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Summary. The objectives of the present paper are to find solutions for axisymmetric flow of pressure-

dependent material between two rough conical walls and to compare the qualitative behavior of the

solutions based on two models of pressure-dependent plasticity, the coaxial model and the double-shearing

model. The constitutive equations of each model reduce to classical plasticity of pressure-independent

material at specific values of the input parameters. Nevertheless, the solution behavior essentially depends

on the model chosen, independently of how close the input parameters are to these specific values. In

particular, such features of the solutions as the friction regime and singularity are emphasized. It is

concluded that the double-shearing model only retains all features inherent to classical plasticity.

1 Introduction

Flow of plastic material through an infinite conical channel is one of the classical problems of

plasticity theory. For rigid perfectly plastic material obeying different pressure-independent

yield criteria the solutions to this problem have been proposed in [1]–[4]. The main assumption

accepted in these works is that the radial velocity in a spherical coordinate system is the only

non-zero velocity component. Attempts to extend this assumption to other material models

have been made in [5]–[8]. However, it is possible to verify by inspection that the solutions [5],

[6] for viscoplastic materials and the solution [7] for linear/hardening materials do not exist in

the case of the maximum friction law. For such material models this law postulates that the

friction stress is equal to the local shear yield stress. On the other hand, the solution based on

the double-shearing model (both the model and solution are described in [8]) retains all

qualitative properties of the solutions given in [1]–[4]. For this material model the maximum

friction law requires that the friction surface coincides with an envelope of characteristics.

However, many theories of pressure-dependent plasticity have been proposed (reviews can be

found, for example, in [8] and [9]) but none of them has found general acceptance. Moreover,

though most of these theories reduce to classical plasticity at specific values of input parame-

ters, the solution behavior essentially depends on the model chosen, independently of how close

the input parameters are to these specific values [10]–[12]. It seems that comparison of the

qualitative behavior of solutions based on different models can help to choose an appropriate

model for specific applications. For instance, some metal alloys reveal pressure-dependence of

the yield condition [13], [14]. For such materials, it is natural to require that main features
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inherent to solutions of classical plasticity are retained in the corresponding solutions based on

a pressure-dependent theory of plasticity. In [10]–[12], several plane-strain closed-form solu-

tions have been compared and in [11] and [12] the difference in solution behavior has been

explained by the structure of characteristic curves. Therefore, it is of interest to compare

solutions based on models whose equations are not hyperbolic. In the present paper the axi-

symmetric flow between two rough conical surfaces where the maximum friction law is assumed

is considered. Solutions based on the double-shearing and coaxial models are proposed and

analyzed.

In the case of the double-shearing model the solution is singular, as also follows from the

general theory [15]. The same singular behavior of solutions occurs in the classical plasticity of

rigid perfectly plastic solids [16]. Using this feature of solutions the strain rate intensity factor

has been introduced in [16] for rigid perfectly plastic materials and in [17] for materials obeying

the double-shearing model. The concept of the strain rate intensity factor can be used to

describe physical processes in a narrow layer near frictional interfaces and to predict the

thickness of the layer of intensive deformation in the vicinity of frictional interfaces [18], [19].

An advantage of the problem under consideration is that there are two maximum friction

surfaces. Therefore, it is possible to reveal a qualitative effect of the strain rate intensity factor

on physical processes in the vicinity of the friction surfaces, according to the theories [18], [19],

without having numerical values of parameters involved in the theories. In general, this effect

can be observed experimentally.

2 Statement of the problem

The geometry of the process and the spherical coordinate system qhu are shown in Fig. 1. The

material flows between two rough conical surfaces whose equations are h ¼ h0 and h ¼ h1.

q0

q1

q r
tf

tf

0
Fig. 1. Notation for flow between two conical walls
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Because of axial symmetry, the solution is independent of u. The friction stresses, sf , are

directed as shown in Fig. 1. It is supposed that the friction stress attains its maximum possible

magnitude admissible by the material model (maximum friction law). Note that in the case of

pressure-independent plasticity this magnitude can be directly found from the yield criterion

and is simply the local shear yield stress, independently of the state of stress at the point of

interest. However, yield criteria of pressure-dependent plasticity permit infinite shear stresses

and, therefore, the aforementioned definition for the maximum friction law is not valid. On the

other hand, solutions to particular problems show that there is a maximum possible shear stress

at the friction surface (no solution exists for a higher friction stress) [10]–[12], [20]–[24]. In all of

these cases, however, a system of hyperbolic equations has been solved and the maximum

friction law has been introduced by the condition that the friction surface coincides with an

envelope of characteristics. In the present paper, the equations of one of the models adopted are

not hyperbolic. Therefore, the maximum friction law will be formulated separately for each of

the models considered. There are no other stress boundary conditions.

Let uq, uh and uu be the velocity components in the spherical coordinate system. The

velocity boundary conditions are uh ¼ 0 at h ¼ h0 and h ¼ h1. A typical assumption to find a

solution for flow through infinite channels is uh ¼ 0 and uu ¼ 0 everywhere, for example [1],

[2]. Therefore, the velocity boundary conditions are automatically satisfied. Moreover, the

solution to the incompressibility equation is

uq ¼ �
Q

q2
h hð Þ; ð1Þ

where Q is the volume flux and h hð Þ > 0 is an arbitrary function of h.

3 Double-shearing model

A complete description of the model is given in [8]. Let rqq, rhh, ruu, and rqh be the stress

components in the spherical coordinate system. In the case under consideration ruu is also

one of the principal stresses, and the state of stress should correspond to the edge of

Coulomb-Mohr yield surface defined by the following equations [8]

r1 1þ sin /ð Þ ¼ 2c cos /þ ruu 1� sin /ð Þ; r2 ¼ ruu; ð2:1; 2Þ

where r1 and r2 are the principal stresses in the qh planes, / is the angle of internal friction and

c is the cohesion. Using the standard substitution [8]

rqq ¼ �pþ q cos 2w; rhh ¼ �p� q cos 2w; ruu ¼ �p� q; rqh ¼ q sin 2w; ð3:1–4Þ

it is possible to show that Eq. (2.2) is automatically satisfied and Eq. (2.1) reduces to

p sin / ¼ q� c cos /: ð4Þ

In (3) and what follows, w is the angle the r1 principal stress direction makes with the direction

of q and q � 0. Equations (3) and (4) should be complemented with the equilibrium equations

in the form

q
@rqq

@q
þ @rqh

@h
þ 2rqq � rhh � ruu þ rrh cot h ¼ 0;

q
@rqh

@q
þ @rhh

@h
þ rhh � ruu
� �

cot hþ 3rqh ¼ 0:

ð5Þ
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A typical assumption to find a solution for flow through infinite channels is that w is inde-

pendent of q, for example [1], [2]. Equations (3) through (5) are compatible with this

assumption if

q ¼ exp f hð Þ½ �qn; ð6Þ

where f is an arbitrary function of h and n is an arbitrary constant. Then, Eqs. (5), with the use

of (3) and (4), transform to

dw
dh
¼ n cos2 /� sin / 3 sin /þ 1þ cos 2w 3þ sin /ð Þ þ cot h sin 2w 1þ sin /ð Þ½ �

2 sin / sin /þ cos 2wð Þ ; ð7Þ

40 n

f = 0.3

f = 0.5

f = 0.1

q1

30

20

10

0
15 30 45 60 75 90

Fig. 2. Variation of n-value with the angle h1 at different values of / and h0 ¼ 150
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srr/c

f = 0.5
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q0 = 15° and q1 = 30°

Fig. 3. Variation of the dimensionless stress rqq=c with the angle h at q ¼ 1
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df

dh
¼ n sin 2w� sin / cot h 1� cos 2wð Þ þ sin 2w½ �

sin /þ cos 2w
: ð8Þ

These equations should be solved numerically. It is known that the system of equations con-

sisting of (3) through (5) is hyperbolic and its characteristics are inclined to the q-direction at

w� p=4þ /=2ð Þ [8]. Since an envelope of characteristics is a natural boundary of analytic

solutions, the maximum friction law can be formulated as the condition that the friction surface

coincides with an envelope of characteristics. Such a formulation of the friction law has already

been used in plane strain and axisymmetric problems for materials obeying the double-shearing

model [10]–[12], [20]–[24]. Moreover, in the case of rigid perfectly plastic materials, this for-

mulation is equivalent to the conventional formulation of the maximum friction law that the

0.6

0.4

0.2

0

10 15 20 25 30

q

–0.2

f = 0.5

f = 0.3

f = 0.1

sqq 
/c

q0 = 15° and q1 = 30°

Fig. 4. Variation of the dimensionless stress rhh=c with the angle h at q ¼ 1

0.7

0
10 15 20 25 30

–0.7

–1.4

–2.1

f = 0.5

f = 0.3

f = 0.1

q

sjj/c

q0 = 15° and q1 = 30°

Fig. 5. Variation of the dimensionless stress ruu=c with the angle h at q ¼ 1
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friction stress is equal to the maximum shear yield stress. Therefore, taking into account the

direction of the friction stresses (Fig. 1) and Eq. (3.4) it is possible to get the following con-

ditions on w:

w ¼ � p
4
þ /

2

� �
ð9Þ

at h ¼ h0 and

w ¼ p
4
þ /

2
ð10Þ

1

srq  
/c

0.5

0

15 20 25

f = 0.3

f = 0.1

f = 0.5
q

30

–0.5

–1

q0 = 15° and q1 = 30°

Fig. 6. Variation of the dimensionless stress rqh=c with the angle h at q ¼ 1

1.6

h

1.4

1.2

1

15 20 25 30

q

q0 = 15° and q1 = 30°

Fig. 7. Variation of h with the angle h at / ¼ 0:1
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at h ¼ h1. Solving Eq. (7), with the use of the conditions (9) and (10), it is possible to find n and

the distribution of w. It is seen from the structure of Eq. (7) that dw=dhj j ! 1 as h! h0 and

h! h1. Therefore, it is more convenient to solve (7) for h as a function of w. Figure 2 illustrates

the dependence of n on parameters of the process and material. It is seen from this figure

that n > 0. Therefore, as follows from Eq. (6), q! 0 as q! 0. Then, Eqs. (3) show that

rqq ¼ rhh ¼ ruu ¼ �p at q ¼ 0. Thus the state of stress at this point corresponds to the vertex

of the yield surface. In order to find the stress distribution, it is necessary to solve Eq. (8). It is

seen from the structure of this equation that df=dhj j ! 1 as h! h0 and h! h1. To exclude

this singularity, it is possible to represent the left hand side of (8) in the form df=dwð Þ dw=dhð Þ
and, then, to replace dw=dh with the right hand side of (7). It is also necessary to replace h with

a function of w by means of the solution to Eq. (7). The resulting equation can be solved

numerically with no difficulty. However, there is no natural boundary condition for this

equation. It is typical for this kind of problems, for example [1]–[4]. Therefore, to illustrate the

dependence of stress components of the angle h, Eq. (8) has been solved with the condition

f ¼ 0 at h ¼ h0 and, then, Eqs. (3) and (4) have been used. The variation of dimensionless stress

components with h is shown in Figs. 3–6 at q ¼ 1. The parameters of the process and material

used are shown in the figures.

The velocity equations of the double-shearing model are given in [8]. In the case under

consideration, those are reduced to the incompressibility equation and the following equation:

2nqh cos 2w� nqq � nhh

� �
sin 2wþ 2 sin / xqh þ dw=dt

� �
¼ 0; ð11Þ

where nqq, nhh and nqh are the strain rate components in the spherical coordinate system, xqh is the

component of spin in the same system, and dw=dt is the time derivative of w. The incompressibility

equation is satisfied due to (1). Since the flow is steady, uh ¼ 0, uu ¼ 0 and @w=@q ¼ 0, the

derivativedw=dt vanishes everywhere. Then, Eq. (11) can be rewritten, with the use of (1), in the form

dh

dh
¼ � 3h sin 2w

sin /þ cos 2wð Þ : ð12Þ

Using Eq. (7), this equation can be transformed to

dh

dw
¼ � 6 sin /h sin 2w

n cos2 /� sin / 3 sin /þ 1þ cos 2w 3þ sin /ð Þ þ cot h sin 2w 1þ sin /ð Þ½ � : ð13Þ

The solution to (7) should be used to exclude h on the right hand side of this equation. Since the

volume flux is defined by

Q ¼ 2pq2

Zh1

h0

uq sin hdh; ð14Þ

the substitution of Eq. (1) into (14) gives

1 ¼ 2p
Zh1

h0

h hð Þ sin h dh: ð15Þ

Using Eq. (7), this equation can be rewritten in the form

1

4psin/
¼

Zp=4þ/=2

�p=4�/=2

h wð Þ sin/þcos2wð Þsinh
ncos2/�sin/ 3sin/þ1þcos2w 3þsin/ð Þþcothsin2w 1þsin/ð Þ½ �dw: ð16Þ
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The solution to (7) should be used to exclude h in the integrand on the right hand side of

(16). The solution to Eq. (13) should satisfy (16). The numerical solution for h is illustrated in

Fig. 7. The difference between the curves for / ¼ 0:1, / ¼ 0:3 and / ¼ 0:5 is very small.

Therefore, the single curve in Fig. 7 corresponding to / ¼ 0:1 represents, in fact, all three cases.

4 Coaxial model

The original model has been proposed for plane strain deformation. In this case the only

difference from the double-shearing model is that the coaxial model including the condition of

coaxiality of the stress and stain rate tensors instead of an equation similar to (11). To extend

the coaxial model to three-dimensional deformation, it is necessary to choose a corresponding

yield criterion. An appropriate yield criterion is

arþ req ¼ r0; ð17Þ

where r is the hydrostatic stress, req is the equivalent stress defined by req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2ð Þsijsij

p
, sij

are the deviator portions of stress components, a and r0 are material constants. The condition

of coaxiality of the stress and strain-rate tensors can be written in the form

nij ¼ ksij; ð18Þ

where k > 0 is the factor of proportionality. Thus the system of equations to be solved consists

of the incompressibility equation and Eqs. (5), (17) and (18). It is of course necessary to take

into account the condition of axial symmetry.

Using Eqs. (1) and (18) it is possible to find that

srr ¼ �2shh ¼ �2s//: ð19Þ

Substituting Eq. (19) into (17) gives

arþ
ffiffiffi
3
p

3s2
hh þ s2

rh

� �12¼ r0: ð20Þ

It is convenient to introduce j and c by

shh ¼ j cos c=3 and srh ¼ j sin c=
ffiffiffi
3
p

; j > 0: ð21Þ

Then, Eq. (20) transforms to

arþ j ¼ r0: ð22Þ

As before, assume that c is independent of q. Then, substituting Eqs. (21) and (22) into (5)

shows that the latter equations have a solution if and only if

ln 1� a
r
r0

� �
¼ A ln qþ P hð Þ; ð23Þ

where A is an arbitrary constant and P hð Þ is an arbitrary function of h. Moreover, Eqs. (5)

reduce to

ffiffiffi
3
p

a a� 3 cos cð Þ dc
dh
¼ U c; hð Þ; ð24Þ

where

U c; hð Þ ¼ a2 Aþ 3ð Þ 2þ sin2 c
� �

� 3aA cos c�
ffiffiffi
3
p

cos c sin c cot h� 9A

þ 3
ffiffiffi
3
p

a sin c cot h� 2
ffiffiffi
3
p

cos c
� �

ð25Þ
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and

ffiffiffi
3
p

a� 3 cos cð ÞdP

dh
¼ sin c A 3� a cos cð Þ �

ffiffiffi
3
p

a sin c cot hþ
ffiffiffi
3
p

cos c
� �h i

: ð26Þ

It follows from Eq. (18) that

nhh

nrh
¼ shh

srh
: ð27Þ

Substituting Eq. (1) and (21) into (27) gives

dh

dh
¼ 2

ffiffiffi
3
p

h tan c: ð28Þ

Equations (24), (26) and (28) should be solved numerically to find the distribution of stress and

velocity.

The condition uq < 0 implies that nhh < 0 and, then, Eq. (18) that shh < 0. The latter con-

dition and (21) result in cos c < 0. Therefore, the angle c should be within the interval

p=2 � c � 3p=2 and the maximum friction law requires that

c ¼ p
2

ð29Þ

at h ¼ h1 and

c ¼ 3p
2

ð30Þ

at h ¼ h0. Then, it follows from (28) that the velocity field is singular near the friction surface.

In particular, in the vicinity of the surface h ¼ h0 Eq. (28) can be rewritten in the form

dh

dh
¼ 2

ffiffiffi
3
p

h

3p=2� cð Þ þ o
1

3p=2� c

� �
ð31Þ

15

A

a = 0.3

a = 0.5

a = 0.1

q1

10

5

0
15 30 45 60 75 90

Fig. 8. Variation of A-value with the angle h1 at different values of a and h0 ¼ 15�
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and Eq. (24) in the form

ffiffiffi
3
p

a2 dc
dh
¼ U

3p
2
; h0

� �
� U0: ð32Þ

Combining Eqs. (31) and (32) it is possible to find that

h ¼ H0 h� h0ð Þ�B0þo h� h0ð Þ�B0

h i
as h! ho; B0 ¼ 6a2=U0; ð33Þ

Since the condition h!1 has no physical sense, B0 must satisfy the condition B0 < 0. The

latter condition will be checked a posteriori. If B0 < 0 Eq. (33) shows that h ¼ 0 at the friction

surface and thus sticking occurs. Nevertheless, the equivalent strain rate can approach infinity

at the surface if m0 ¼ �1� B0 < 0. Using similar arguments it is possible to show that

h ¼ H1 h1 � hð Þ�B1þo h1 � hð Þ�B1

h i
; B1 ¼ 6a2=U1; U1 ¼ U

p
2
; h1

� �
ð34Þ

in the vicinity of the friction surface h ¼ h1. As before, a necessary condition for the existence of

the solution is B1 < 0 and the equivalent strain rate approaches infinity at h ¼ h1 if

m1 ¼ �1� B1 < 0. The numerical solution to Eq. (28) in the interval p=2þ d � h � 3p=2� d,
where d� 1, should be matched with the asymptotic expansions (33) and (34).

Equation (24) has been solved with the boundary conditions (29) and (30). This solution

determines the value of A and, with the use of (25), the values of U0 and U1. The variation of

A with h1 at different values of a and h0 ¼ 15� is illustrated in Fig. 8. As before, there is no

natural boundary condition for Eq. (26). Therefore, to illustrate the dependence of stress

components of the angle h, Eq. (26) has been solved with the condition P ¼ 0 at h ¼ h0 and,

then, Eqs. (21)–(23) have been used. The variation of dimensionless stress components with h
is shown in Figs. 9 through 11 at q ¼ 1. The parameters of the process and material used are

shown in the Figures. The solution to Eq. (28) satisfying the condition (15) is shown in

Fig. 12 for different values of a.

0.9
a = 0.3 a = 0.5

a = 0.1

srr 
/s0

0.6

0.3

0

10 15 20 25 30

q

–0.3

q0 = 15° and q1 = 30°

Fig. 9. Variation of the dimensionless stress rqq=r0 with the angle h at q ¼ 1
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5 Analysis of the solutions

Consider the solution based on the double-shearing model. It is of interest to study the solution

behavior in the vicinity of the frictional surfaces. It is known that the velocity field is singular

near the maximum friction surfaces [15], [17]. Moreover, its asymptotic behavior is the same as

in rigid perfectly/plastic solutions [16]. Using this property of the velocity field, the strain rate

intensity factor has been introduced in [16] in the theory of rigid perfectly plastic solids. The

concept of the strain rate intensity factor has been extended to material obeying Spenser’s

model in [17]. This concept can be used to describe the material behavior in the vicinity of

surfaces with high friction [18], [19]. A distinguished feature of the problem under consideration

is that there are two maximum friction surfaces. Therefore, it is possible to compare the two

strain rate intensity factors and, based on this comparison, to make a conclusion on the

intensity of physical processes in narrow layers near the frictional interfaces.

Using Eqs. (1) and (12) the shear strain rate is expressed as

nqh ¼
3Qh sin 2w

2q3 sin /þ cos 2wð Þ : ð35Þ

Obviously, nqh

�� ��!1 as h! h0 and h! h1. By definition [16], the strain rate intensity factor is

the coefficient of the main singular term in the expansion

neq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
nijnij

r

¼ D
ffiffiffi
s
p þ o

1
ffiffiffi
s
p
� �

as s! 0; ð36Þ

where neq is the equivalent strain rate, D is the strain rate intensity factor and s is the distance

from the friction surface. Equation (7) in the vicinity of the friction surface h ¼ h0 can be

represented in the form
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Fig. 10. Variation of the dimensionless stresses rhh=r0 and ruu=r0 with the angle h at q ¼ 1
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dw
dh
¼ A0

wþ p=4þ /=2
þ o

1

wþ p=4þ /=2

� �
; ð37Þ

where

A0 ¼
cos / n� sin /ð Þ þ cot h0 sin / 1þ sin /ð Þ

4 sin /
: ð38Þ

Integrating Eq. (37) gives
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wþ p
4
þ /

2

� �2

¼ 2A0 h� h0ð Þ ð39Þ

to leading order. On the other hand, Eq. (35) can be expanded in the vicinity of the point

w ¼ � p=4þ /=2ð Þ to give

nqh ¼ �
3Qh0

4q3 wþ p=4þ /=2ð Þ þ o
1

wþ p=4þ /=2

� �
; ð40Þ

where h0 is the value of h at w ¼ �p=4� /=2. Combining Eqs. (39) and (40) leads to

nqh ¼ �
3Qh0

4q3
ffiffiffiffiffiffiffiffi
2A0

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
h� h0

p ð41Þ

to leading order. Since all strain rate components, except nqh, are bounded at

w ¼ �p=4� /=2;

neq ¼
2
ffiffiffi
3
p nqh

�� �� ð42Þ

as h! h0. Moreover, in the case under consideration s involved in (36) is s ¼ q h� h0ð Þ.
Therefore, combining Eqs. (36), (41) and (42) gives

D0 ¼
ffiffiffi
3
p

Qh0

2
ffiffiffiffiffiffiffiffi
2A0

p
q5=2

; ð43Þ

where D0 is the value of D at the friction surface h ¼ h0. In the same manner it is possible to find

that

D1 ¼
ffiffiffi
3
p

Qh1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
�2A1

p
q5=2

; ð44Þ

where D1 is the value of D at the friction surface h ¼ h1, h1 is the value of h at w ¼ p=4þ /=2

and

A1 ¼
cos / sin /� nð Þ þ cot h1 sin / 1þ sin /ð Þ

4 sin /
: ð45Þ

The variation of the strain rate intensity factors with q is obvious from (43) and (44). It is of

interest to find the ratio d ¼ D0=D1 at the same value of q. It follows from (43) and (44) that

d ¼ h0

ffiffiffiffiffiffiffiffiffi
�A1

p

h1

ffiffiffiffiffiffi
A0

p : ð46Þ

The value of d has been calculated by means of the solution to Eqs. (15), (38) and (45). The

dependence of d on process and material parameters is shown in Fig. 13. It is interesting to

mention that the value of d can be either less or larger than 1. According to the concept of

strain rate intensity factor [18], [19], this means that physical processes are more intensive in the

vicinity of the friction surface h ¼ h0 at h1 > h	 and in the vicinity of the friction surface h ¼ h1

at h1 < h	. Here h	 is the value of h1 at which d ¼ 1. Another possible interpretation of this

result is that the thickness of the layer of intensive deformation is larger at the surface h ¼ h0

than at the surface h ¼ h1 if h1 > h	 and vice versa.

Consider the solution based on the coaxial model. As in the case of the previous solution, it is

of main interest to study the solution behavior in the vicinity of the friction surfaces. Figure 14

demonstrates the dependence of m0 and m1 on process and material parameters. In particular,

it is seen from this figure that the inequalities B0 < 0 and B1 < 0 are satisfied. Therefore,
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sticking occurs at the friction surfaces, as follows from (33) and (34). It is one of essential

differences of the solution based on the coaxial model from the solution based on the double-

shearing model. In the latter case, sliding occurs at the friction surfaces (Fig. 7). In the vicinity

of the friction surfaces the equivalent strain rate is proportional to dh=dh, since dh=dhj j ! 1
and the other terms involved in the expression for the equivalent strain rate are bounded.
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Fig. 13. Variation of the ratio of strain rate intensity factors with the angle h1 at different values of /
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Figure 14 shows that the order of singularity in the solution based on the coaxial model is

dependent on process and material parameters whereas in the case of the solution based on the

double-shearing model the order of singularity is always equal to �1=2. It is the second

essential difference between the two solutions. It is also seen from Fig. 14 that the order of

singularity in the solution based on the coaxial model is much higher than that in the solution

based on the double-shearing model, and that the order of singularity at h ¼ h1 is always higher

than at h ¼ h0. A very high order of singularity in the solution based on the coaxial model

results in extremely high velocity gradients in the vicinity of the friction surfaces (Fig. 12).

6 Conclusions

Using two models of pressure-dependent plasticity, the double-shearing model and the

coaxial model, the solutions for the flow of material between two rough conical walls have

been proposed. Special attention has been devoted to the solution behavior near the friction

surfaces where the maximum friction law has been assumed. A comparative study has shown

that the qualitative behavior of the solutions is quite different in the vicinity of the friction

surfaces, though the models are supposed to describe the same class of materials. In par-

ticular, the solution based on the double-shearing model requires the sliding regime whereas

the solution based on the coaxial model requires the sticking regime. Combining this result

and experimental observations can constitute a basis for selecting the specific model of

pressure-dependent plasticity for particular applications. Moreover, the former solution is

singular such that the equivalent strain rate follows an inverse square root rule in the vicinity

of the friction surfaces (see Eqs. (41) and (42)). The latter solution is also singular. However,

the order of singularity depends on the process and material parameters (Fig. 14). Combining

this result and the known asymptotic behavior of rigid perfectly/plastic solutions near the

maximum friction surfaces [16] can constitute another basis for selecting the specific model of

pressure-dependent plasticity. For instance, the solution based on the double-shearing model

(but not the solution based on the coaxial model) and rigid perfectly/plastic solution show the

same qualitative behavior in the vicinity of maximum friction surfaces. Since models of

pressure-dependent plasticity are sometimes used to describe traditional metals (such metals

are a typical area of applications of classical plasticity), for example [13], the double-shearing

model has an advantage over the coaxial model.

The problem considered includes two surfaces of maximum friction. It is an advantage for

verifying theories based on the concept of strain rate intensity factor, for example [18], [19],

because it is possible to reveal a qualitative effect of the magnitude of the stress intensity factor

on physical processes in a narrow material layer near the friction surface without determining

parameters involved in the theories. In particular, Fig. 13 demonstrates that the physical

processes are more intensive in the vicinity of the surface h ¼ h0 at larger h1 and in the vicinity

of the surface h ¼ h1 if the value of h1 is close to the value of h0.

Results obtained can be useful in numerical simulation of more complicated problems. In

particular, the qualitative behavior of solutions near the friction surface is solely controlled by

the conditions at this surface. Therefore, it may be important for developing numerical codes

that the maximum friction law leads to sticking when the coaxial model is adopted and to

sliding when the double-shearing model is adopted. It may also be important that the solutions

are singular near the maximum friction surfaces, and the order of singularity is determined by

(36) and (41). It may require special numerical methods. Moreover, the velocity gradient is very
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high at the friction surface (especially in the case of the coaxial model), which can lead to

additional numerical difficulties.

The solutions can be adopted for approximate analysis of tube drawing [25].

Acknowledgement

This research was supported by INTAS through grant 04-83-2723 and the Russian Foundation for

Basic Research through grant 05-01-00153.

References

[1] Sokolovskii, V. V.: Plane and axisymmetric equilibrium of plastic material between rigid walls.

Prikl. Mat. Mekh. 14, 75–92 (1950) [in Russian].
[2] Shield, R. T.: Plastic flow in a converging conical channel. J. Mech. Phys. Solids 3, 246–258 (1955).

[3] Alexandrov, S., Barlat, F.: Axisymmetric plastic flow of an F.C.C. lattice metal in an infinite
converging channel. Mech. Solids 32, 125–131 (1997). [Trans. from Russian].

[4] Alexandrov, S., Barlat, F.: Modeling axisymmetric flow through a converging channel with
arbitrary yield condition. Acta Mech. 133, 57–68 (1999).

[5] Cristescu, N.: Plastic flow through conical converging dies, using a viscoplastic constitutive
equation. Int. J. Mech. Sci. 17, 425–433 (1975).

[6] Camenschi, G., Cristescu, N., Sandru, N.: High speed wire drawing. Arch. Mech. 31, 741–755
(1979).

[7] Durban, D.: Axially symmetric radial flow of rigid/linear-hardening materials. ASME J. Appl.
Mech. 46, 322–328 (1979).

[8] Spencer, A. J. M.: Deformation of ideal granular materials. In: Mechanics of solids. The Rodney
Hill 60th Anniversary Volume (Hopkins, H. G., Sewell, M. J., eds.), pp. 607–652. Oxford:

Pergamon Press 1982.
[9] Ostrowska-Maciejewska, J., Harris, D.: Three-dimensional constitutive equations for rigid/

perfectly plastic granular materials. Math. Proc. Camb. Phil. Soc. 108, 153–169 (1990).
[10] Alexandrov, S.: Comparison of double-shearing and coaxial models of pressure-dependent plastic

flow at frictional boundaries. Trans. ASME J. Appl. Mech. 70, 212–219 (2003).
[11] Alexandrov, S., Lyamina, E.: Qualitative distinctions in the solutions based on the plasticity

theories with Mohr-Coulomb yield criterion. J. Appl. Mech. Techn. Physics 46, 883–890 (2005).
[Trans. from Russian].

[12] Alexandrov, S., Harris, D.: Comparison of solution behavior for three models of pressure-
dependent plasticity: a simple analytical example. Int. J. Mech. Sci. (accepted for publication).

[13] Spitzig, W. A., Sober, R. J., Richmond, O.: The effect of hydrostatic pressure on the deformation
behavior of maraging and HY-80 steels and its implications for plasticity theory. Metallurg. Trans.

7A, 1703–1710 (1976).
[14] Kao, A. S., Kuhn, H. A., Spitzig, W. A., Richmond, O.: Influence of superimposed hydrostatic

pressure on bending fracture and formability of a low carbon steel containing globular sulfides.
Trans. ASME J. Engng Mater. Technol. 112, 26–30. (1990).

[15] Alexandrov, S.: Singular solutions in an axisymmetric flow of a medium obeying the double shear
model. J. Appl. Mech. Techn. Physics 46, 766–771 (2005). [Trans. from Russian].

[16] Alexandrov, S., Richmond, O.: Singular plastic flow fields near surfaces of maximum friction
stress. Int J. Non-Linear Mech. 36, 1–11 (2001).

[17] Alexandrov, S., Lyamina, E.: Singular solutions for plane plastic flow of pressure-dependent
materials. Doklady Physics 47, 308–311 (2002). [Trans. from Russian].

[18] Alexandrov, S.: Interrelation between constitutive laws and fracture criteria in the vicinity of
friction surfaces. In: Physical Aspects of Fracture (Bouchaud, E., Jeulin, D., Prioul, C., Roux, S.,

eds.), pp. 179–190. Kluwer: Dordrecht 2001.

52 S. Alexandrov and E. Lyamina



[19] Alexandrov, S., Goldshtein, R. V., Lyamina, E. A.: Developing the concept of the strain rate

intensity factor in plasticity theory. Doklady Physics 48, 131–133 (2003). [Trans. from Russian].
[20] Pemberton, C. S.: Flow of imponderable granular materials in wedge-shaped channels. J. Mech.

Phys. Solids 13, 351–360 (1965).
[21] Marshall, E. A.: The compression of a slab of ideal soil between rough plates. Acta Mech. 3, 82–92

(1967).
[22] Alexandrov, S., Lyamina, E.: Plane-strain compression of material obeying the double-shearing

model between rotating plates. Int. J. Mech. Sci. 45, 1505–1517 (2003).
[23] Alexandrov, S., Lyamina, E.: Indentation of a wedge into a plastic medium governed by the

double-shearing model. Mech. Solids 39, 84–90 (2004). [Trans. from Russian].
[24] Alexandrov, S.: Steady penetration of a rigid cone into pressure-depedent plastic material. Int. J.

Solids Struct. 43, 193–205 (2006).
[25] Durban, D.: Drawing of tubes. Trans. ASME J. Appl. Mech. 47, 736–740 (1980).

Authors’ address:S.AlexandrovandE.Lyamina, Institute for Problems inMechanics,RussianAcademyof

Sciences, 101-1 Prospect Vernadskogo, 119526 Moscow, Russia (E-mail: sergei_alexandrov@yahoo.com)

Flow of pressure-dependent plastic material 53


