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Summary. Vibrations of shallow curved beams are investigated. The rise function of the beam is assumed

to be small. Sinusoidal and parabolic curvature functions are examined. The immovable end conditions

result in mid-plane stretching of the beam which leads to nonlinearities. The beam is resting on an elastic

foundation. The method of multiple scales, a perturbation technique, is used in search of approximate

solutions of the problem. Two-to-one internal resonances between any two modes of vibration are studied.

Amplitude and phase modulation equations are obtained. Steady state solutions and stability are dis-

cussed, and a bifurcation analysis of the amplitude and phase modulation equations are given. Conditions

for internal resonance to occur are discussed, and it is found that internal resonance is possible for the case

of parabolic curvature but not for that of sinusoidal curvature.

Nomenclature

an real amplitudes

A area of beam cross section

An complex amplitudes

bn coefficients related to curvature function

d volumetric density

D0 derivative with respect to fast time scale

D1 derivative with respect to slow time scale

E Youngs’ modulus of elasticity

f coefficient related to excitation amplitude

f1, f2 bifurcation points in the force response diagrams
�F dimensionless amplitude of excitation

F ordered amplitude of excitation

I moment of inertia of cross sectional area of beam

k dimensional linear coefficient of elastic foundation

L length of the beam

pn, qn, vn functions for alternative representations of complex amplitudes

Q a general operator representing quadratic nonlinearities

r radius of gyration of the beam cross section

t� dimensional time

t dimensionless time

T0 fast time scale

T1 slow time scale

u� dimensional longitudinal displacement
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u dimensionless longitudinal displacement

w� dimensional transverse displacement

w dimensionless transverse displacement

w1 O(e) solution for the response

w2 O(e2) solution for the response

W parts of solution w3 related to non-secular terms

x� dimensional spatial variable

x dimensionless spatial variable

Yn linear mode shapes

Z�0 dimensional curvature function

Z0 dimensionless curvature function

a dimensionless linear coefficient of elastic foundation

a1, a2 coefficients in the amplitude and phase modulation equations

bn parameters used for calculating natural frequencies

d variational derivative

e perturbation parameter

/1, /2 parts of solution w2 related to secular terms

c, k phases

l ordered damping coefficient

�l dimensionless damping coefficient

hn phase functions in the polar form of complex amplitudes

q detuning parameter for internal resonance

r detuning parameter for excitation frequency

xn natural frequencies

W dimensionless frequency of excitation

1 Introduction

The problem of beams on elastic foundations occupies an important place in modern structural

and foundation engineering. They are used extensively in modern day structures like airplanes,

rockets, missiles, boosters, use of soft filaments in aerospace structures, building activities in

cold regions, foundations of heavy duty machines, underwater and embedded structures, in

which the effect of the supporting medium has to be considered for adequate analysis. Bars with

small curvatures are used in automobiles to reduce the effect of side impacts for safety reasons.

These can be modeled as curved beams resting on an elastic foundation including the effect of

stretching of the neutral axis. The stretching of the neutral axis introduces an integral type

quadratic nonlinearity to the equations of motion. Rehfield [1] studied free vibrations of a

shallow arc with an arbitrary rise function. Singh and Ali [2] investigated a moderately thick

clamped beam with a sinusoidal rise function. Yamaki and Mori [3] analyzed a clamped

buckled beam by using a combination of Galerkin and Harmonic Balance method.

Internal resonances occur frequently, and energy is easily transferred from the excited mode

to the specified mode with 2:1 (two-to-one) or 3:1 (three-to-one) etc. resonances. Tien et al. [4],

[5] examined the weakly nonlinear resonance response of a two-degree-of-freedom shallow arch

subjected to simple harmonic excitation for the case of 1:1 and 2:1 internal resonance by using

the method of averaging. Öz et al. [6] studied the effects of nonlinear elastic foundation, axial
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stretching and curvature by using the method of multiple scales. It was found that the non-

linearities due to curvature were of softening type whereas those of elastic foundation were of

hardening type. Bi and Dai [7] investigated the dynamical behavior of a shallow arch subjected

to periodic excitation with internal resonance by using a time-integration scheme in the

numerical solutions and also applied a numerical simulation to obtain double-period cascading

bifurcations leading to chaos and the steady state period-3 solution in the chaos region.

Pakdemirli [8], [9] developed a general operator notation to investigate quadratic and cubic

nonlinearities in a general manner. Different types of resonances and similar general operator

notations were considered in [10]–[18]. These works, revealed some common properties of

nonlinear systems. Two-to-one internal resonances in systems such as pendulums, ships having

pitch and roll motions, arches, liquids in a cylindrical container, beams are discussed and

results in literature are reviewed in [19]. Approximate analytical solutions, experimental veri-

fications and control implementations can be found in that reference. For a system with

arbitrary quadratic nonlinearities, 2:1 internal resonances were investigated in detail and

general features of such systems were revealed by Pakdemirli and Özkaya [20]. The general

conditions for such resonances to occur are derived in that analysis. Lacarbonara et al. [21]

studied 1:1 internal resonances in a shallow beam with one end simply supported and a spring

at the other end.

In this study, vibrations of simply supported curved shallow beams are investigated. Two

types of curvature are considered, sinusoidal and parabolic curvatures. The beam is resting on a

linear elastic foundation. The method of multiple scales is used in the analysis. The curvature

function is assumed to be of order 1 and the amplitude of vibrations to be of order e. Two-
to-one internal resonance case is studied. Amplitude and phase modulation equations are

obtained. Steady state solutions and stability are discussed. There are no 2:1 internal

resonances for sinusoidal curvature. Internal resonance is obtained only for the beams with

parabolic curvature.

2 Equation of motion

The geometry of the problem is given in Fig. 1. The kinetic and potential energies of the system

are

T ¼ 1

2
qA

ZL

0

_w�
2

dx�; ð1Þ

U ¼ 1

2
EA

ZL

0

u�
0 þ 1

2
w�

02 þ Z�
0

0 w�
0

� �2

dx� þ 1

2
EI

ZL

0

w�
002

dx� þ
ZL

0

1

2
kw�

2

dx�; ð2Þ

where w� is the transverse displacement, u� is the longitudinal displacement, Z�0 is the

arbitrary initial rise function (curvature), E is the modulus of elasticity, A is the cross-

sectional area, I is the area moment of inertia with respect to the neutral axis, d is the

volumetric density, and k is the linear spring constant for the elastic foundation. x� and t� are

the spatial and time variables, respectively, and prime and dot denotes differentiation with

respect to these variables. In Eq. (2), the first term is the energy due to the stretching of the

beam, the second term is the energy due to the bending of the beam and the last term is the

energy due to the elastic foundation.
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Defining the Lagrangian as L ¼ T � U and invoking Hamilton’s principle d
R t�

2

t�
1
L dt� ¼ 0

leads to the following coupled equations of motion:

dA €w� þ EIw�
iv þ kw� ¼ EA u�

0 þ 1

2
w�

02 þ Z�
0

0 w�
0

� �
Z�
0

0 þw�
0

� �� �0
; ð3Þ

EA u�
0 þ 1

2
w�

02 þ Z�
0

0 w�
0

� �0
¼ 0: ð4Þ

Integrating the last equation with the assumption of immovable ends, the longitudinal dis-

placement can be eliminated. The final equation of motion reads

dA €w� þ EIw�
iv þ kw� ¼ EA

L

ZL

0

Z�
0

0 w�
0 þ 1

2
w�

02
� �

dx� w�00 þ Z�000

� �
: ð5Þ

The associated boundary conditions are

w� 0; t�ð Þ ¼ w�
00

0; t�ð Þ ¼ w� L; t�ð Þ ¼ w�
00

L; t�ð Þ ¼ 0: ð6Þ

In deriving the equations, the following assumptions are made: (i) shallow beam; (ii) linear

bending curvature; (iii) stretching of the beam due to the immovable end conditions. Note that

the stretching type of nonlinearities dominates over other types of nonlinearities such as

nonlinear curvature and inertia type nonlinearities [21].

The nondimensional quantities are defined as follows:

w ¼ w�

r
; x ¼ x�

L
; Z0 ¼

Z�0
r
; t ¼ r

L2

ffiffiffiffi
E

q

s
t�; a ¼ kL4

EI
; ð7Þ

where r is the radius of gyration. Inserting non-dimensional quantities into Eqs. (5) and (6) and

adding a damping and external excitation term finally leads to the mathematical model

€wþwiv þ 2l _wþ aw ¼ F cos Xtþ
Z1

0

�
Z00w0 þ 1

2
w0

2

�
dxðZ000 þw00Þ; ð8Þ

w 0; tð Þ ¼ w00 0; tð Þ ¼ w 1; tð Þ ¼ w00 1; tð Þ ¼ 0; ð9Þ

where l is the dimensionless viscoelastic damping coefficient, a is the dimensionless elastic

foundation coefficient and F and X are the dimensionless external excitation amplitude and

frequency, respectively. This same model was employed previously in examining primary res-

onances of the external excitation [6]. Here, the model will be employed in analyzing 2:1

internal resonances between the modes and external excitation of the higher frequency mode.

Two different curvature functions will be used in the analysis, one with the sinusoidal variation

and the other with the parabolic variation,

xZ0(x)

w

L

z,w

Fig. 1. Geometry of the problem
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Z0ðxÞ ¼ sin px; ð10Þ

Z0ðxÞ ¼ 4xð1� xÞ: ð11Þ

3 Perturbation analysis

The method of multiple scales will be used to solve the problem approximately [22], [23]. One

assumes an expansion of the form

w x; t; eð Þ ¼ ew1 x;T0;T1ð Þ þ e2w2 x;T0;T1ð Þ þ Oðe3Þ; ð12Þ

where e is a small parameter indicating that the amplitudes of vibrations are small (weakly

nonlinear system) and T0 ¼ t and T1 ¼ et are the usual fast and slow time scales in the multiple

scales method. Assume that Z0ðxÞ is of order one, and the external excitation amplitude and

damping is selected to balance the effect of quadratic nonlinearities, that is,

F ¼ e2F; l ¼ el; Z0 � Oð1Þ: ð13Þ

Derivatives with respect to time are written in terms of fast and slow time scales,
d

dt
¼ D0 þ eD1 þ . . . ;

d2

dt2
¼ D2

0 þ 2eD0D1 þ . . . ; ð14Þ

where Dn ¼ @=@Tn. Substituting (12)–(14) into (8)–(9) and separating terms at each order of e,
one has

Order e:

D2
0w1 þwiv

1 þ aw1 � Z000

Z1

0

Z00w01dx ¼ 0;

w1 0; tð Þ ¼ w001 0; tð Þ ¼ w1 1; tð Þ¼ w001 1; tð Þ ¼ 0;

ð15Þ

Order e2:

D2
0w2 þwiv

2 þ aw2 � Z000

Z1

0

Z00w02dx

¼ �2D0ðD1w1 þ lw1Þ þ F cos XT0 þ
1

2
Z000

Z1

0

w021 dxþw001

Z1

0

Z00w01dx;

w2 0; tð Þ ¼ w002 0; tð Þ ¼ w2ð1; tÞ ¼ w002ð1; tÞ ¼ 0: ð16Þ

At order e, the solution may be represented by

w1 x;T0;T1ð Þ ¼
X1
n¼1

An T1ð ÞeixnT0 þ cc
� 	

Yn xð Þ; ð17Þ

where cc stands for the complex conjugates of the preceding terms. xn are the natural

frequencies and Yn are the mode shapes. Inserting Eq. (17) into (15) yields

Yiv
n � b4

nYn � bnZ000 ¼ 0; ð18Þ

Yn 0ð Þ ¼ Y 00n 0ð Þ ¼ Yn 1ð Þ ¼ Y 00n 1ð Þ ¼ 0; ð19Þ
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where

bn ¼
Z1

0

Z00Y 0ndx; b4
n ¼ x2

n � a: ð20Þ

One assumes xm ¼ 2xn þ eq for 2:1 internal resonance and X ¼ xm þ er for the excitation.

With this assumption, the higher mode is excited and some of the energy of this higher mode is

transferred to the lower mode via internal resonances. Inserting Eq. (17) and the frequency

relations above into order e2 equations, one gets

D2
0w2 þwiv

2 þ aw2 � Z000

Z1

0

Z00w02dx

¼
(
� 2ixnðD1An þ lAnÞYn þ �AnAmeiqT1

�
 

Y 00m

Z1

0

Z00Y 0ndxþ Y 00n

Z1

0

Z00Y 0mdxþ Z000

Z1

0

Y 0nY 0mdx

!)
eixnT0

þ
(
� 2ixmðD1Am þ lAmÞYm þ A2

ne�iqT1

� Y 00n

Z1

0

Z00Y 0ndxþ 1

2
Z000

Z1

0

Y 0n
2
dx

0
@

1
Aþ 1

2
FeirT1

)
eixmT0 þ NST; ð21Þ

where NST stands for non secular terms. The solution at this order can be cast into the below

form:

w2 x;T0;T1ð Þ ¼ /1 x;T1ð ÞeixnT0 þ /2 x;T1ð ÞeixmT0 þ ccþW x;T0;T1ð Þ; ð22Þ

where cc stands for complex conjugate of the preceding terms and W x;T0;T1ð Þ stands for the
solution of non-secular terms. Substituting Eq. (22) into Eq. (21) yields

/1
iv � x2

n � a
� �

/1 � Z000

Z1

0

Z00/
0
1dx

¼ �2ixnðD1An þ lAnÞYn

þ AnAmeiqT1 Y 00m

Z1

0

Z00Y 0ndxþ Y 00n

Z1

0

Z00Y 0mdxþ Z000

Z1

0

Y 0nY 0mdx

0
@

1
A; ð23Þ

/1 0ð Þ ¼ 0; /1 1ð Þ ¼ 0; /001 0ð Þ ¼ 0; /1 1ð Þ ¼ 0; ð24Þ

/2
iv � x2

m � a
� �

/2 � Z000

Z1

0

Z00/
0
2dx ¼ �2ixmðD1Am þ lAmÞYm

þ A2
ne�iqT1 Y 00n

Z1

0

Z00Y 0ndxþ 1

2
Z000

Z1

0

Y 0 2n dx

0
@

1
Aþ 1

2
FeirT1 ; ð25Þ
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/2 0ð Þ ¼ 0; /2 1ð Þ ¼ 0; /002 0ð Þ ¼ 0; /002 1ð Þ ¼ 0 ð26Þ

for secular terms. Since the homogeneous parts of Eqs. (23) and (25) possess nontrivial

solutions, the non-homogeneous equations have a solution only if the following solvability

conditions [22] are satisfied:

2ixnðD1An þ lAnÞ þ a1AnAmeiqT1 ¼ 0; ð27Þ

2ixmðD1Am þ lAmÞ þ a2A2
ne�iqT1 � f

2
eirT1 ¼ 0; ð28Þ

where

a1 ¼ �
Z1

0

Y 00mYndx

Z1

0

Z00Y 0ndx�
Z1

0

Y 00nYndx

Z1

0

Z00Y 0mdx�
Z1

0

Z000Yndx

Z1

0

Y 0nY 0mdx; ð29Þ

a2 ¼ �
Z1

0

Y 00nYmdx

Z1

0

Z00Y 0ndx� 1

2

Z1

0

Z000Ymdx

Z1

0

Y 02n dx; ð30Þ

f ¼
Z1

0

FYmdx: ð31Þ

For the mode shapes,
R 1

0 Y2
ndx ¼ 1 normalization condition is applied. Two different curvature

functions will be considered in the solutions. In reference [6], the shape function for sinusoidal

curvature was treated. If bn ¼ 0 in Eq (20), the mode shapes at the first order are

Yn ¼
ffiffiffi
2
p

sin npx; bn ¼ np; n ¼ 2; 3; 4; . . . : ð32Þ

If bn 6¼ 0 then the solution for the first mode is

Y ¼
ffiffiffi
2
p

sin px; b ¼
ffiffiffi
3

2

4

r
p: ð33Þ

Inserting Eqs. (10), (32) and (33) into Eqs. (29) and (30) and evaluating the integrals, one

obtains the following solvability conditions for the sinusoidal curvature case:

2ixnðD1An þ lAnÞ ¼ 0; ð34Þ

2ixmðD1Am þ lAmÞ �
f

2
eirT1 ¼ 0; ð35Þ

which means there is no 2:1 internal resonance. From Eq. (34) An decays in time, and energy

transfer from the higher mode is impossible.

Secondly, the parabolic curvature case will be analyzed. In this case, Eq. (18) becomes

Yiv
n � b4

nYn þ 64

Z1

0

Yndx ¼ 0: ð36Þ

One may assume the following function for the solution of the equation above:

Yn ¼ c1 cos bnxþ c2 sin bnxþ c3 cosh bnxþ c4 sinh bnxþ c5: ð37Þ

Applying the boundary conditions (19) to the above solution yields

Yn ¼ c5 1� 1

2
cos bnx� 1

2
cosh bnx� 1� cos bn

2 sin bn

sin bnx� 1� cosh bn

2 sinh bn

sinh bnx


 �
; ð38Þ
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where c5 can be calculated from similar normalization conditions. Substituting Eq. (38) into

Eq. (36), the transcendental equation determining frequencies is obtained as follows:

� b5
n sinbn sinh bn þ 32

n
2bn � sinbn � sinh bnð Þ sin bn sinh bn

� 1� cos bnð Þ2sinh bn þ 1� coshbnð Þ2sinbn

o
¼ 0: ð39Þ

Numerical values for the first five natural frequencies will be given for different elastic foun-

dation values in the numerical analysis section. For the parabolic curvature, the solvability

conditions (27) and (28) are valid.

For a model with general quadratic nonlinearity, the sufficiency condition for 2:1 internal

resonance to occur has been derived previously [20] as

Z1

0

Yn½QðYn;YmÞ þQðYm;YnÞ�dx 6¼ 0; ð40Þ

where Q is a general quadratic nonlinearity operator. This term corresponds to a1 in Eq. (27)

which vanishes for a sinusoidal shape function eliminating the internal resonance but does not

vanish for a parabolic shape function which means internal resonance is possible for this case.

Therefore, the initial geometry of the beam is extremely important in the development of

resonances.

4 Steady state solutions

Equations (27) and (28) represent the modulations in the complex amplitudes. Writing them in

the polar form

An ¼
1

2
an T1ð Þeihn T1ð Þ; Am ¼

1

2
am T1ð Þeihm T1ð Þ ð41Þ

and substituting into Eqs. (27) and (28), separating real and imaginary parts, one finally obtains

�xnanh0n þ
1

4
a1anam cos c ¼ 0;

xna0n þ lxnan þ
1

4
a1anam sin c ¼ 0; ð42Þ

�xmamh0m þ
1

4
a2a2

n cos c� f

2
cos k ¼ 0;

xma0m þ lxmam �
1

4
a2a2

n sin c� f

2
sin k ¼ 0;

where

c ¼ qT1 þ hm � 2hn; k ¼ rT1 � hm: ð43Þ

For steady state solutions, a0n ¼ a0m ¼ c0 ¼ k0 ¼ 0; h0n ¼ rþ qð Þ=2; and h0m ¼ r. Equations (42)
become

�xnan

rþ q
2
þ 1

4
a1anam cos c ¼ 0;
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lxnan þ
1

4
a1anam sin c ¼ 0; ð44Þ

�xmamrþ 1

4
a2a2

n cos c� f

2
cos k ¼ 0;

lxmam �
1

4
a2a2

n sin c� f

2
sin k ¼ 0:

The amplitude and phase modulation equations (42) can be reorganized in terms of new

variables c and k, and hence the system becomes autonomous:

a0n ¼ �lan �
1

4xn

a1anam sin c ¼ G1 an;am; k; cð Þ;

a0m ¼ �lam þ
1

4xm

a2a2
n sin cþ f

2xm

sin k ¼ G2 an;am; k; cð Þ; ð45Þ

k0 ¼ r� 1

4xm

a2
a2

n

am

cos cþ f

2amxm

cos k ¼ G3 an;am; k; cð Þ;

c0 ¼ qþ 1

4xm

a2
a2

n

am

cos c� f

2amxm

cos k� 1

2xn

a1am cos c ¼ G4 an;am; k; cð Þ:

The approximate solution for the case where internal resonances exist is

w x; tð Þ ¼ e an cos
X
2

t� kþ c
2

� �
Yn xð Þ þ am cos Xt� kð ÞYm xð Þ

� 

þ O e2

� �
: ð46Þ

The amplitudes and the phases are now governed by Eqs. (45).

The analytical expressions for the steady state response amplitudes can be calculated. When

an is trivial, from Eqs. (44)

an ¼ 0; am ¼
f

2xm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p : ð47Þ

When an becomes nontrivial

an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8xnxm

a1a2
r rþ qð Þ � 2l2ð Þ � 2

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 16x2

nx2
m

a2
1

l2 qþ 3rð Þ2
svuut ; ð48Þ

am ¼
2xn

a1j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 þ rþ qð Þ2

q
; ð49Þ

which means am remains constant with respect to the excitation amplitude. This phenomenon is

called saturation [24].

5 Stability analysis

In this section, the stability of the steady state equations will be investigated. One has to

consider the amplitude and phase modulation equations given in Eq. (45) and construct the

associated Jacobian matrix evaluated at the fixed points, i.e.,
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@G1

@an

@G1

@am

@G1

@k
@G1

@c

@G2

@an

@G2

@am

@G2

@k
@G2

@c

@G3

@an

@G3

@am

@G3

@k
@G3

@c

@G4

@an

@G4

@am

@G4

@k
@G4

@c

2
666666666666664

3
777777777777775

an¼an0
am¼am0
k¼k0
c¼c0

:

ð50Þ

The eigenvalues of the Jacobian matrix should not have positive real parts to maintain stability.

This approach is useful for the nontrivial solution but is not suitable for the trivial solution. To

determine the stability of the trivial solution, an alternative form for the complex amplitude

equations will be used as given below:

An ¼
1

2
ðpn � iqnÞ eimnT1 ; Am ¼

1

2
ðpm � iqmÞ eimmT1 : ð51Þ

Substituting the new definitions into the solvability conditions (i.e., Eqs. (27) and (28)), one

finally has

p0n ¼ �lpn � mnqn �
a1

4xn

ðqnpm � pnqmÞ ¼ H1ðpn; qn;pm; qmÞ;

q0n ¼ �lqn þ mnpn �
a1

4xn

ðpnpm þ qnqmÞ ¼ H2ðpn; qn;pm; qmÞ;

p0m ¼ �lpm � mmqm þ
a2

2xm

pnqn ¼ H3ðpn; qn;pm; qmÞ; ð52Þ

q0m ¼ �lqm þ mmpm �
a2

4xm

ðp2
n � q2

nÞ þ
f

2xm

¼ H4ðpn; qn;pm; qmÞ;

where

mn ¼
qþ r

2
; mm ¼ r: ð53Þ

Fixed points of the equations are

pn ¼ 0; qn ¼ 0; pm ¼ pm0 ¼ �
fr

2xmðr2 þ l2Þ ; qm ¼ qm0 ¼
fl

2xmðr2 þ l2Þ : ð54Þ

The Jacobian matrix is evaluated at these fixed points,

@H1

@pn

@H1

@qn

@H1

@pm

@H1

@qm

@H2

@pn

@H2

@qn

@H2

@pm

@H2

@qm

@H3

@pn

@H3

@qn

@H3

@pm

@H3

@qm

@H4

@pn

@H4

@qn

@H4

@pm

@H4

@qm

2
6666666666666664

3
7777777777777775

pn¼0
qn¼0
pm¼pm0
qm¼qm0

:

ð55Þ
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Eigenvalues of this matrix should not have positive real parts for maintaining stability.

Eigenvalues can be calculated analytically for this degenerate case, and the solution is stable if

f <
4xnxm

a1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 þ ðrþ qÞ2

q
ð56Þ

and unstable otherwise.

As will be discussed later, the lower mode is trivial and as the excitation amplitude is

increased, it acquires a nontrivial response and the higher mode saturates. The transition point

is a supercritical pitchfork bifurcation point. The general analytical expression for this bifur-

cation point can be obtained by equating Eq. (48) to zero as follows:

f1 ¼
4xnxm

a1j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 qþ 3rð Þ2þ r qþ rð Þ � 2l2½ �2

q
: ð57Þ

For some specific set of parameters, saddle node bifurcation points arise in force-response

diagrams. The analytical expression for the saddle node bifurcation point can be obtained by

equating the inside square root of expression (48) to zero as given below,

f2 ¼
4xnxm

a1j j
l qþ 3rj j: ð58Þ

6 Numerical results

In this section, numerical results will be given. For the sinusoidal curvature case, there were no

2:1 internal resonances. For the parabolic curvature case, the related equations were obtained.

The frequency equation and values for the sinusoidal curvature case were given in [6]. For the

parabolic curvature case, the natural frequency is obtained from Eq. (20) as below:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4

n þ a
q

: ð59Þ

The first five frequencies are presented in Table 1 for different elastic foundation values

(a ¼ 0; 10; 50; 100 and 500). The values of the elastic foundation coefficient resulting in 2:1

internal resonances can be calculated by employing the following equation:

a ffi b4
m � 4b4

n

3
: ð60Þ

Assuming a value for e ¼ 0:1, one can determine the modes at which there exist 2:1 internal

resonances. There are 2:1 internal resonances between the second and the fourth modes when

a ¼ 6234, and between the first and fourth modes when a ¼ 8113. The corresponding fre-

quencies, a1 and a2 values (coupling coefficients in the solvability conditions) are presented in

Table 2. Recalling the definition of a given in Eq. (7) and using a ¼ 6234, one can calculate the

Table 1. The first five frequencies versus elastic foundation coefficient

a 0 10 50 100 500

x1 12:2166 12:6192 14:1154 15:7875 25:4803

x2 39:4784 39:6049 40:1067 40:7252 45:3712

x3 88:8591 88:9153 89:140 89:420 91:6294

x4 157:914 157:945 158:072 158:230 159:489

x5 246:744 246:765 246:846 246:947 247:755
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stiffness of the elastic foundation. For a steel member, E ¼ 2:07� 1011, having rectangular

cross section with width of 2 cm, height of 0:5 cm and length of 1 m, the stiffness is k ¼ 268841

N=m2. For a ¼ 8113, k ¼ 349873 N=m2. Thus the elastic foundation becomes stiff in the case of

2:1 internal resonances.

In Figs. 2–9, solid lines denote stable and dashed lines denote unstable solutions. In Figs. 2–

5, internal resonances between the first and fourth modes are considered for a ¼ 8113. In

Fig. 2, when the excitation amplitude is gradually increased, the first mode remains unexcited

but the amplitude of the fourth mode is increasing linearly until f ¼ f1ð0:14122Þ is reached.

This point is a supercritical pitchfork bifurcation point, and the first mode acquires a nontrivial

response after this point but the amplitude of the fourth mode remains constant (saturates).
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a4a4 a1

a1 a1f1

f

Fig. 2. Force-response curves for

the externally excited (a4) and
internally excited (a1) modes for

parameter values a ¼ 8113,
x4 ¼ 181:7958, x1 ¼ 90:8969,

l ¼ 0:01, r ¼ 0:00219628, e ¼ 0:1,
q ¼ 0:0205695, f1 ¼ f2 ¼ 0:14122

(solid: stable, dashed: unstable
solutions)

-0.04 -0.02 0 0.02 0.04

0

0.02

0.04

0.06

0.08 a4

a1

a1

a4a1
a4

1 2ss

s

Fig. 3. Frequency-response

curves for the externally excited
(a4) and internally excited (a1)

modes for parameter values
a ¼ 8113, x4 ¼ 181:7958,

x1 ¼ 90:8969, l ¼ 0:035,
r1 ¼ �0:0242908, r2 ¼ 0:014928,

e ¼ 0:1, q ¼ 0:0205695, f ¼ 1

(solid: stable, dashed: unstable

solutions)

Table 2. Special elastic foundation values and corresponding mode numbers, frequencies and
amplitude-phase modulation coefficients for 2:1 internal resonances to occur

a n m xn xm a1 a2

8113 1 4 90:8969 181:7958 197:400 98:7000

6234 2 4 88:2754 176:552 158:863 79:4315
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In Fig. 3, frequency response curves are presented. When r1ð�0:0242908Þ < r < r2ð0:014928Þ,
the trivial a1 response loses its stability and a nontrivial stable solution exists. When a1 is

nontrivial, some of the energy is transferred to this mode from a4. The locations of bifurcation

points are shown in the figure.

For different sets of parameters, force response curves exhibit jump behavior as shown in

Fig. 4. When f ¼ f1ð1:25235Þ is approached from left, the first mode jumps to the upper stable

-0.1 -0.05 0 0.05 0.1

0

0.05

0.1

0.15

0.2

0.25 a4
a1a1

a1
a4
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a4a4

a1a1 1 2

s

s s

Fig. 5. Frequency-response curves
for the externally excited (a4) and

internally excited (a1) modes for
parameter values a ¼ 8113,

x4 ¼ 181:7958, x1 ¼ 90:8969,
l ¼ 0:01, r1 ¼ �0:0629447,

r2 ¼ 0:0434132, e ¼ 0:1,
q ¼ 0:0205695, f ¼ 1 (solid: sta-

ble, dashed: unstable solutions)

0.05 0.1 0.15 0.2 0.25

0

0.02

0.04

0.06

a4

a2
a4 a4

a4 a2

a2 a2f1
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Fig. 6. Force-response curves for

the externally excited (a4) and
internally excited (a2) modes for

parameter values a ¼ 6234,
x4 ¼ 176:552, x2 ¼ 88:2754,

l ¼ 0:01, r ¼ 0:00838994, e ¼ 0:1,
q ¼ 0:0154481, f1 ¼ f2 ¼ 0:159393

(solid: stable, dashed: unstable
solutions)

0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

0.2

0.25

a1

f2 a4a1
a4

a4

a4

a1 a1f1

f

Fig. 4. Force-response curves for
the externally excited (a4) and

internally excited (a1) modes for
parameter values a ¼ 8113,

x4 ¼ 181:7958, x1 ¼ 90:8969,
l ¼ 0:01, r ¼ 0:05, e ¼ 0:1,
q ¼ 0:0205695, f1 ¼ 1:25235,
f2 ¼ 0:571146 (solid: stable,

dashed: unstable solutions)
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branch and a4 saturates. When the excitation amplitude is gradually decreased, the saddle node

bifurcation point f ¼ f2ð0:571146Þ is reached and the nontrivial a1 solution jumps to the trivial

one. In the meantime, a4 jumps from its constant value to the other stable solution represented

by the inclined line.
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Fig. 8. Force-response curves for
the externally excited (a4) and

internally excited (a2) modes for
parameter values a ¼ 6234,

x4 ¼ 176:552, x2 ¼ 88:2754,
l ¼ 0:01, r ¼ 0:05, e ¼ 0:1,
q ¼ 0:0154481, f1 ¼ 1:36937,
f2 ¼ 0:649251 (solid: stable,

dashed: unstable solutions)
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Fig. 9. Frequency-response
curves for the externally excited

(a4) and internally excited (a2)
modes for parameter values

a ¼ 6234, x4 ¼ 176:552,
x2 ¼ 88:2754, l ¼ 0:01,

r1 ¼ �0:0557498,
r2 ¼ 0:0412136, e ¼ 0:1,
q ¼ 0:0154481, f ¼ 1 (solid: sta-
ble, dashed: unstable solutions)
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Fig. 7. Frequency-response

curves for the externally excited
(a4) and internally excited (a2)

modes for parameter values
a ¼ 6234, x4 ¼ 176:552,

x2 ¼ 88:2754, l ¼ 0:03,
r ¼ �0:0286459, r2 ¼ 0:0206173,

e ¼ 0:1, q ¼ 0:0154481, f ¼ 1

(solid: stable, dashed: unstable

solutions)
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In Fig. 5, different values are selected to obtain frequency-response curves. Jump occurs and

stable solutions for both modes co-exist for r < r1ð�0:0629447Þ and r > r2ð0:0434132Þ.
In Figs. 6–9, similar curves are obtained for a ¼ 6234. Two-to-one internal resonances occur

between the second and the fourth modes in that case.

7 Concluding remarks

Two-to-one internal resonances are investigated for a shallow curved beam on an elastic

foundation. The nonlinearities are mainly due to stretching of the beam during vibrations. Two

different curvature functions are investigated, a sinusoidal and a parabolic one. Approximate

solutions are obtained. There are no 2:1 internal resonances for sinusoidal curvature. The

amplitude and phase modulations of the solution are derived for the parabolic curvature.

Steady state solutions, their stability and bifurcation analysis are presented for the problem.

Two-to-one internal resonances occur for some special values of the elastic foundation coef-

ficient. Interactions between the second and fourth mode and between the first and fourth

modes are treated numerically.
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