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Summary. In real systems there is always a certain amount of slip, which, however, is hard to detect

experimentally because of the required space resolution. In this paper, we analyze the effect of slip

boundary conditions on the dynamics of fluids in porous media by studying the flow of a Newtonian and

non-Newtonian Maxwellian fluid in an axisymmetric cylindrical tube (pore), in which the flow is induced

by traveling transversal waves on the tube wall. Like in peristaltic pumping, the traveling transversal waves

induce a net flow of the liquid inside the pore. The viscosity as well as the compressibility of the liquid is

taken into account. This problem has numerous applications in various branches of science, including

stimulation of fluid flow in porous media under the effect of elastic waves and studies of blood flow

dynamics in living creatures. The Navier-Stokes equations for an axisymmetric cylindrical pore are solved

by means of a perturbation analysis, in which the ratio of the wave amplitude to the radius of the pore is

small parameter. In the second order approximation, a net flow induced by the traveling wave is calculated

for various values of the compressibility of the liquid, relaxation time and Knudsen number. The calcu-

lations disclose that the compressibility of the liquid, Knudsen number of slip flow and non-Newtonian

effects in presence of peristaltic transport have a strong influence of the net flow rate. The effects of all

parameters of the problem are numerically discussed and graphically explained.

1 Introduction

Investigation of flow dynamics of a fluid in a pore having circular cross section, induced by a

wave traveling on its wall (boundary), has many applications in various branches of science.

The physical mechanism of the flow induced by the traveling wave can be well understood and

is known as the so-called peristaltic transport mechanism. This mechanism is a natural cause of

motion of fluids in the body of living creatures and it frequently occurs in organs such as

ureters, intestines, and arterioles. Peristaltic pumping is also used in medical instruments such

as the heart-lung machine etc. [1].

The ‘‘no slip’’ boundary condition is widely used for flows involving non-Newtonian fluids

past solid boundaries. However, it has been found that a large class of polymeric materials slip

or stick-slip on solid boundaries. For instance, when polymeric melts flow due to an applied

pressure gradient, there is a sudden increase in the throughput at a critical pressure gradient [2].

In real systems there is always a certain amount of slip, which, however, is hard to detect

experimentally because of the required space resolution. No-slip boundary conditions are a

convenient idealization of the behavior of viscous fluids near walls. The boundary conditions
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relevant to flowing fluids are very important in predicting fluid flows in many applications.

According to the findings of modern tribology, in the thin-film lubrication regime the thickness

of the lubricating film reaches molecular dimensions and nanometer scales [3]. For these

ultrathin films it is very difficult to determine the boundary conditions and fluid properties by

experimental measurement. In these thin films the expected shear rates can be very high and

beyond the values that can be studied in laboratories. Molecular-dynamics (MD) simulations,

however, have proved to be an efficient method in investigating these complex systems at high

shear rates and extreme conditions.

Kwang and Fang [4] studied the peristaltic transport in a slip flow in a two-dimensional

channel in which the walls of the channel are imposed traveling sinusoidal waves of small

amplitude. They found that there are velocity slips along both walls, the backward fluid flow is

much more easily triggered than no-slip ones inside the channel so that the pumping power

should be increased at the beginning. Georgios and Crochet [5] studied the compressible viscous

flow in slits with slip at the wall. They studied the time-dependent compressible flow of a

Newtonian fluid in slits using an arbitrary nonlinear slip law relating the shear to the velocity at

the wall in absence of peristaltic motion. With the aim of modeling the oscillations observed in

constant piston speed rheometers and other extruding devices, they also carried out compu-

tations for a compressible viscous fluid flowing through a channel with slip at the walls. In this

computations the constitutive equation for slip was chosen to have a non-monotone rela-

tionship with the shear stress. By using a compressible fluid and a non-monotone constitutive

equation for the slip, they were able to model the self-sustaining oscillations observed in the

experiments. Recently, Lu et al. [6] studied the mechanical description of interfacial slips for

quartz crystal micro balances with viscoelastic liquid loading, and found that an interfacial slip

phenomenon is expected to occur at the interface between the surface of a quartz crystal sensor

and the contacted liquid environment.

An experimental study of the dynamic response of a Newtonian fluid and a Maxwellian fluid

under an oscillating pressure gradient was presented by Castrejon et al. [7] and Torretal et al.

[8]. Laser Doppler anemometry (LDA) was used in order to determine the velocity of the fluid

inside a cylindrical tube. They compared the previous theoretical work with their experimental

LDA measurements. They used the non-slip condition to explain experiments of Maxwellian

fluids flowing in tubes under oscillatory conditions. They found out that there is disagreement

in the dynamic response between experimental values and the theoretical prediction. One of the

possible causes of this disagreement in the response amplitude is because the fluid was locally

under higher shear rates than its Maxwellian limit. The effect of the shear stress on the slip

velocity was studied by Rao and Rajabol [9]. They studied the effect of slip boundary condi-

tions on the flow of the fluids in a channel. They investigated the flow of a linearly viscous fluid

when the slip depends on both the shear stress and the normal stress. If the shear stress at the

wall is greater than the critical shear stress, the flow slips at the wall and conversely if the shear

stress is not large enough, then the classical Poiseulle solution with no-slip is observed. Slip flow

heat transfer in circular tubes was studied by Francisco et al. [10]. They showed that heat

transfer depends on two parameters: the slip parameter (Knudsen number Kn), which is a

measure of the degree of rarefaction, and on the surface accommodation coefficients. In the

slip-flow regime, departure from continuum behavior is slight, corresponding to Knudsen

numbers in the range of 10�3 � 10�1. Such a deviation from continuum behavior arises first

from the walls, where in a non-negligible Knudsen layer molecular collisions with the walls

dominate over inter-molecular collisions. Far from this layer intermolecular collisions are

dominant. Hence, it is intuitive to model flow and heat transfer phenomena in slip flows by

maintaining the usual continuum equations for the bulk of the fluid (Navier-Stokes, Fourier
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heat conduction law) and relegating rarefaction effects to the boundary conditions for the

temperature and velocity fields (thereby incorporating wall effects). Researchers Chu, W. K.-H

and Chu, K.-H. W. [11], [12] have started to investigate the slip flow (which means the Knudsen

number Kn in this flow regime satisfies 0:001< Kn < 0:15; Kn ¼ mfp/L, mfp is the mean free

path of the gas, L is the characteristic length) within static, rigid, and corrugated-wall micro-

channels or micro-tubes which are common in MEMS (Micro-Electro-Mechanical System)

applications. The micro-domain will induce the slip flow because of the low-pressure envi-

ronment or the characteristic length scale of cross-section being in microns. The non-zero

velocity-slip at the walls normally comes from the incomplete momentum transfer along the

gas-surface interacting (collision and reflection) boundary when the gas density in the channel is

rather low [13].

In-vitro measurements in the context of blood flows, performed in micro-fabricated micro-

channels are subjected to the channel walls exhibiting some degree of roughness. Interestingly it

is realistic to note that micro-domains such as arteries and capillaries are prone to constrictions

for various pathological reasons. Such micro-domain flow problems may be studied as flows

through axially corrugated pipes using continuum theory, with slip boundary condition pre-

scribed on the surface of the pipe. Though it is customary to treat fluid as a continuum medium

in flow through micro domains, the validity of continuum approach depends on the value of the

Knudsen number [14]. If Kn < 0:001, so that the molecular mean free path of the molecules is

negligible in comparison to the geometrical dimensions, the fluid can be treated as a continuous

medium. If Kn lies between 0.001 and 0.1, it is found that the fluid loses grip on the boundaries

and tends to slip among the walls of the domain, thereby producing an effect similar to that

which would be caused by a reduction in viscosity. Still the continuum approach can hold,

provided a suitable correction is made in the kinematical boundary conditions, allowing for

fluidslip at the wall. Effect of the wall roughness on slip and rheological properties of the

lubricant was studied in [3]. A sinusoidal wall model was used to study the effect of the size of

asperities and their frequency on the wall slip. It was shown that as the period of roughness is

increased, the degree of slip on the wall also increases. Also, they observed that with the larger

roughness amplitudes it is possible to decrease the slip. It was also shown that with shorter

molecules the amount of slip would be dramatically lower. Yingxi and Steve [15] studied the

limits of the hydrodynamic no-slip boundary condition experimentally. Hydrodynamic forces

were compared for the flow of Newtonian fluids past surfaces of variable roughness but similar,

poorly wetted, surface chemistry. Their experiments show, for the first time to the best of our

knowledge, how large the surface roughness must be to produce the no-slip boundary condi-

tion. There are potential implications in applications such as magnetic recording and micro-

fluidics, where roughness can be designed to be very low.

With the above discussion in mind we note that there is disagreement in the dynamic re-

sponse between experimental values and the theoretical prediction. One of the possible causes

of this disagreement in the response amplitude is because the fluid was locally under higher

shear rates than its Maxwellian limit. If the shear stress at the wall is greater than the critical

shear stress, the flow slips at the wall, and conversely if the shear stress is not large enough, then

the classical Poiseulle solution with no-slip is observed. So, the slip seems to be critical in

determining the characteristics of the flow. Another importance of slip effects on Maxwellian

fluids comes from the flow of blood in micro-channels as mentioned above. So, we suppose that

it seems reasonable to investigate the effect of slip boundary conditions (assuming that the slip

velocity depends on the shear stress only) on the dynamics of fluids in porous media by

studying the flow of a Newtonian and Non-Newtonian Maxwell fluid in an axisymmetric

cylindrical tube (pore), in which the flow is induced by traveling transversal waves on the tube
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wall (peristaltic transport). This model may be applied to the movement of the chyme in the

small intestine, by considering the chyme as a compressible liquid. The analysis is been carried

out using a perturbation method in which the ratio of the wave amplitude to the radius of the

pore is the small parameter. The net flow is obtained in explicit form. Moreover, the net flow

induced by the traveling waves in presence of slip flow is calculated for various values of the

compressibility number, relaxation time and Knudsen number. Actually we extend the analysis

of Yin and Fung [16] by taking the slip effect at the wall into account. It is also an extension of

the later work of Aarts and Ooms [1], in which the compressibility has been taken into account

and of Tsiklauri and Bresenev [17], where the non-Newtonian effects have been incorporated.

2 Formulation of the problem

We consider an axisymmetric cylindrical tube (pore) of radius R and length L. We assume that

an elastic wave induces a traveling wave on the wall (boundary) of the tube with the dis-

placement of the form

W z; tð Þ ¼ Rþ a cos
2p
k

z� ctð Þ
� �

; ð1Þ

where a is the amplitude of the traveling wave, while k and c are its wave length and velocity,

respectively. We note that the z-axis of the r;/; zð Þ cylindrical coordinate system is directed

along the axis of the tube.

The equations that govern the flow are the balance of mass

@q
@ t
þ ~r:ðq ~vÞ ¼ 0 ð2Þ

and the momentum equation

q
@~v

@t
þ q ð~v:~rÞ~v ¼ � ~rp � ~r~s; ð3Þ

where q is the liquid density, p the pressure, ~v the velocity vector and ~s represents the viscous

stress tensor. We describe the viscoelastic properties of the fluid using Maxwell’s model [18],

which assumes that

tm
@~s
@ t
¼ �l ~r ~v� l

3
~r:~v � ~s; ð4Þ

where l is the viscosity coefficient and tm is the relaxation time.

We further assume that the equation of state [19]

1

q
@q
@p
¼ k� ð5Þ

holds, where k� is the compressibility of the liquid. The solution of this equation for the density

as a function in the pressure is given by

q ¼ q0e½k
�ðp�p0Þ�; ð6Þ

where q0 is the constant density at the reference pressure p0.

The boundary conditions that must be satisfied by the fluid on the wall are the slip condi-

tions. For the slip flow the fluid still obeys the Navier-Stokes equation, but the no-slip con-

dition is replaced by the slip equation ut ¼ Ap @ ut=@ n; where ut is the tangential velocity, n is

normal to the surface, and Ap is a coefficient close to mean free path of the molecules of the
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fluid [20]. This condition has been attributed to Beavers and Joseph [21] for a porous boundary,

but it was Navier who proposed it a century ago. Although the Navier condition looked simple,

analytically it is much more difficult than the no-slip condition, then the boundary conditions

on the wall are

vr W; z; tð Þ ¼ @W

@t
; vz W; z; tð Þ ¼ A

@vz

@r
; ð7Þ

where A is the mean free path of the molecules of the liquid.

Equation (4) can be rewritten in the following form:

1þ tm

@

@t

� �
~s ¼ � l~r ~v� l

3
~r:~v: ð8Þ

Further, we apply the operator 1þ tm
@
@t

� �
to the momentum Eq. (3) and eliminate ~s in it using

Eq. (7):

1þ tm

@

@t

� �
q
@~v

@t
þ qð~v:~rÞ~v

� �
¼ � 1þ tm

@

@t

� �
~rpþ l~r2~vþ l

3
~rð~r:~vÞ: ð9Þ

In cylindrical coordinates, the mass balance Eq. (2) reads

@q
@t
þ vr

@q
@r
þ vz

@q
@z
þ q

@vr

@r
þ vr

r
þ @vz

@z

� �
¼ 0; ð10Þ

while the Navier-Stokes Eq. (4) becomes

1þ tm

@

@t

� �
q
@vr

@t
þ q vr

@vr

@r
þ vz

@vr

@z

� �� �
¼ � 1þ tm

@

@t

� �
@p

@r

þ l
@2vr

@r2
þ 1

r

@vr

@r
� vr

r2
þ @

2vr

@z2

� �
þ l

3

@

@r

@vr

@r
þ vr

r
þ @vz

@z

� �
; ð11Þ

1þ tm

@

@t

� �
q
@vz

@t
þ q vr

@vz

@r
þ vz

@vz

@z

� �� �
¼ � 1þ tm

@

@t

� �
@p

@z

þ l
@2vz

@r2
þ 1

r

@vz

@z
þ @

2vz

@z2

� �
þ l

3

@

@z

@vr

@r
þ vr

r
þ @vz

@z

� �
: ð12Þ

It would be expedient to simplify these equations by introducing non-dimensional variables.

We have a characteristic velocity c and have characteristic lengths a, k, and R. The following

variables based on c and R could thus be introduced:

W ¼ W

R
; vr ¼

vr

c
; vz ¼

vz

c
; q ¼ q

q0

; p ¼ p

q0c2
; p0 ¼

p0

q0c2
; t ¼ ct

R
:

The amplitude ratio e, the wave number a, the Reynolds number Re, the Knudsen number Kn

and the compressibility number v are defined by

e ¼ a

R
; a ¼ 2pR

k
; Re ¼ q0cR

l
; Kn ¼ A

R
and v ¼ k� q0c2:

Under the above assumptions Eqs. (6) and (10)–(12) can be rewritten in the non-dimensional

form after dropping the bars as

@q
@t
þ vr

@q
@r
þ vz

@q
@z
þ q

@vr

@r
þ vr

r
þ @vz

@z

� �
¼ 0; ð13Þ
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1þ tm

@

@t

� �
q
@vr

@t
þ q vr

@vr

@r
þ vz

@vr

@z

� �� �
¼ � 1þ tm

@

@t

� �
@p

@r

þ 1

Re

@2vr

@r2
þ 1

r

@vr

@r
� vr

r2
þ @

2vr

@z2

� �
þ 1

3Re

@

@r

@vr

@r
þ vr

r
þ @vz

@z

� �
; ð14Þ

1þ tm

@

@t

� �
q
@vz

@t
þ q vr

@vz

@r
þ vz

@vz

@z

� �� �
¼ � 1þ tm

@

@t

� �
@p

@z

þ 1

Re

@2vz

@r2
þ 1

r

@vz

@z
þ @

2vz

@z2

� �
þ 1

3Re

@

@z

@vr

@r
þ vr

r
þ @vz

@z

� �
; ð15Þ

q ¼ evðp�p0Þ; ð16Þ

also the boundary conditions (7) become

vrðð1þ gÞ; z; tÞ ¼ @gðz; tÞ
@t

; vzðð1þ gÞ; z; tÞ ¼ Kn
@vzðr; z; tÞ

@r
; ð17Þ

where

gðz; tÞ ¼ e cos aðz� tÞ: ð18Þ

3 Method of solution

To illustrate the nature of the solution we shall consider the important case of no flow in

absence of the peristaltic wave. Following [1], we seek the solution of the governing equations

in a form

p ¼ p0 þ e p1ðr; z; tÞ þ e2 p2ðr; z; tÞ þ . . . ;

vr ¼ e u1ðr; z; tÞ þ e2 u2ðr; z; tÞ þ . . . ;

vz ¼ e v1ðr; z; tÞ þ e2 v2ðr; z; tÞ þ . . . ;

q ¼ 1þ e q1ðr; z; tÞ þ e2 q2ðr; z; tÞ þ . . . :

ð19Þ

Then, doing a usual perturbation analysis using the latter expansions, we can obtain a closed set

of governing equations for the first (e) and second (e2) order as the following:

1 þ tm
@

@ t

� �
@u1

@t
¼ � 1 þ tm

@

@ t

� �
@p1

@r

þ 1

Re

@2u1

@r2
þ 1

r

@ u1

@ r
� u1

r2
þ @2u1

@z2

� �
þ 1

3Re

@

@r

@ u1

@ r
þ u1

r
þ @ v1

@ z

� �
;

1 þ tm
@

@ t

� �
@v1

@t
¼ � 1 þ tm

@

@ t

� �
@p1

@z

þ 1

Re

@2v1

@ r2
þ 1

r

@ v1

@ r
þ @

2v1

@ z2

� �
þ 1

3Re

@

@ z

@ u1

@ r
þ u1

r
þ @ v1

@ z

� �
;

@q1

@ t
þ @u1

@ r
þ u1

r
þ @v1

@ z
¼ 0;

q1 ¼ v p1;

ð20Þ
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1 þ tm
@

@ t

� �
@ u2

@ t
þ q1

@ u1

@ t
þ u1

@ u1

@ r
þ v1

@ u1

@ z

� �
¼ � 1 þ tm

@

@ t

� �
@ p2

@ r

þ 1

Re

@2u2

@ r2
þ 1

r

@ u2

@ r
� u2

r2
þ @

2u2

@ z2

� �
þ 1

3Re

@

@ r

@u2

@ r
þ u2

r
þ @ v2

@ z

� �
;

1 þ tm
@

@ t

� �
@v2

@ t
þ q1

@v1

@ t
þ u1

@v1

@ r
þ v1

@v1

@z

� �
¼ � 1 þ tm

@

@ t

� �
@ p2

@ z

þ 1

Re

@2v2

@ r2
þ 1

r

@ v2

@ r
þ @2v2

@ z2

� �
þ 1

3Re

@

@ z

@u2

@r
þ u2

r
þ @ v2

@z

� �
;

@q2

@ t
þ u1

@q1

@ r
þ v1

@q1

@ z
þ u2

r
þ @u2

@ r
þ @v2

@ z
þ q1

@u1

@ r
þ u1

r
þ @ v1

@ z

� �
¼ 0;

q2 ¼ v p2 þ
1

2
v2p2

1:

ð21Þ

Expanding Eq. (17) by Taylor expansion around r ¼ 1 and substituting from Eq. (19) we get

the following boundary conditions:

u1 1; z; tð Þ ¼ � ia
2

eiaðz�tÞ � e�iaðz�tÞ
� �

;

u2 1; z; tð Þ þ 1

2
eiaðz�tÞ þ e�iaðz�tÞ
� � @ u1

@ r
1; z; tð Þ ¼ 0;

v1 1; z; tð Þ ¼ Kn
@ v1

@ r
1; z; tð Þ;

v2 1; z; tð Þ þ 1

2
eiaðz�tÞ þ e�iaðz�tÞ
� � @v1

@ r
1; z; tð Þ

¼ Kn
@v2

@ r
1; z; tð Þ þ 1

2
eiaðz�tÞ þ e�iaðz�tÞ
� � @2v1

@ r2
1; z; tð Þ

	 

:

ð22Þ

Further, following [1] and [17], we seek the solution of the linear problem in the form

u1 r; z; tð Þ ¼ U1ðrÞ eiaðz�tÞ þ U1ðrÞ e�iaðz�tÞ;

v1 r; z; tð Þ ¼ V1ðrÞ eiaðz�tÞ þ V1ðrÞ e�iaðz�tÞ;

p1 r; z; tð Þ ¼ P1ðrÞ eiaðz�tÞ þ P1ðrÞ e�iaðz�tÞ;

q1 r; z; tð Þ ¼ vP1ðrÞ eiaðz�tÞ þ v P1ðrÞ e�iaðz�tÞ:

ð23Þ

Here and in the following equations, the bar denotes a complex conjugate.

On the other hand, we seek the second (e2) order solution in the form

u2 r; z; tð Þ ¼ U20ðrÞ þ U2ðrÞ e2iaðz�tÞ þ U2ðrÞ e�2iaðz�tÞ;

v2 r; z; tð Þ ¼ V20ðrÞ þ V2ðrÞ e2iaðz�tÞ þ V1ðrÞ e�2iaðz�tÞ;

p2 r; z; tð Þ ¼ P20ðrÞ þ P2ðrÞ e2iaðz�tÞ þ P2ðrÞ e�2iaðz�tÞ;

q2 r; z; tð Þ ¼ D20ðrÞ þ D2ðrÞ e2iaðz�tÞ þ D2ðrÞ e�2iaðz�tÞ:

ð24Þ

The latter choice of solution is motivated by the fact that the peristaltic flow is essentially a

nonlinear (second-order) effect [1], and adding a nonoscillatory term in the first order gives only

a trivial solution. Thus, we can add nonoscillatory terms, such as U20ðrÞ; V20ðrÞ; P20ðrÞ; and
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D20ðrÞ; which do not cancel out in the solution after time averaging over the period, only in the

second and higher orders.

Substituting from Eq. (23) into Eqs. (20) and (22) we obtain the following system of equa-

tions:

� ia 1 � i a tmð ÞU1 ¼ � 1 � i a tmð ÞP 01

þ 1

Re
U001 þ

U01
r
� U1

r2
� a2U1

� �
þ 1

3Re

d

d r
U01 þ

U1

r
þ iaV1

� �
; ð25:1Þ

� ia 1 � i a tmð ÞV1 ¼ �ia 1 � i a tmð ÞP1 þ
1

Re
V 001 þ

V 01
r
� a2V1

� �

þ i a
3 Re

U01 þ
U1

r
þ iaV1

� �
; ð25:2Þ

U01 þ
U1

r
þ iaV1 ¼ iavP1; ð25:3Þ

U1 1ð Þ ¼ � ia
2
; ð25:4Þ

V1 1ð Þ ¼ Kn V 01 1ð Þ: ð25:5Þ

Here, the prime denotes a derivative with respect to r.

Further, we rewrite the system of Eqs. (25.1–3) in the form

� cP01 þ U001 þ
U01
r
� U1

r2
� b2

U1

� �
¼ 0; ð26:1Þ

� cP1 �
i

a
V1 þ

V 01
r
� b2

V1

� �
¼ 0; ð26:2Þ

where the complex parameters c and b are given by

c ¼ 1 � i a tmð ÞRe� iav
3
; b2 ¼ a2 � ia 1 � i a tmð ÞRe: ð27Þ

Eliminating V1ðrÞ by using Eq. (25.3), we rewrite Eq. (26.2) as

� iv
a

P001 þ
P01
r
� b2 þ i ac

v

� �
P1

	 

þ 1

a2

d

dr
þ 1

r

� �
U001 þ

U01
r
� U1

r2
� b2

U1

	 

¼ 0: ð28Þ

Differentiating Eq. (28) with respect to r and using Eq. (26.1), we are led to the following

equation:

� iv
a c

d2

dr2
þ 1

r

d

dr
� 1

r2
� b2 þ i ac

v

� �� �
U001 þ

U01
r
� U1

r2
� b2

U1

	 


þ 1

a2

d2

dr2
þ d

dr
� 1

r2

� �
U001 þ

U01
r
� U1

r2
� b2

U1

	 

¼ 0: ð29Þ

This equation is rewritten, after multiplication by a2, as

1� iv a
c

� �
d2

dr2
þ 1

r

d

dr
� 1

r2
� t2

� �
d2

dr2
þ d

dr
� 1

r2
� b2

� �
U1 ¼ 0: ð30Þ
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From this equation Eq. (30) we obtain the master equation for U1ðrÞ and find its general

solution as

U1ðrÞ ¼ C1 I1ðt rÞ þ C2 I1ðb rÞ; ð31Þ

where I1 is the modified Bessel function of the first kind of order 1. Note, that Eq. (31) is similar

to Eq. (3.18) in [1], except that C1 and C2 are complex constants calculated using Eqs. (25.4–5)

and defined by

C1 ¼
ia b t I0 bð Þ � b Kn I1 bð Þð Þ

2 a2I1 bð ÞI0 tð Þ � b t I1 tð Þ I0 bð Þ þ t Kn I1 tð Þ I1 bð Þ b2 � a2
� �� � ;

C2 ¼
�ia3 I0 tð Þ � t Kn I1 tð Þ½ �

2 a2I1 bð ÞI0 tð Þ � b t I1 tð Þ I0 bð Þ þ t Kn I1 tð Þ I1 bð Þ b2 � a2
� �� � ;

ð32Þ

where

t2 ¼ a2 ð1� vÞ 1 � i a tmð ÞRe� ð4 = 3Þiav
1 � i a tmð ÞRe� ð4 = 3Þiav

: ð33Þ

Here, I0 is the modified Bessel function of the first kind of order 0.

We also obtain the general solution for V1ðrÞ:

V1ðrÞ ¼
i a C1

t
I0ðt rÞ þ i b C2

a
I0ðb rÞ; ð34Þ

and the general solution for P1ðrÞ:

P1ðrÞ ¼
C1ðt2 � b2Þ

c t
I0ðt rÞ: ð35Þ

To solve the system of second order of e, using Eq. (30) in Eqs. (27) and (28) we obtain the

following set of equations:

D20 ¼ v P20 þ v2P1P1; ð36:1Þ

U020 þ
U20

r
¼ �v P1U01 þ P1U01 þ

P1U1

r
þ P1U1

r
þ U1P01 þ U1P01

� �
; ð36:2Þ

iav P1U1 � iavP1U1 þ U1U01 þ U1U01 þ iaU1V1 � iaU1V1

¼ �P020 þ
1

ð1� i a tmÞRe
U0020 þ

U020

r
� U20

r2

� �
þ 1

3ð1� i a tmÞRe

d

d r
U020 þ

U20

r

� �
; ð36:3Þ

iavP1V1 � iavP1V1 þ U1V 01 þ U1V 01 ¼
1

ð1� i a tmÞRe
V 0020 þ

V 020

r

� �
; ð36:4Þ

U20ð1Þ þ
1

2
U01ð1Þ þ U01ð1Þ
� �

¼ 0; ð36:5Þ

V20ð1Þ þ
1

2
V 01ð1Þ þ V

0

1ð1Þ
� �

¼ Kn V 020ð1Þ þ
1

2
V 001 ð1Þ þ

1

2
V 001 ð1Þ

� �
: ð36:6Þ

It will be seen that, as far as the net flow is considered, only the functions U20, V20,

P20 and D20 contribute to the net flow as long as terms up to O(e2) are retained. Thus, the

functions U2, V2, P2 and D2 don’t contribute to the net flow, and therefore we shall not

write down the equations that these functions satisfy or solve them. We continue with the
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solutions for U20, V20, P20 and D20 [1]. To that end, the second-order solution U20ðrÞ can also

be found in a way similar to the one used in the first order as follows:

U20ðrÞ ¼
D1

r
� v P1ðrÞU1ðrÞ þ P1ðrÞU1ðrÞ

� �
; ð37Þ

where D1 is a complex constant (which follows from the boundary conditions (36.4,5)) defined

by D1 ¼ i a Kn
2

V 01ð1Þ � V 01ð1Þ
� �

, having the final form

D1 ¼
i a Kn

2 i a C1 I1ðtÞ þ i b2
C2

a I1ðbÞ þ i a C1 I1ðtÞ þ i b
2

C2

a I1ðbÞ
� �

: ð38Þ

We also obtain the general solution for V20ðrÞ as follows:

V20ðrÞ ¼ D2 � ð1� i a tmÞRe

Z1

r

V1ðfÞU1ðfÞ þ V1ðfÞU1ðfÞ
� �

df; ð39Þ

where D2 is a complex constant defined by

D2 ¼
�1

2
V 01ð1Þ þ V 01ð1Þ
� �

þKn V 020ð1Þ þ
1

2
V 001 ð1Þ þ V 001 ð1Þ

� �
; ð40Þ

where the values of V 020ð1Þ and V 001 ð1Þ are defined by

V 020ð1Þ ¼ ð1� i a tmÞRe
i a C1 C1

t
I0ðtÞ I1ðtÞ

	
þ i a C1 C2

t
I0ðtÞ I1ðbÞ

þ i b C2 C1

a
I0ðbÞ I1ðtÞ þ

i b C2 C2

a
I0ðbÞ I1ðbÞ

� i a C1 C1

t
I0ðtÞ I1ðtÞ �

i a C2 C1

t
I0ðtÞ I1ðbÞ

� i b C1 C2

a
I0ðbÞ I1ðtÞ �

i b C2 C2

a
I0ðbÞ I1ðbÞ



; ð41Þ

V 001 ð1Þ ¼ i a C1 t I0ðtÞ½ � I1ðtÞ� þ
i b2

C2

a
b I0ðbÞ � I1ðbÞ½ �: ð42Þ

The dimensionless fluid flow rate Q can be calculated as [1]

Qðz; tÞ ¼ 2p e
Z1

0

v1ðr; z; tÞrdr þ e2

Z1

0

v2ðr; z; tÞrdr þ Oðe3Þ

2
4

3
5:

Next, the net flow is considered over one period of time. The average of a variable G over one

period T of time t is

hGi ¼ 1

T

ZT

0

Gðr; z; tÞdt: ð43Þ

At T ¼ 2p
a , consequently the mean net axial velocity hVzi reads

hVzi ¼ e2V20ðrÞ ð44Þ

under neglect of O(e3)-terms, while the net flow rate hQi is given by
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hQi ¼ 2 p e2

Z1

0

V20ðrÞ r dr ð45Þ

under neglect of O(e3)-terms. Thus, the traveling wave induces a net flow of the liquid, of which

the (dimensionless) rate is expressed by Eq. (45). Hence, the net flow and the mean net axial

velocity are an effect of order e2.

4 Numerical results and discussion

To study the behavior of the net flow rate, numerical calculations for several values of a, Kn,

tm and v are carried out. We concentrate on the solution of the dimensionless problem as

described in the previous section. It is clear that we have to choose e � 1 because we used the

perturbation method with the amplitude ratio e as a parameter [22]. Also, for the perturbation

method to be valid and accurate we must have e a2 Re << 1 according to Takabatake [23].

We consider the net flow rate hQi given by Eq. (45). After one integration by parts, hQi can
be expressed as

hQi ¼ p e2 D2 � ð1� i a tmÞ Re

Z1

0

r2 V1ðrÞU1ðrÞ þ V1ðrÞU1ðrÞ
� �

dr

0
@

1
A; ð46Þ

where the solution of Eq. (39) for V20ðrÞ is used.
A numerical code has been written to calculate hQi according to Eq. (46). In order to check

the validity of our code, we run it for the parameters similar to the ones used by other authors.

For instance, for e ¼ 0:15, Re ¼ 10000:0, a ¼ 0:20, v ¼ 0:0, tm ¼ 0:0 and Kn ¼ 0:0 we obtain

hQi ¼ 0:2709, which is equal (if we keep four digits after the decimal point) to the result of the

authors of [16], who actually obtained hQi ¼ 0:2709. Further, we have made several runs of our

code for different values of the parameter Kn at tm ¼ 0 (Newtonian regime).We note again that

Kn and tm enter the equations because we have included the slip effects into the non-Newtonian

Maxwell model. Eq. (46) will be identical to the similar equation (4.1) of [1] if we set Kn ¼ 0:0

and tm ¼ 0:0 in all our equations. Further, Eq. (46) will be identical to the similar equation (16)

of [17] if we set Kn ¼ 0:0 in all our equations.

First, we investigate the effect of slip boundary conditions in the case of a Newtonian

(tm ¼ 0:0) Maxwellian fluid. The results of our calculations are presented in Fig. 1, where we

investigate the dependence of hQi on the compressibility parameter v for various values of Kn.

In order to compare our results with the ones from [1], we have plotted hQi for the following set
of parameters: e ¼ 0:001, Re ¼ 10000:0, a ¼ 0:001, tm ¼ 0:0 and Kn ¼ 0:0. We note that the

curve is identical to the corresponding curve (solid curve) in Fig. 2 from [1]. This obviously

corroborates the validity of our numerical code. Further, to investigate the dependence of the

flow rate hQi on Kn we perform the calculation for a few values of Kn. We notice that the range

of hQi is approximately 0:4272� 2:7043� 10�5 for the range of v from 0 to 1. In particular, for

v ¼ 0:0 the range of hQi is just 1:2305� 1:4714� 10�5 for the three values of Kn considered,

while for v > 0 the range becomes 0:0034� 3:8223� 10�5. Hence, hQi is weakly affected by Kn

at v ¼ 0:0. For v > 0 however, hQi strongly depends on the Knudsen number of slip flow.

Furthermore, we observe that for Kn ¼ 0:0 hQi attains a maximum of 2:7141� 10�5 at

v ¼ 0:5, and for v > 0:5 the flow rate decreases to 0:4901� 10�5, while for Kn ¼ 0:05 hQi
attains a maximum of 2:9734� 10�5 at v ¼ 0:4 and for v > 0:4 the flow rate decreases until it
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reaches 0:2075� 10�5; for Kn ¼ 0:1 hQi attains a maximum of 3:8226� 10�5 at v ¼ 0:3 and

for v > 0:3 the flow rate decreases until it reaches 0:0035� 10�5. Thus, we note that at high

values of Kn the rate of decreasing of hQi is greater than at low values. Furthermore, the

compressibility number v has a significant influence on the net flow rate, and the Knudsen

number Kn plays a more significant role in the net flow of a compressible liquid than of an

incompressible one.

In Fig. 2 we investigate the behavior of the net flow rate hQi depending on the parameter a,
which is the tube radius measured in wavelengths. Again, to check for the consistency of our

numerical results with the ones of [1], and also to investigate phenomena brought about by the

introduction of slip effects into the model (non-Newtonian Maxwell fluid), we plot the net flow

rate hQi versus a for the following set of parameters: e ¼ 0:001, Re ¼ 10000:0, v ¼ 0:6,

tm ¼ 0:0 and Kn ¼ 0:0. If we compare this curve in our Fig. 2 with the dashed curve in Fig. 3 of

[1], we will note no difference, which again corroborates the validity of our numerical code. We

then set Kn to various nonzero values and investigate the changes induced by slip effects. We

note that the net flow rate hQi attains a maximum for a certain value of a, and this maximum

3.5

2.5

2

1.5

1

0.5

0
0 0.2

Kn=0.0

Kn=0.05

Kn=0.1

× 10–5

0.4 0.6
c

〈Q 〉

0.8 1

3

Fig. 1. The dimension less flow rate hQi versus v
at e ¼ 0:001, Re ¼ 10000:0, tm ¼ 0:0 and

a ¼ 0:001

Kn=0.0

Kn=0.05

Kn=0.11

0.8

0.6

0.4

0.2

0.002 0.004 0.006
a

0.008 0.01

× 10 –4

〈Q 〉

Fig. 2. The dimensionless flow rate hQi versus
a at e ¼ 0:001, Re ¼ 10000:0, tm ¼ 0:0 and

v ¼ 0:6
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increases with increasing Kn. Furthermore, after hQi reaches the maximum value it then de-

creases with increasing a, but this decreasing is greatest at high values of Kn. Also we can note

that hQi is nearly independent of Kn for a < 0:001:

Second, we investigate the effect of slip boundary conditions in the case of a non-Newtonian

Maxwellian fluid. It is known that viscoelastic fluids, described by the Maxwellian fluid, have

different flow regimes depending on the value of the parameter De ¼ tm=tm, which is called the

Deborah number. In effect, the Deborah number is a ratio of the characteristic time of viscous

effects tm ¼ q R2=l to the relaxation time tm. As noted in [18], the value of the parameter De

(which the authors of [18] actually call a) determines in which regime the system resides.

Beyond a certain critical value (De ¼ 11:64), the system is dissipative and conventional viscous

effects dominate. On the other hand, for small De (De < Dec) the system exhibits viscoelastic

behavior.

The results of our calculations are presented in Fig. 3, where we investigate the dependence

of hQi on the compressibility parameter v for various values of Kn. In order to compare our

results with the ones from [17], we have plotted hQi for the following set of parameters:

e ¼ 0:001, Re ¼ 10000:0, a ¼ 0:001, tm ¼ 1000 and Kn ¼ 0:0. We note that the curve is

identical to the corresponding curve in Fig. 1 (dashed-dotted curve with asterisks) from [17].

This obviously corroborates the validity of our numerical code. Further, to investigate the

dependence of the flow rate hQi on Kn, we perform the calculation for a few values of Kn. When

Kn ¼ 0:0 we observe that the net flow rate reaches a maximum value hQi ¼ 2:4918� 10�5 at

v ¼ 0:8. Further, when Kn=0.05 we notice that the maximum value hQi ¼ 2:6858� 10�5 at

v ¼ 0:7. The maximum value of hQi ¼ 3:2682� 10�5 and occurs at v ¼ 0:6 when Kn ¼ 0:1:

From the above discussion, we notice that hQi attains a maximum for a certain value of v and

this maximum increases with increasing Kn. Moreover, there is shifting the maximum value of

hQi towards lower values of v’s with increasing Kn.

In Fig. 4 we investigate the behavior of the flow rate hQi depending on the compressibility

parameter v at tm ¼ 10000 (deeply non-Newtonian regime). Again, to check for the consistency

of our numerical results with the ones of [16], we first plot hQi versus v for the following set of

parameters: e ¼ 0:001, Re ¼ 10000:0, a ¼ 0:001 and Kn ¼ 0:0. If we compare the curve in our

Fig. 4 with the dashed curve with empty squares in Fig. 1 from [17], we will note no difference,

× 10–5
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3

c

Fig. 3. The dimensionless net flow rate hQi versus
v at e ¼ 0:001, Re ¼ 10000, tm ¼ 1000 and
a ¼ 0:001
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which again corroborates the validity of our numerical code. We then set Kn to various nonzero

values and investigate the effect of Kn at deeply non-Newtonian regime. In this deeply non-

Newtonian regime we notice that when Kn ¼ 0:0 the maximum value of hQi ¼ 7:2545� 10�5

at v ¼ 1:0,whereas when Kn ¼ 0:03 the maximum value of hQi ¼ 11:3979� 10�5 at v ¼ 0:95

and when Kn ¼ 0:05 the maximum value of hQi ¼ 15:4801� 10�5 at v ¼ 0:9. From the above

discussion, we notice that in absence of the slip effect in this deeply non-Newtonian regime hQi
increases with increasing v. On the other hand, when the slip effect is taken into account we

observe that hQi attains a maximum at a certain value of v and then decreases. Moreover, there

is a shift in the maximum value of hQi towards lower values of v with increasing Kn.

We can observe from Figs. 1, 3 and 4 that when Kn ¼ 0:05 (e.g.), the maximum value of hQi
is 2:9734� 10�5 at tm ¼ 0:0 and v ¼ 0:4, while the maximum value of hQi is 2:6858� 10�5 at

v ¼ 0:7 and tm ¼ 1000. Moreover, the maximum value of hQi is 15:4801� 10�5 at v ¼ 0:9 and

tm ¼ 10000:We can notice from the previous values that the slip boundary condition is affected

stronger in the case of a non-Newtonian regime than a Newtonian one. Furthermore, we note

c
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Fig. 4. The dimensionless net flow rate hQi versus
v at e ¼ 0:001, Re ¼ 10000, tm ¼ 10000 and

a ¼ 0:001
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Fig. 5. The dimensionless net flow rate hQi
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that the slip boundary conditions are weakly affected at incompressible liquid (v ¼ 0:0), and

greatly affected at compressible liquid (v > 0:0).

In Fig. 5 the dimensionless net flow rate hQi is plotted versus a, which is the tube radius

measured in wavelengths, at the following set of parameters: e ¼ 0:001, Re ¼ 10000:0, v ¼ 0:6

and tm ¼ 100. We investigate the behavior of the net flow rate hQi on the parameter a at

various values of Kn. We observe that for a < 0:001 the range of the net flow rate hQi is
0:0367� 0:0791� 10�4 at various values of Kn (0:0 � Kn � 0:1). Hence, the net flow rate hQi
is nearly independent of Kn for a < 0:001. For 0:001 � a � 0:0065 we observe that hQi attains a
maximum for a certain value of a and this maximum increase with increasing Kn. For

a > 0:0065 we observe that hQi decreases with increasing Kn. We also note from the figure

that at Kn ¼ 0:0 there is no negative value of hQi. Furthermore, we observe that

hQi ¼ �0:0113� 10�4 reaches negative values at Kn ¼ 0:05 and a ¼ 0:009, while

hQi ¼ �0:0196� 10�4 at Kn ¼ 0:075 and a ¼ 0:008, and hQi ¼ �0:0074� 10�4 at Kn ¼ 0:1

and a ¼ 0:007. The negative value of the net flow rate hQi means that we observe backflow.

This means that flow occurs in the direction opposite to the direction of propagation of the

traveling wave on the tube wall. Moreover, the reverse flow (backflow) occurs easily in the

presence of a slip boundary condition and also a non-Newtonian regime. The net flow rate hQi
increases in the reverse direction with increasing a.

In Fig. 6 the dimensionless net flow rate hQi is plotted versus a at the following set of

parameters: e ¼ 0:001, Re ¼ 10000:0, v ¼ 0:6 and tm ¼ 1000. We investigate the behavior

of the net flow rate hQi on the parameter a at various values of Kn within the range of

0:0 � a � 0:01. We note that at Kn ¼ 0:0 the curve in our Fig. 6 is identical to the curve

(dashed – dotted curve with asterisks) in Fig. 2 from [17]. We notice again that there is no back

flow at Kn ¼ 0:0, while hQi ¼ �0:0019� 10�4 at a ¼ 0:006 and Kn ¼ 0:05, and

hQi ¼ �0:0818� 10�4 at a ¼ 0:004 and Kn ¼ 0:1. If we compare Figs. 5 and 6 we note that

when Kn ¼ 0:0 there is no backflow, while at Kn ¼ 0:05 the backflow occurs at a ¼ 0:009 when

tm ¼ 100, whereas at Kn ¼ 0:05 the backflow occurs at a ¼ 0:006 when tm ¼ 1000. Also, at

Kn ¼ 0:1 the backflow occurs at a ¼ 0:007 when tm ¼ 100, whereas at Kn ¼ 0:1 the backflow

occurs at a ¼ 0:004 when tm ¼ 1000. From the previous discussion, we note that the backflow

easily happened at low values of a, which is the tube radius measured in wavelengths, when tm,

the relaxation time, has a high value (non-Newtonian regime) with high values of Kn.
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Fig. 6. The dimensionless net flow rate hQi versus
a at e ¼ 0:001, Re ¼ 10000:0, tm ¼ 1000 and

v ¼ 0:6
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To investigate the behavior of an incompressible (v ¼ 0:0) Newtonian (tm ¼ 0:0) Maxwellian

fluid under the slip effect, the dimensionless net flow rate hQi is plotted versus a in Fig. 7 for

e ¼ 0:001, Re ¼ 10000:0, v ¼ 0:0, tm ¼ 0:0 and Kn ¼ ð0:0; 0:05; 0:075 and 0:1Þ. We observe

that the range of hQi is approximately 1:2507� 1:0723� 10�5 if Kn ¼ 0:0,

1:4863� 1:1082� 10�5 if Kn ¼ 0:05, 1:6505� 0:6820� 10�5 if Kn ¼ 0:075 and

1:8616� 0:0189� 10�5 if Kn ¼ 0:1 for 0:0005 � a � 0:01. Furthermore, at low values of a the

net flow hQi increases with increasing Kn and decreases with increasing Kn at high values of a.
Moreover, hQi decreases with increasing a and the rate of decreasing of hQi increases with

increasing Kn. Also, there is no negative value of hQi, which means there is no reversal flow.

The behavior of an incompressible (v ¼ 0:0) non-Newtonian Maxwellian fluid under the slip

effect studied in Fig. 8. In this figure the net flow rate hQi is plotted versus a, for e ¼ 0:001,

Re ¼ 10000:0, v ¼ 0:0, tm ¼ 1000:0 and Kn ¼ 0:0, 0:05 and 0:1. We observe that hQi decreases
with increasing a to a certain value of a, then increases with increasing a. Also, we note that

(approximately) there are no negative values of hQi. Furthermore, we observe that hQi
decreases with increasing a and the negative value of hQi for Kn ¼ 0:05 begins at a ¼ 0:004 and

Kn=0.0
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Fig. 7. The dimensionless net flow rate hQi versus
a at e ¼ 0:001, Re ¼ 10000:0, tm ¼ 0:0 and

v ¼ 0:0
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Fig. 8. The dimensionless net flow rate hQi versus
a at e ¼ 0:001, Re ¼ 10000:0, tm ¼ 1000 and

v ¼ 0:0
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equals �0:0489� 10�5, while the negative value of hQi for Kn ¼ 0:1 begins at a ¼ 0:003 and

equals �0:2146� 10�5 then increases in reversal direction with increasing a to value equals

�1:0778� 10�5 at a ¼ 0:01:

In Fig. 9 the net flow rate hQi is plotted versus a for the following set of parameters:

e ¼ 0:001, Re ¼ 10000:0, v ¼ 0:6 and tm ¼ 10000 (deeply non-Newtonian regime) and various

values of Kn within the range of 0:0 � a � 0:01. We note that at Kn ¼ 0:0 the curve in our

Fig. 6 is the same as the curve in Fig. 2 from [17]. We note from this figure that in this deeply

non-Newtonian regime hQi becomes highly oscillatory, but what is unusual again is that we

observe the negative flow rates for certain values of a. Oscillatory behavior (appearance of

numerous maxima in the behavior of a physical value) in the deeply non-Newtonian regime is

not new [17]. We notice that the oscillations at Kn ¼ 0:0 are approximately the same as at

Kn ¼ 0:05 but there is a shift in the value of a ffi 0:0005. For example, hQi ¼ 0:0003�10�4

when Kn ¼ 0:0 and a ¼ 0:0085, whereas hQi ¼ 0:0003� 10�4 when Kn ¼ 0:05 and a ¼ 0:008.

We note the same value of hQi, approximately, at Kn ¼ 0:0 and Kn ¼ 0:05 but there is shifting

of the value of a.

5 Conclusions

In real systems there is always a certain amount of slip, which, however, is hard to detect

experimentally because of the required space resolution. No-slip boundary conditions are a

convenient idealization of the behavior of viscous fluids near walls. The boundary conditions

relevant to flowing fluids are very important in predicting fluid flows in many applications. In

this paper, we investigated the dynamics of fluid flow in an axisymmetric cylindrical tube (pore)

induced by a wave traveling on its wall (boundary). This problem has numerous applications in

various branches of science, including stimulation of fluid flow in porous media under the effect

of elastic waves and studies of blood flow dynamics in living creatures. We investigate phe-

nomena brought about into the classic peristaltic mechanism by the inclusion of slip effects

based on the model of a Newtonian and non-Newtonian Maxwellian fluid in an axisymmetric

cylindrical tube (pore). The viscosity as well as the compressibility of the liquid is taken into
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Fig. 9. The dimensionless net
flow rate hQi versus a at

e ¼ 0:001, Re ¼ 10000:0,
tm ¼ 10000 and v ¼ 0:6
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account. We have found that the compressibility number v has a significant influence on the net

flow rate as shown in [1] and [17], and the Knudsen number Kn plays a more significant role in

the net flow of a compressible liquid than of an incompressible one. Also we can note that hQi is
nearly independent of Kn for the values of a < 0:001:We notice that at v ¼ 0:0 and small values

of v the net flow rate hQi increases with increasing Kn, thereby establishing the fact that the slip

causes enhanced flow of incompressible liquid. This is physically acceptable. On the other hand,

we notice that the net flow rate hQi decreases with increasing Kn at high values of the com-

pressibility number v. Moreover, the reversal flow occurs at high values of the compressibility

number and high values of Kn where hQi becomes negative, i.e., we observe backflow. Thus, the

reversal flow could occur easily in the case of compressible liquid than the incompressible one at

high values of the Knudsen number.

In absence of the slip effect in the deeply non-Newtonian regime, the net flow rate hQi
increases with increasing compressibility parameter v. On the other hand, when the slip effects

are taken into account we observe that hQi attains a maximum at a certain value of v and then

decreases. Moreover, there is a shift in the maximum value of hQi towards lower values of v
with increasing Kn. Furthermore, the slip boundary condition is affected stronger in the case of

the non-Newtonian regime than the Newtonian one. The reverse flow (backflow) occurs easily

in presence of a slip boundary condition and in the non-Newtonian regime. Also, the backflow

easily happened at low values of a, which is the tube radius measured in wavelengths, when tm,

the relaxation time, has a high value (non-Newtonian regime) with high values of Kn. In the

deeply non-Newtonian regime hQi becomes high oscillatory, but what is unusual again is that

we observe the negative flow rates for certain values of a. Oscillatory behavior (the appearance

of numerous maxima in the behavior of a physical value) in the deeply non-Newtonian regime

is not new [17].
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