; b ¼ h; z. The
surface moduli ks; ls have the dimensions of N/m which is different from the standard Lamé

constants (N/m2).

2.1 Axisymmetric deformations

We consider a composite cylinder which is composed of a circular fiber with radius a sur-

rounded with a concentric shell of matrix with outer radius b. Suppose that on the outer

boundary of the composite cylinder the matrix is subjected to the homogeneous boundary

conditions

erjr¼b¼ e; ez ¼ e0: ð2:4Þ

The in-plane displacement fields are independent of the circumferential and axial variables, h
and z, and the axial displacement is simply a linear function of z: That is uk

r ¼ uk rð Þ; uk
h ¼ 0

and uk
z ¼ e0z: To proceed, the free energy of the composite cylinder under (2.4), in the presence

of surface effects, can be written as
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where the bulk and surface elastic energy densities are functions of r; expressed as

Wk r;uk rð Þ;u0k rð Þ
� �

¼ 1

2
rk

ije
k
ij;Ws usð Þ ¼

Zes
ij

0

rs
ijdes

ij; ð2:6Þ

and the prime denotes derivatives with respect to r: As the displacement fields need to fulfill the

prescribed boundary conditions (2.4) (essential boundary conditions), by setting the variation

of the free energy to be zero, i.e., dP ¼ 0; we obtain the Euler-Lagrange equation

d2uk

dr2
þ 1

r

duk

dr
� uk

r2
¼ 0: ð2:7Þ

We require that the minimizing (or maximizing) function be continuous at r ¼ a in conformity

with the coherent interface assumption, in which all admissible displacements possess the

common variation along the interface duf

��
r!a
¼ dumjr!a¼ dus: Then we are led to the natural

transition condition along the interface

@Ff

@u0f
� @Fm

@u0m
þ ks þ 2lsð Þus

a

" #

r!a

dus ¼ 0; ð2:8Þ

where the functional Fk ¼ rWk: Then, substituting Fk into Eq. (2.8) will give the jump condition

on stress. Specifically, the interface conditions are given by

uf rð Þ
��
r¼a
¼ um rð Þjr¼a; rm

rr � rf
rr ¼

rs
hh

r

����
r¼a

: ð2:9:1; 2Þ

The presence of surface stress gives rise to a nonclassical boundary condition, which in

combination with the surface stress-strain relations and the equations of classical elasticity

form a coupled system of field equations. The governing field (2.7), together with the

interface conditions (2.9) and the boundary conditions (2.4), will allow us to determine the

field solutions.

2.2 Transverse shear deformation

Next we consider a transverse shear deformation in which the boundary data, ux ¼ cx;

uy ¼ �cy; uz ¼ 0; are prescribed on the surface r ¼ b. In terms of cylindrical coordinates,

these fields correspond to ur ¼ cr cos 2h; uh ¼ �cr sin 2h; uz ¼ 0; where the value c is the

applied shear strain. The displacement fields of the composite cylinder under the transverse

shear can then be written as:

uk
r ¼ Uk rð Þ cos 2h; uk

h ¼ Vk rð Þ sin 2h; uk
z ¼ 0; ð2:10Þ

where Uk rð Þ; Vk rð Þ and Wk rð Þ are unknown functions of r. The nonvanishing strain compo-

nents are:

ek
r ¼

dUk

dr
cos 2h; 2erh ¼ sin 2h

dVk

dr
� Vk

r
� 2Uk

r

� �
;

ek
h ¼

cos 2h
r

Uk þ 2Vkð Þ; es
h ¼

cos 2h
a

Uk að Þ þ 2Vk að Þð Þ; ð2:11Þ
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and the corresponding stresses can be derived accordingly. Again the interface of the inclusion

and the matrix is endowed with a deformation dependent interfacial energy G: We first derive

the free energy of the composite system P: In contrast to the axisymmetric loadings, the strain

energy density now depends on r as well as on h: Setting dP ¼ 0 and allowing that the

variations dUk rð Þ and dVk rð Þ be arbitrarily varied, the Euler-Lagrange equations,

@Fk

@Uk

� @

@r

@Fk

@U0k

� �
¼ 0;

@Fk

@Vk

� @

@r

@Fk

@V 0k

� �
¼ 0; ð2:12Þ

with

Fk r;Uk;U
0
k;Vk;V

0
k

� �
¼
Z2p

0

rWkdh; Fs ¼ a

Z2p

0

Ws a;u sð Þ
� �

dh; ð2:13Þ

can be expanded as

U00k þ
U0k
r
� kk þ 5mk

kk þmk

Uk

r2
þ 2kk

kk þmk

V 0k
r
� 2 kk þ 2mkð Þ

kk þmk

Vk

r2
¼ 0;

� 2kk

mk

U0k � 2
kk þ 2mk

mk

Uk

r2
þ V 00k þ

V 0k
r
� 4kk þ 5mk

mk

Vk

r2
¼ 0:

ð2:14Þ

We note that, when the phases are isotropic, the system (2.14) is the same as that of the

composite system with perfect bonding interface (without the surface effects) [19]. Note that the

system of equations (2.14) can also be derived by substituting (2.10) into the equilibrium

equations.

To proceed, we note that the functions Um and Vm need to comply with the boundary

conditions. This gives that dUm ¼ dVm ¼ 0 at r! b: In addition, to avoid rigid body trans-

lation at r ¼ 0 we have set Uf ¼ Vf ¼ 0. Also we require that the minimizing functions U and V

need to be continuous at r ¼ a for coherent interfaces

Uf að Þ ¼ Um að Þ; Vf að Þ ¼ Vm að Þ: ð2:15Þ

The remaining boundary terms of dP become

@Ff

@U0f
dUf þ

@Ff

@V 0f
dVf

 !�����
r!a

� @Fm

@U0m
dUm þ

@Fm

@V 0m
dVm

� �����
r!a

þ dFs ¼ 0: ð2:16Þ

These are exactly the natural transition conditions in the theory of variation ([20], p. 129).

Upon substitution of Eqs. (2.13) into (2.16), we find the interfacial jump conditions

r̂m
rr rð Þ � r̂f

rr rð Þ
��
r!a
¼ ks þ 2lsð Þ Us þ 2Vsð Þ

r

����
r!a

; ð2:17Þ

r̂m
rh rð Þ � r̂f

rh rð Þ
���
r!a
¼ 2 ks þ 2lsð Þ Us þ 2Vsð Þ

r

����
r!a

; ð2:18Þ

where the hat quantities, independent of h, are given by

rk
rr r; hð Þ ¼ r̂k

rr rð Þ cos 2h
a

; rk
rh r; hð Þ ¼ r̂k

rh rð Þ sin 2h
a

: ð2:19Þ

In the absence of surface residual tension s0; the conditions (2.17) and (2.18) can be further

simplified to

rm
rr rð Þ � rf

rr rð Þ
��
r!a
¼ rs

hh

r

����
r!a

; rm
rh rð Þ � rf

rh rð Þ
���
r!a
¼ � 1

r

@rs
hh

@h

����
r!a

: ð2:20Þ
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Note that ifwe look at the various types of imperfect interfaces proposed byBenveniste andMiloh

[21], we can see that Eqs. (2.9) and (2.20) correspond to the membrane type of imperfect interface

with a suitable choice of the constant P ([21], Eq. (2.11)). Of course, when setting ks ¼ ls ¼ 0; the

mathematical framework will recover the known continuity condition of traction.

2.3 Anti-plane shear deformation

We next consider that the composite cylinder is undergoing an antiplane deformation. At the

boundary of the matrix the displacement fields, ur ¼ 0; uh ¼ 0; uz ¼ e0r sin h; are imposed.

Corresponding to this deformation, the displacement fields of the composite cylinder can be

assumed as:

uk
r ¼ 0; uk

h ¼ 0; uk
z ¼ Wk rð Þ sin h: ð2:21Þ

The non-zero strains are erz and ehz:We can now derive the strain energy density. Note that the

functional of the phases can be exactly integrated as

Fk ¼
ppk

2

W2
k

r
þ r W 0

k

� �2
� �

; Fs ¼ 2a

Z2p

0

ls es
hz að Þ

� �2
dh: ð2:22Þ

By setting the variation of the functional be zero, we find the governing equation

d2Wk

dr2
þ 1

r

dWk

dr
� 1

r2
Wk ¼ 0: ð2:23Þ

Further, the function Wm needs to satisfy the boundary condition. This implies that dWm ¼ 0 at

r! b: In addition, we have set Wf ¼ 0 at the origin r ¼ 0 to avoid rigid body translation. We

further require that Wf að Þ ¼ Wm að Þ due to coherent interface. Then, the remaining terms of dP
are the natural transition conditions

@Ff

@W 0
f

dWf

 !�����
r!a

� @Fm

@W 0
m

dWm

� �����
r!a

þ2

Z2p

0

lse
s
hz að Þ cos h

� �
dW dh ¼ 0; ð2:24Þ

which can be written explicitly as

r̂m
rz rð Þ � r̂f

rz rð Þ
��
r!a
¼ r̂s

hz

r

����
r!a

; ð2:25Þ

where the hat quantities, depending only on r, are defined as

rk
rz r; hð Þ ¼ r̂k

rz rð Þ sin h; rs
hz r; hð Þ ¼ r̂s

hz rð Þ cos h: ð2:26Þ

We mention that the interfacial jump conditions in traction, (2.9.2), (2.20) and (2.25), under

the three different deformation modes agree exactly with the analysis of the generalized Young-

Laplace equations for solids obtained by Povstenko [22]. Here we recapitulate the main results

in Appendix A.

3 Effective elastic properties

In this Section we will derive the effective moduli of k�; l�;n� and p� using the concept of

neutral inhomogeneities ([23], Chap. 7). The idea of neutral inhomogeneity is mathematically

equivalent to that of constructions of composite cylinder assemblages (CCA) [13]. It is known
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that for perfect bonding interfaces (i.e., without surface effect), the effective moduli by the CCA

model have the same form as those predicted by the Mori-Tanaka method [24] and lie within

variational bounds [25]. For the effective transverse shear m�; we use the generalized self-

consistent model (GSCM) [19] (or called three-phase model) to derive the effective transverse

shear modulus.

3.1 Effective axisymmetric moduli k�; l�;n�

We first consider the composite cylinder is under the loading (2.4). The admissible displacement

fields, by solving Eq. (2.7), can be written as

uf
r ¼ Ar; um

r ¼ Br þ C

r
; uf

z ¼ um
z ¼ e0z; u

f

h ¼ um
h ¼ 0; ð3:1Þ

where the coefficients A;B;C are constants that need to be determined from the boundary and

interface conditions, (2.4) and (2.9). Next we consider a homogeneous cylinder with the same

size of the composite cylinder, with the effective moduli being denoted by k�; l�;n�: Under the

same boundary condition (2.4), we wish to adjust the values of k�; l�;n� so that the radial stress

at r ¼ b and the average axial stress in both configurations are the same. This concept can

be interpreted in different ways, termed as the CCA, or as the replacement inhomogeneity.

Specifically, these effective moduli can be exactly found as

k� ¼ km þ cf

km þmmð Þ kf � km þ ksþ2ls

2a

h i

kf þmm � cf kf � kmð Þ þ cm

ks þ 2ls

2a

; ð3:2Þ

l� ¼ lm þ cf

km þmmð Þ lf � lm þ ks

a

� �

kf þmm � cf kf � kmð Þ þ cm

ks þ 2lsð Þ
2a

; ð3:3Þ

n� ¼ cf nf þ cmnm þ cf

2 ks þ 2lsð Þ
a

�
cf cm lf þ ks

a
� lm

� �2

kf þmm � cf kf � kmð Þ þ cm

ks þ 2ls

2a

: ð3:4Þ

When setting ks ¼ ls ¼ 0; it is seen that the formulae for k�; l� and n�; recover the known

classical expressions for the perfect bonding situations ([13], Eqs. (3.6), (3.8)).

3.2 Effective antiplane shear modulus p�

We now derive the effective antiplane shear modulus p�. The admissible displacement fields,

following from the governing equation (2.23), are

uf
r ¼ um

r ¼ 0; u
f

h ¼ um
h ¼ 0; uf

z ¼ Ar sin h; um
z ¼ Br þ C

r

� �
sin h; ð3:5Þ

where again the constants A;B and C can be found from the boundary condition and the

interface conditions. Next we consider a same-size homogeneous cylinder with the unknown

axial shear modulus p�: Under the same boundary condition, we wish to adjust the value of
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p� so that the shear traction rrz at r ¼ b will be the same in both configurations. This will

give

p� ¼ pm

1þ cfð Þ pf þ ls

a

� �
þ 1� cfð Þpm

1� cfð Þ pf þ ls

a

� �
þ 1þ cfð Þpm

: ð3:6Þ

When the interface effect is neglected, the effective antiplane shear modulus again reduced to

the classical perfect bonding result for p� [13].

3.3 Effective transverse shear modulus m�

For the transverse shear loading, it is not possible to construct a neutral composite cylinder. A

commonly adopted procedure to derive the effective transverse shear modulus is through the

generalized self-consistent method. For a detailed exposition of this method, one can refer to

the work of Christensen and Lo [19]. This model assumes that the inclusion is first surrounded

by some matrix material, and then embedded in an effective medium with unknown effective

shear modulus. The auxiliary boundary value problem to be solved is that of a composite

cylinder with a cylindrical core with a matrix shell embedded in the unknown effective medium

(designated by �), and subjected at the remote boundary to a tranverse shear boundary

condition uxjr!1¼ cx; uy

��
r!1¼ �cy; uz ¼ 0: Note that the boundary condition and the

geometric configuration considered in Sect. 2.2 suffices to model the case of the generalized

self-consistent method employed here as the radius b can be taken as infinity. Under the

deformation, the corresponding solutions to Eqs. (2.14) have the forms

uf
r ¼

b

4mf

D1
r

b

� 	
þ A1 gf � 3

� � r

b

� 	3
� �

cos 2h;

u
f

h ¼
b

4mf

�D1
r

b

� 	
þ A1 gf þ 3

� � r

b

� 	3
� �

sin 2h; ð3:7Þ

um
r ¼

b cos 2h
4mm

A2 gm � 3ð Þ r

b

� 	3

þD2
r

b

� 	
þ C2 gm þ 1ð Þ b

r

� �
þ B2

b

r

� �3
 !

;

um
h ¼

b sin 2h
4mm

A2 gm þ 3ð Þ r

b

� 	3

�D2
r

b

� 	
� C2 gm � 1ð Þ b

r

� �
þ B2

b

r

� �3
 !

; ð3:8Þ

u�r ¼
b

4m�
2

r

b
þ A3 g� þ 1ð Þ b

r

� �
þ C3

b

r

� �3
 !

cos 2h;

u�h ¼
b

4m�
�2

r

b
� A3 g� � 1ð Þ b

r

� �
þ C3

b

r

� �3
 !

sin 2h; ð3:9Þ

where

g� ¼ 1þ 2
m�

k�
; gm ¼ 1þ 2

mm

km

; gf ¼ 1þ 2
mf

kf

: ð3:10Þ

The eight constants, A1; D1; A2; B2; C2; D2; A3 and C3 can be determined from the eight

interface conditions:
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uf
r

��
r¼a
¼ um

r

��
r¼a

; um
r

��
r¼b
¼ u�r

��
r¼b

; u
f

h

���
r¼a
¼ um

h

��
r¼a

;

um
h

��
r¼b
¼ u�h

��
r¼b
; rm

r

��
r¼b
¼ r�r

��
r¼b
; rm

rh

��
r¼b
¼ r�rh

��
r¼b
; ð3:11Þ

Z2p

0

rm
r a; hð Þ cos 2h dh�

Z2p

0

rf
r a; hð Þ cos 2h dh ¼ 1

a

Z2p

0

rs
h cos 2h dh

������
r¼a

;

Z2p

0

rm
rh a; hð Þ sin 2h dh�

Z2p

0

rf

rh a; hð Þ sin 2h dh ¼ 2

a

Z2p

0

rs
h cos 2h dh

������
r¼a

: ð3:12Þ

Note that these field quantities depend on the unknown effective shear modulus m� as well as

the effective plane strain bulk modulus k�. Next we consider a homogeneous comparison

medium with the effective shear modulus m�, which is subjected to the same boundary con-

dition. This will give the referenced field

u0
r ¼

r

2m�
cos 2h; u0

h ¼ �
r

2m�
sin 2h; r0

r ¼ cos 2h; r0
rh ¼ � sin 2h: ð3:13Þ

To proceed, we employ Eshelby’s formula [26] for the strain energy of the system

Z2p

0

r�ru0
r þ r�rhu

0
h � r0

ru�r � r0
rhu
�
h

� �
bdh ¼ 0: ð3:14Þ

Upon a substitution of the field quantities into the identity (3.14), it can be proven analytically

through the software Mathematica that

A3 ¼ 0: ð3:15Þ

As remarked by Christensen and Lo [27], a more direct way to resolve the solution of m�

is to set Eq. (3.15) into (3.9) at the outset. Carrying through the derivations (3.11) and

(3.12), this will give an algebraic system of eight equations with eight unknowns,

A1; D1; A2; B2; C2; D2; C3; m�. For completeness, the system of equations is recorded in

Appendix B. The solution for m� can be written in terms of a quadratic equation for m�: In the

absence of the surface effects, we have checked analytically that our system of equations exactly

agrees with that of Christensen and Lo [19].

4 Numerical results

In numerical illustrations, we first examine the effect of surface stress on the field solutions. We

consider a cylindrical cavity in an unbounded isotropic matrix (by letting b!1) subjected to

a remote transverse hydrostatic tension rm
r

��
r!1¼ r0, with an axial constraint ez ¼ 0. Based on

the preceding derivations, the stress concentration factor (SCF) along the boundary of the

cylindrical cavity can be written as

SCF ¼ rm
h

r0

����
r!a

¼
2þ ks þ 2ls

2a

1

mm

� 1

km

� �

1þ ks þ 2ls

2a

1

mm

: ð4:1Þ
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The same geometric configuration subjected to a remote transverse shear

rm
x

��
r!1¼ �rm

y

���
r!1
¼ r0 is also considered. The hoop stress around the cavity surface can be

found as

SCF ¼ rm
h

r0

����
r!a

¼ �
4þ ks þ 2ls

a

1

mm

� 1

km

� �

1þ ks þ 2ls

2a

2

mm

þ 1

km

� � cos 2h: ð4:2Þ

Note that when the surface effect is neglected, or the radius of the cylindrical cavity a is

relatively large, Eq. (4.1) gives a concentration factor of 2 and Eq. (4.2) gives a concentration

factor of 4. Both of which agree with the classical elasticity solutions [28]. To make numerical

illustrations, we consider solids containing cylindrical cavities. The material properties of the

matrix are recorded from [11] for aluminium (Kf ¼ 75:2 GPa; mf ¼ 0:3Þ: Note that K is the

isotropic bulk modulus and l is the shear modulus, which are related to Hill’s moduli by

k ¼ K þ l=3; l ¼ p ¼ m: The free surface properties were extracted from the existing literature

which were calculated based on the molecular dynamics simulations [29]. The surface properties

generally vary with different crystallographic orientations. Here we adopted two different sets

of surface properties corresponding to the crystallographic directions [100] and [111] of Al. Two

sets of the parameters are: surface A; ks ¼ 3:48912 N/m; ls ¼ �6:2178 N/m for [100]; surface

B; ks ¼ 6:842 N/m; ls ¼ �0:3755 N/m for [111]. We shall use surface C to represent the results

for the classical solution without interface stress. In Fig. 1, we plotted the stress concentration

factor (4.1) under the transverse hydrostatic loading. It is seen that surface A tends to increase

the stress concentration as the radius of the cavity becomes smaller. By contrast, surface B

reverses the trend. The same calculations for the maximum stress concentration are also made

for the transverse shear (Fig. 2). But the factor does increase (decrease) rapidly compared to

that of Fig. 1. The classical solution (without surface effects) corresponds to ks ¼ ls ¼ 0; and is

thus independent of cavity size.
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Fig. 1. The stress concentration factor (5.1) of a cylindrical cavity in an unbounded matrix under a

hydrostatic transverse loading versus the radius of the cavity. The curve A is calculated based on the
surface property of Al [100], curve B uses the surface moduli of Al [111] and the curve C denotes the

classical elasticity solution
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For the effective moduli, we present k�=kC and m�=mC, where the subscript C represents the

classical results without surface effects. From the formulae (3.2)–(3.4) and (3.6), they suggest

that the surface effect becomes important only when the value ks þ 2lsð Þ=ð2aÞ is in the order of

kf under axisymmetric loadings, and 2ls=a is in the order of pf under antiplane deformation.

From the previous surface data (surfaces A and B), it is seen that kf is around the order of

10 � 100 GPa and ks and ls are in the order of N/m. From preliminary dimensional analysis,

the surface effect will become important when the radius of the fibers, a; is in the order of

nanoscale or smaller (10�9mÞ: This observation can also be found from the detailed numerical

calculations. In Fig. 3 plots of the value of k�=kC versus the cavity radius a ðnmÞ for the volume

fraction cf ¼ 0:3 are shown. The surface effect on the effective bulk modulus becomes negligible
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Fig. 2. Same as Fig. 1, but for the transverse shear loading versus the radius of cavity. The stress
concentration factor is given in Eq. (5.2)
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Fig. 3. The value of k�=kC versus the radius of the cylindrical cavity a ðnmÞ for the volume fraction

cf ¼ 0:3
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when the radius of the cavity is larger than 25 nm. A similar plot (Fig. 4) is illustrated for the

variations of m�=mC versus the cavity radius a: All indicate that when the size of the cavity

becomes small, the surface effects become significant. In Figs. 5 and 6, we vary the volume

fraction of the cylindrical cavities to assess its influence on the effective quantities. Two different

radii of the cavity are selected as a ¼ 5 nm and a ¼ 20 nm. For a given radius, we plot the

effective modulus versus the volume fracion. When the radius size is small, the changing rate

becomes more pronounced. These numerical illustrations indicate that the surface effect is

particularly significant for smaller sizes of inclusions.

5 Concluding remarks

Surface stress effects with interface stresses can be characterized by a continuity of dis-

placements together with a jump in traction. Mathematically this corresponds to a membrane

type of imperfect interface [30]. Although the interface condition can in principle be for-

mulated via an introduction of a very thin and stiff interphase layer between the fiber and the

matrix, to deduce the present results from the existing solutions for composites with coated

fiber reinforcements would generally require some complicated asymptotic analyses [21],

which pose some mathematical difficulties in practice. We demonstrate that this nonclassical

interface condition also permits constructions of neutral inclusions. Simple, explicit formulae

for four out of the five effective elastic constants have been derived. The remaining transverse

shear modulus also permits simple calculations through elementary algebra. The present

study may find potential applications in technologically interesting systems, such as nano-

tube-based composites. The analytic expressions of these properties provide a general

guideline for the evaluation of nano-composite systems and thereby to be used to develop

criteria for choosing the base combination of different constituent materials to achieve spe-

cific purposes.
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Appendix A

Here we record the equilibrium equations of the generalized Young-Laplace equation for solids

[22]. The following results are extracted from Duan et al. [10]. The equilibrium equations of the

interface can be obtained as

rm � rf
� �

� n ¼ �$S � rs; ðA:1Þ
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Fig. 5. The value of k�=kC versus the volume fraction cf of the cylindrical cavity for a ¼ 5 nm and
a ¼ 20 nm

1.2

1.1

1

0.9

m
* 

/ m
c

0.8

0.7

0 0.1 0.2 0.3 0.4

B, a=5nm

B, a=20nm

A, a=20nm

A, a=5nm

Cf

0.5 0.6 0.7

Fig. 6. The value of m�=mC versus the volume fraction cf of the cylindrical cavity for a ¼ 5 nm and
a ¼ 20 nm
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where n is the unit normal vector to the interface C, and $S� rs denotes the surface divergence

of rs at the interface C: For a curved interface C with two orthogonal unit base vectors e1 and

e2 in the tangent plane, $S� rs is expressed by

$S � rs ¼ � rs
11

R1
þ rs

22

R2

� �
nþ e1

h1h2

@ h2rs
11

� �
@a1

þ
@ h1rs

21

� �
@a2

þ @h1

@a2
rs

12 �
@h2

@a1
rs

22
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þ e2

h1h2

@ h2rs
12

� �
@a1

þ
@ h1rs

22

� �
@a2

� @h1

@a2
rs

11 þ
@h2

@a1
rs

21


 �
; ðA:2Þ

where a1 and a2 denote the two parameters determining the interface such that a1 ¼ const. and

a2 ¼const. give two sets of a mutually orthogonal curve on C, and h1 and h2 are the corre-

sponding metric coefficients. R1 and R2 are the radii of the principal curvature. For cylindrical

inclusions, we can set e1 ¼ eh and e2 ¼ ez; also, h1 ¼ r and h2 ¼ 1: It can be verified that our

interfacial jump conditions in traction are reconstructed.

Appendix B

We outline the system of algebraic equations for the solution of effective shear modulus m�

through the generalized self-consistent method. The system of equations is:

mm

mf

A1 gf � 3
� �

cf þ D1

� �
¼ A2 gm � 3ð Þcf þ D2 þ C2 gm þ 1ð Þc�1

f þ B2c�2
f

h i
;

mm

mf

A1 gf þ 3
� �

cf � D1

� �
¼ A2 gm þ 3ð Þcf � D2 � C2 gm � 1ð Þc�1

f þ B2c�2
f

h i
; ðB:1Þ

gm � 3

mm

A2 þ
1

mm

D2 þ
gm þ 1

mm

C2 þ
1

mm

B2 ¼
2

m�
þ C3

m�
;

gm þ 3

mm

A2 �
1

mm

D2 �
gm � 1

mm

C2 þ
1

mm

B2 ¼
�2

m�
þ C3

m�
; ðB:2Þ

D2 � 4C2 � 3B2 þ 3C3 ¼ 2;

� 6A2 þ D2 þ 2C2 þ 3B2 � 3C3 ¼ 2; ðB:3Þ

� 3cf gm þ 1ð Þ ks þ 2ls

amm

� �
A2 þ 2þ ks þ 2ls

amm

� �
D2 � 2D1

þ c�1
f �8þ gm � 3ð Þ ks þ 2ls

amm

� �
C2 � 3c�2

f 2þ ks þ 2ls

amm

� �
B2 ¼ 0; ðB:4Þ

� 6cf A1 þ D1 þ cf 6� 3 gm þ 1ð Þ ks þ 2ls

amm

� �
A2 þ �1þ ks þ 2ls

amm

� �
D2

þ c�1
f �2þ gm � 3ð Þ ks þ 2ls

amm

� �
C2 � 3c�2

f 1þ ks þ 2ls

amm

� �
B2 ¼ 0: ðB:5Þ
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