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Summary. A coupled geometrically nonlinear efficient zigzag theory is presented for electrothermome-
chanical analysis of hybrid piezoelectric plates. The geometric nonlinearity is included in Von Karman
sense. The thermal and potential fields are approximated as piecewise linear across sublayers. The
deflection accounts for the transverse normal strain due to thermal and electric fields. The inplane dis-
placements are considered to have layerwise variations, but are expressed in terms of only five primary
displacement variables, independent of the number of layers. The coupled nonlinear equations of equi-
librium and the boundary conditions are derived from a variational principle. The nonlinear theory is used
to obtain the initial buckling response of symmetrically laminated hybrid plates under inplane electro-
thermomechanical loading. Analytical solutions for buckling of simply-supported plates under thermo-
electric load are obtained for comparing the results with the available exact three-dimensional (3D)
piezothermoelasticity solution. The comparison establishes that the present results are in excellent
agreement with the 3D solution, when the pre-buckling transverse normal strain is neglected in the latter
solution. The present results are also compared with the third order theory with the same number of
displacement variables to highlight the positive effects of the layerwise terms in the displacement field
approximations of the zigzag theory.

1 Introduction

Smart composite and sandwich plates with some sensory and actuator piezoelectric layers
constitute an important element of adaptive structures in aerospace, acronautical, automotive
and other applications. Because of the high temperature environments (caused by solar radi-
ation, aerodynamic and propulsive heating etc.) that these structures are often exposed to,
study of thermal buckling and its control is essential for the design of such structures. A good
amount of research has been dedicated to the study of thermal buckling behavior of composite
and sandwich plates. Three-dimensional (3D) thermoelasticity solutions of buckling of elastic
multilayered anisotropic, cross-ply and angle-ply composite plates have been presented for
simply-supported boundary conditions [1]-{3]. The first order shear deformation theory
(FSDT) with and without predictor-corrector procedures for shear correction factors [4]-8],
third order theories (TOTs) [9], [10], zigzag theory [11] and discrete layerwise theory (DLT) [12]


Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: No
     Embed Thumbnails: No
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 657.638 847.559 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice


62 S. Kapuria and G. G. S. Achary

have been employed for thermal buckling analysis of composite and sandwich plates. Study on
thermal buckling of hybrid laminated plates with surface-bonded or embedded piezoelectric
layers is relatively limited in the open literature. The authors [13] have presented an exact 3D
piezothermoelasticity solution for buckling of simply supported symmetrically laminated hy-
brid plates. They showed that (i) the pre-buckling transverse normal strain induced due to
thermoelectric load, which is neglected in 2D plate theories, has significant effect on the
buckling temperature, and (ii) electric boundary conditions (open circuit and closed circuit) too
can significantly alter the buckling temperature, which can not be predicted by an uncoupled
plate theory. Tzou and Zhou [14] have presented nonlinear classical laminate theory (CLT)
without considering direct piezoelectric and pyroelectric coupling effects for deflection, buck-
ling and dynamics of multilayered circular plates under thermal load. Ishiara and Noda [15]
employed the uncoupled CLT to study thermal buckling of symmetrically laminated rectan-
gular composite plates. Shen [16], [17] employed uncoupled refined TOT for thermal post-
buckling analyses of symmetric cross-ply and antisymmetric angle-ply composite plates with
piezo-actuators. Oh et al. [18] have presented an uncoupled DLT to study post-buckling and
vibration response of piezolaminated plates under thermoelectric loads. The equivalent single
layer (ESL) theories (e.g., CLT, FSDT, TOT) use the same global variations for the dis-
placements across the entire laminate thickness and can not account for the zigzag nature of
variation of the inplane displacements as obtained from the 3D solutions. DLTs are accurate,
but suffer from an excessive number of displacement variables in proportion to the number of
layers. The authors [19], [20] have presented a coupled efficient layerwise (zigzag) theory for
linear static and buckling analysis of hybrid plates under electromechanical loading. This
theory considers layerwise variations for the displacements, but the number of primary dis-
placement variables is reduced to only five as in FSDT and refined TOT. Comparison of results
of this theory with the exact 3D solutions for simply supported hybrid plates of highly inho-
mogeneous lay-ups established the high accuracy of this theory for the electromechanical
response.

This work presents an efficient coupled geometrically nonlinear zigzag theory for hybrid
plates under electrothermomechanical load. The nonlinear theory is used to obtain the thermal
buckling response of symmetrically laminated hybrid plates. Both open and closed circuit
conditions are considered. The geometric nonlinearity is included due to deflection only in the
sense of Von Karman. The potential and thermal fields are approximated as piecewise linear
across a number of subdivisions in the layers. The deflection field is sub-layerwise quadratic
which explicitly accounts for the transverse normal strain induced by the electric and thermal
fields. The inplane displacements are approximated as a combination of a global third order
variation across the thickness and a layerwise linear variation. The number of primary dis-
placement variables is reduced to five by enforcing exactly the conditions of zero transverse
shear stresses at the top and bottom and their continuity at the layer interfaces. The nonlinear
coupled equilibrium equations and boundary conditions are derived using a variational
principle.

2 Thermal, potential and displacement field approximations of zigzag theory

The configuration of the hybrid plate made of L perfectly bonded orthotropic laminas of total
thickness & is shown in Fig. 1. The piezoelectric layers bonded to the surfaces or embedded in
the elastic laminate are of orthorhombic materials of class mm2 symmetry, with poling along
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Fig. 1. Geometry of a hybrid plate

the z-direction. The reference plane z = 0 either passes through or is the bottom surface of the
ko-th layer from bottom.

Partially geometrically nonlinear strain-displacement relations in the spirit of Von Karman
are employed, wherein the geometric nonlinearity due to deflection wq(x,y) = w(x,y, 0) of the
midplane is included. The corresponding Lagrange strain-displacement relations and the
electric field-potential relations are

1 1
2 2 A
&r = Upy + éwo‘x, &y = Uy y + g’wo’y, Yay = Uw,y T Uy,z + Wo0,2W0,y,
- By = P = (1)
SZ _w,Zy /yz —uy,z+w.y: /ZJJ _ux,z+w,xy

E,= 7¢,xa E?/ = 7¢),y7 E, = 7¢,z7

where u,, u, and w denote the inplane and transverse displacements, ¢ denotes the electric
potential, &, &, &, Vay» Vye» V2 are the strain components and Ey, £y, E, are the electric field
components. The subscript comma denotes differentiation. Considering the usual assumption
of 2D plate theories, o, ~ 0 [19], the 3D constitutive equations for a piezoelectric medium,
relating stresses g, T and electric displacements D,., D,;, D, with strains, electric field components
and temperature rise 6 reduce to

0=Qe—eiE, — 0, 1=Qy—¢E, D=2¢&% +iE, D,=aés¢+ ijE. +Ds0, (2)
where
Oy &
Tex D, Vex E,
o=|0g, |, = , D= , oe= & |, y= , = , (3)
Tyz D, Vyz E,
Tay Voy

and for general angle-ply lamina
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(4)
@U, €ijs Mijs ﬁ,b-, D3 are the reduced elastic stiffnesses, piezoelectric stress constants, electric
permittivities, stress-temperature coefficients and pyroelectric constant.

The temperature field 0(x, y,2) for the plate can be obtained by solving the heat conduction
equation analytically for some geometries or by the finite element method. For the present
theory, the temperature 6 is assumed as piecewise linear between 729 points zﬁ,, 1=1,2,...,mg,
across the thickness, and the potential ¢ is approximated as piecewise linear between 7 points

z{b,j =1,2,...,ny, across the thickness:
0(x,y,2) = W)(2)0'(x,y),  $(2,,2) = ¥}()¢' (2,1), (5)

where ' (x,y) = 0(x,y,2}), ¢ (x,y) = qb(x,y,z{,,). W) (2) and W7, (2) are linear interpolation
functions and summation convention is used for indices [ and j. For discretization of 0, each
layer can be divided into as many sublayers as required for the desired accuracy. For dis-
cretizing ¢, the piezoelectric layers is divided into a number of sublayers and a series of elastic
layers is combined into one.

The variation of deflection w is obtained by integrating the constitutive equation for ¢, in which the
contributions due to the thermal and electric fields are retained, i.e., &, = w , ~ —ds3¢ . + 030 =

w(w,y,2) = wo(@,y) — ¥ ()¢ (x,y) + ¥y ()0 (), (6)
where W/ (2) = [; ds3'W/y.(2)dz is a piecewise linear function and Wj(z) = [5 as¥}(2)dz is a
piecewise quadratic function. The inplane displacements u,,u, for the k-th layer are assumed
to follow a layerwise linear variation with a global third-order variation across the thickness:

u(xa yaz) = Uk(x, y) — Wy, (xa y) + Zl//k(xa y) + 225("[7 y) + zS’I(x7 y)7 (7)
where
Uy wo X ukj v Wk ” ér Ny
U = 3 wo, = 5 Uy = 5 l//k: ) é: 5 n= 5
Uy Woy Uk, Vi, Sy My
®)

wuy 1s the translation and y, is related to the shear rotation of the k-th layer. For the
mid-plane which passes through the ko-th layer, denote wuo(x,y) = wk, (%,y) = u(x,y,0),
Wo(x,y) = Wy, (,7). Using the 2(L — 1) conditions each for the continuity of o and the transverse
shear stresses t at the layer interfaces and the four shear traction-free conditions, the (4L + 4)
variables wuy, ¥, &, nin Eq. (7) are expressed in terms of only 4 variables uq and , to yield

u(x,y,z) = uO(xa y) —zwo,,(xvz/) +Rk(z)w0(xvy) +Rkj(z)¢zi(xvy) +ékl(z)efi(‘xvy)v (9)

where ¢/, = ¢, ¢{y]T, 0, =10, ny]T and R¥(z), R (2), R¥(z) are 2 x 2 matrices of layer-
wise cubic functions of & whose coefficients are dependent on the material properties and the
lay-ups.
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3 Coupled nonlinear equations of equilibrium

Let the plate be subjected to normal forces p’, p? per unit area on the bottom and top surfaces
along the z-direction. g;, is the the extraneous surface charge density at the interface 2 = z’qg, where
¢’ is prescribed. The total number of such prescribed potentials is 724. The variational principle
for the piezoelectric medium [21] can be expressed, using the notation (...) = Zﬁ;l jj;"il (...)d=
for integration across the thickness, as

A

_piéw(x7y7zo) _pgéw(xvy’ZL) +D2(xay520)5¢1 _Dz(xvysz)éd)nd) - QJ)éd)ji]dA

— /(anéun + TusOUs + Tnedw + D, 0)ds = 0, Y dug, 0wo, 0, o¢’, (10)

I
where A denotes the mid-plane surface area of the plate and I';, is the boundary curve of the
midplane of the plate with normal 7 and tangent s. The above variational equation is expressed
in terms of dug, dwo, Py, ¢’ and stress and electric displacement resultants to yield the
nonlinear equilibrium equations and the boundary conditions. The stress resultants

N = [NxNnyy]Ta M= [MxMnyy]Ta P= [Px'PnyxyPy]T’ S = [S'jx S'jyx S'jxy Sjy]Ta
Q=[Q.9)", @ =@ %Q{/]T, V=V, V{;5 = [V{z.ﬁ, VéU]T and the electric displacement
resultants 7/ = [ []" and &’ are defined by

T o

Fy = [NT MT pT SJT} = [(ff )], Fo=[Q: @ @ Q;]T: [(fT7)] ()
V= <T>> ij/) = <qjj(/>’[>a o= <\Pj(/)(z)D>7 G] = <\Pj0<,2‘(z)DZ>7

where fs = [I; =y ®F @], fy = [R’Cz R’Z - ‘?(745(2)[2],& being a 7 x 7 identity matrix
and

Rf, 0 RE, 0 RY 0 RY o0
®=|0 RE O RL|,L ®'=|0 RY o0 RE|. (12)
Ry, RY Ri, Ri Ré”l Rlﬂ joz R}l”2

Using the definitions in Eq. (12), Eq. (10) yields the following coupled nonlinear field equations
consisting of five equations of force equilibrium and 74 equations for charge equilibrium:

Nx,x +ny,y = 07 wa +Ny,y = 07
Mz, + 2May,ay + My, yy + (NoWo,20 + NayWo,y) o + (NayWo, + Nywo,y) , +F3 =0,

Px,x+Pyx,y_Qx207 ny,x+Pyy_Qy:07

Q]%‘,x + QZH/ - S]JM - S]xy,xy - Si/x,xy - Sg/,yy +H§mx +H.{/,y -G +Fls=0, j=12,...,ng,
(13)

where the mechanical load Fs5 = pé —|—p§ and the electrical loads F/g =D, (x,y,zL)éj%—
D, (x,y,20)0;1 + q;,0;5,- The five equilibrium equations in Eq. (13) correspond to the balance of
linear momentum and moment of momentum for the static case. The variationally consistent
boundary conditions obtained from Eq. (10) are the prescribed values of one of the factors of
each of the following products:
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uO,,,Nna uOSNWAGa wO(VW + Mns,s +an0.n +anw0,5)a wO,nMn,

'ﬁonpm l//()stS» d),an];-rm qu[H{-b - Vj(ﬁn - Sjns,s] (14)
and at corners s; 1 wo(S:)AMys(s;), 7 (s))AS ((s:)
with

Vn = (M}gx +M7yy)nr + (MTZ/T JFMy,y)nzm

Substituting the expressions of o, 7, D, D, from Eq. (2) into Eq. (11) and using Egs. (1), (5),
(6) and (9) yields

o o 1 — — - —
Fy=Ag +p ¢ +A0, -0 + gA*cbwwod, Fo=Ag+F ¢, +A'0,,

(15)
A o . . 1 .. ) _r o _.
G = B0 — B+ B0y + 0 0w, I = e — B ]+ 5,
where
& = [uot,x uoy,y U0,y + uOy,x — W0, 20 — WO, yy
. . . . T
_2wo,xy lpOx.x wowy Woy,x l/joy.y ¢Zxx ]m/ ¢{y1 ¢]yyi| )
wo, O R0 R, OO
. 1T _ _ _
=i wo #h @] 0 =] 0wy | ®=] 0 B 0 R
Woy Wor Ry Ry R R
(16)

A, Al A = (FRRIAER), V), L), [A A = ([ (R)QLAE)., THE)),
B =5 (2)eIW) (2), B = (TP (), BV = (¥, (2)¥7.(2)),
BV = (%7, (2)97(2)),

THR) =R+ P @)k, 7' =(f5Y5HR), 77 =09 ()Y ().

B = (¥ (2)es®(2), BT =(PR)ETHR), B =¥,

- j/ j/ j/ j/ — _ -
An A ... ALlO A1,11 A1,12 A1,13 A1,14 [311’
Ay A A A AL, AL, AL /

21 22 .- 2,10 2,11 2,12 2,13 2,14 ﬁjz

Ay A Ao Ay Ao Ao Al 7/

A= 10,1 102 - 10,10 10,11 10,12 10,13 10,14 AT ﬂj’ B 10
Aj Aj Aj AJJ'/ AJ'J/ AJ'J/ AJ:J'/ ’ il
11,1 12 - 11,10 11,11 11,12 11,13 11,14 11
J J J Vil Vi Vil Vi Vil
A12,1 A12,2 e Agr Alan A12,12 A12,13 A12,14 12
il
J J J Vi Vi Vi Vi v
A1371 A13,2 A13,1o A13,11 A13,12 A13,13 Al3 14 1?
Vi j j Vi Vii Vij Vi Y
_A14,1 A14,2 s Ay Al A14,12 Alg1s A14,14 J L7 14



Electrothermomechanical buckling 67

- Al ! ! T - . o
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Ay Ay Ay Ay Ag1 Az Ags b
I l I l |
Al Alor Az Als Aloa e A}OJ A}0~2 A10¢3 ! AT (17)
= gl gl gl gl s = J J J , V= il
Ay Ang Ans Al Al_ll A}LZ A11.3 v
jl jl jl jl J J J ji
A12‘,1 A12,2 A12,3 A1274 A%Z«,l A}Z,Z A12,3 712
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An A Ay Ay Ay Ay 1 P2
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_ |Aa An Al Al _ _ Ay Ay _, By Bby
A= AT Al= J =
A Y ’ Al AL 4 ai air |
Ay Ay Agy Ay 31 32 31 P32
v A A A Lo Al gl g
| Ay Ay Ay Al Ay Agp LP41 Pa2 |
il B]’l (g7 g
ol ﬂll 12 i 11 12 gl il @il il il jw __ (W pw pjw
ﬁ7 - B]-l Bﬂ ) E7 - Ejj, E’jj[ ) ﬂl - [/}71 ﬂ]2 ﬁé ﬁzl]? ﬁ] - [ﬁil 2 3 ]
21 Pag Lfg1 Loy

Substituting Eq. (15) for the resultants into Eq. (13) yields the nonlinear electromechanically

coupled equations of equilibrium in terms of the primary displacement and potential variables,
U:

LU+L"U =P, (18)
where

T

_ T _
U=[uo, wo, wo o, o, ¢' .. 9], P=[Py Py Py Py P PL.PP] . (19,2)

L is a symmetric matrix of linear differential operators in & and 7/, which are listed in [19]. LU are
the nonlinear terms due to geometric nonlinearity. For cross-ply plates, considering that Qs =0,
Q16 =Qos = 0,814 =5 =0, g = 0,715 = 0, &35 = 0, the nonlinear terms L"U are obtained as

_ 1
(L"U), = § [Anwg , +Awg, o)+ Asswo, awo, 4],
= 1
(L") =5 [Agrwg , + Asawg ], + [Asswo, w0, ]
(L"0)3 = Nywo zx + Nywo yyy + 2Nyt0o, 2y + w0, (N, 2 + Ny, y) + w0,y Ny o + Ny, )

1 . 1 .
+ § [14417/()%127 +A42wé,g/],xx + g [A51wé,x +A52w%y] + [2A63w0,xw0,y]

Yy Y7

. 1
L"), = B) [1471w(2)‘ (I+A72w%¢ ) T [Asswo, zwo, ], n

_ 1
(L"U)s = [Agswo swoy] , + 5 [Aro1w],+A102w5 ],
1 . 1 . 1., ; (20)
(LnU)5+j = éﬁjlww% x + § ]wa% Y + é [Ajll, 1?,{]%7 x +Ajll, Zw%, y}, xx

. . 1 S .
+ [(Ag, 5 + A3 3)wo, 20, 4] 4, +§[A'714, o, 5 F A WG ) s T=1,0 g
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The elements of load vector P are

Pr=—A} 0 — (AL + A5 +AL)0 ), + 716,
—(AYy +A5 +AL) ., —AL0 050,
Py=—F3 = A0y — (Al +A5 245, +245)0 ) —ALE 4040+ 750
Py=—Ap 0+ (Any + A4 +A5) 0 + (7 +A1)0., (21)
Ps=—(Aby+Ads JrAlo e . L10,40{yyy + (o JFAjzz)()fyv
Py=—F— (A, + B = B +701)0 oo — Ay + oy = By 471,00,
+'0 +Au 10 e+ (A71]1 4+A12 o+ Ay 5 +AY z"'Au 5+ AT, DO vy + A4 40

4 Buckling under uniform electrothermomechanical load

For buckling, consider a symmetrically laminated plate subjected to uniform inplane normal
strains &), ¢ 2, zero shear strain ny = 0, uniform temperature rise 0° and actuation potentials
independent of the x- and y-coordinates. This pre-buckling equilibrium state is denoted by
superscript ( )0. For the symmetrically laminated plate under symmetrical loading about the

xy-plane,

w)=0, yo=y)=0. (22)
Considering this, the plate constitutive equations (15) and equilibrium equations (13) yield

N =A1182+A1282+5J1¢0j/ -0, (23.1)
Ng = A1282. +A2282 + ﬁ g(ﬁo‘jl - V2907 (232)
BV =Bl + B -;gg —Fg +90". (23.3)
where y; =309, =309, and =Y 9% Defining ®=[¢'¢?... "],

(1.2 ny T 1T 1 2 g 1T ,
C=[y 92 ], B= [ﬁ B ... B } and Fs = [F} F2...F;*]", Eq. (23.3) can be

written in matrix form as
= P& + P — F +T0". (24)

@ is partitioned into a set of unknown output voltages (I)0 at z ’s where ¢ is not prescribed and
a set of known input actuation voltages @) at the actuated surfaces Accordingly, Eq. (24) is

partitioned and arranged as
ﬂ25 ?0 . + Fs
Iy

ﬁls

ﬁla ﬁ2a
Solving Eq. (25) for ®) and substituting it into Eq. (23) yields the pre-buckling forces N, N{ in
terms of the known loading parameters:

ESS Esa
ECLS Eaa

o | Fs

6. 25
P (25)

s +

o]
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NS = (All + ﬁ?sE;slﬁls)gg' + (A12 + ﬁISE;slﬁ2s)8g
+ (ﬁlTa - ﬂ{qE;leS@)mg - ﬁlTsEs_legs - (Vl - ﬁ]l;Es_slrrﬁ)007
N) = (A12 + BoEg Brs)ey + (Asz + BogFy Pos)ey
+ (ﬁZTa - ﬁZTSEQ_;EW)(Dg - ﬁ2T9E9_91Fg9 - (VZ - ﬁ%jsEs_slr9)00
Let the solution for just after buckling be denoted by (") on the entities. The size of the buckling
mode €U is described by an arbitrary small parameter e. Thus, U = U° + €U with U given by

Eq. (19.1). Substituting this solution into Egs. (18), using Eq. (22) and considering upto first
order terms in € yield the following stability equations for U:

LU+[0 0 (NYwo, s +NJwo, ) 0 0 0]'=P=J0 0 0 0 0 F}]". 27)

For a set of zero incremental potential at the actuator locations, zero incremental electric
displacement at the unknown potential locations and zero incremental temperature, the
incremental load F’é is zero for index j corresponding to such surfaces.

To assess the accuracy of the theory, by comparison with the available 3D piezothermo-
elasticity solution [13], the analytical Navier solution of Eq. (27) for buckling is obtained for
simply-supported rectangular plates of sides a and b along the axes & and y for the boundary
conditions

atx =0,a:  Ny,uo,,wo, ¥, My, Pr, ¢/, 5, =0,

aty =0,b: Ny uo,, wo, o, My, Py, ¢S, =0, 25)
for j =1,...,7m4. The solution for the (m,7)th spatial mode of buckling is taken as:
wy ¢ [(wo ¢ )wm} sin(7x) sin(72y)
wo, Yo, | = | (w0, Vo,),,,) cos(mz) sin(ny) (29)
uo, Yo, [(wo, Wo,),,,]sin(mx) cos(ny)
with m = mn/a, 7 = nn/b. Substituting these into Eq. (27) yields
(K — Kg)U™ = p™ (30)
where K; is the geometric stiffness matrix with the only non-zero element
K(3,3) = —m*NY — 7*N)). K is the symmetric stiffness matrix. Partitioning electric potentials
® into the unknown and known parts ®; and @, Eq.(30) can be written for
U = [uoxm U0, Womn Yo, Yo (DZ”’”} as
(K — Ko)U™ = (K — JK5)U™ = 0. (31)

The above equation represents a generalized eigenvalue problem and the eigenvalue A is the
buckling load factor. The eigenvalues and eigenvectors are obtained by a QR algorithm after
reducing to Heissenberg form.

5 Assessment of the theory for thermal buckling

For numerical evaluation of the new theory for thermal buckling response, hybrid plates of
three different laminate configurations (a), (b) and (c) are considered. The stacking order is
mentioned from the bottom. The elastic substrate of plate (a) has five plies of equal thickness
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0.16k of materials 2/1/3/1/2 with orientations of the principal material axis 1 as
[90°/0°/0°/0°/90°]. It is a good test case for assessing a 2D theory since the plies have highly
inhomogeneous stiffness in tension and shear. The substrate of plate (b) is a graphite-epoxy
composite laminate of material 4 with four layers of equal thickness 0.2 with lay-up
[0°/90°/90°/0°]. The substrate of plate (c) is a five-layer sandwich having graphite-epoxy faces
[0°/90°] and a soft core with thicknesses 0.04/,/0.04//0.64k/0.04k/0.04h. All the plates have
two PZT-5A layers, each of thickness 0.1, bonded to their elastic substrate on its top and
bottom surfaces. The PZT-5A layers have poling in +z-direction. The top and the bottom
of the substrate are grounded. The material properties are selected as [13]: [(Y7, Vs,
Y3, Gz, Gas, Gs1), vi2, V13, Vas, (o1, 02, 03)] =

Material 1: [(6.9, 6.9, 6.9,1.38,1.38,1.38) GPa, 0.25,0.25,0.25,(35.6,35.6,35.6) x 1076 K~1],
Material 2: [(224.25,6.9,6.9,56.58,1.38,56.58) GPa, 0.25,0.25,0.25,(0.25,35.6,35.6) x 10K '],
Material 3: [(172.5,6.9,6.9,3.45,1.38,3.45) GPa, 0.25,0.25,0.25,(0.57,35.6,35.6) x 107 K~1],
Material 4: [(181,10.3,10.3,7.17,2.87,7.17) GPa, 0.28,0.28,0.33,0.02,22.5,22.5) x 10~ K],
Face: [(131.1,6.9,6.9,3.588,2.3322,3.588) GPa, 0.32,0.32,0.49, (0.0225,22.5,22.5) x 1070 K~1],
Core: [(0.2208,0.2001,2760,16.56,455.4,545.1) MPa, 0.99,3 x 107°,3 x 107°,(30.6,30.6,30.6)
x1076K~1],
PZT-5A:((61.0,61.0,53.2,22.6,21.1,21.1)GPa, 0.35,0.38,0.38, (1.5,1.5,2.0) x 1076 K~!], and

[(dgl, dgg, (13,37 d157 d24), (7]11 s Moo, 1’]33), pg} = [(—171, —171, 3747 5847 584) X IO_IZHI/V, (1.53,
1.53,1.5) x107%F/m, 0.0007Cm~* K~!], where Y;, Gy, vy, %, dyj, n; and p3 denote Young’s
moduli, shear moduli, Poisson’s ratios, coefficients of linear expansion, piezoelectric strain
constants, electric permittivities and pyroelectric constant, respectively.

The pre-buckling thermal load cases consist of a uniform temperature rise 0° of the plates
with the top and bottom surfaces under (1) closed circuit condition with ¢! = ¢"¢ = 0, and (2)
open circuit condition with D.(29) = D.(21) = 0. In the present problem, the open circuit
condition induces a uniform sensory potential on the surfaces, as can be seen from Eq. (19).
This corresponds to the piezoelectric layers being electroded at the surfaces, resulting in
0

equipotential areas. The ends of the plates are immovable, i.e. &),

6° for buckling is defined as 0.,. The results are non-dimensionalized with S = a/h:

Or = 000:S%,  Poy = PdoS? Ja, (1,D,10) = (Su,Sv,w)/ max(w),

= 82 = 0. The critical value of

(G, 0y) = (O’x,oy)Szh/Yo max(w), (Tew, Tye) = (‘L’Z_T,‘L}Z)SS}Z/YQ max(w),

where max(w) denotes the largest value of w through the thickness, dy = 374 x 10712 N1,
ap = 22.5 x 1078 K1, and Y, = 6.9 GPa for laminates (a) and (c) and 10.3 GPa for laminate

(b).

Table 1. 3D results for 0. and ézr and % errors for ZIGT and TOT with respect to 3D results for
hybrid plates (S =20, b/a = 1)

Case Plate Exact % error in ZIGT % error in TOT
Our 0, Oer 0, Oer 7,
1 (a) 12.209 10.785 —11.44 0.25 2.82 16.40
(b) 15.844 14.410 —8.75 0.33 7.48 1.72
(©) 32.692 27.099 —16.85 0.31 6.84 12.39
2 (a) 7.7703 7.1767 -7.30 0.36 8.06 17.00
(b) 8.7090 8.2679 —4.61 0.48 3.21 1.95

(c) 7.8339 7.4735 —4.28 0.34 8.50 13.74
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Fig. 2. Percentage error of buckling temperature for square hybrid plates (a), (b) and (c) under load
cases 1 and 2

Table 2. 3D results for 0_;_ of square hybrid plates (a), (b) and (c) under load cases 1 and 2

S Plate (a) Plate (b) Plate (c)
case 1 case 2 case 1 case 2 case 1 case 2
7.5 5.1220 3.3231 9.9003 5.5373 11.029 2.8582
10 6.9207 4.5274 11.721 6.6242 15.706 4.1436
20 10.785 7.1767 14.41 8.2679 27.099 7.4735
40 12.632 8.4744 15.324 8.8381 33.29 9.4107
100 13.278 8.9337 15.604 9.0143 35.59 10.155

The accuracy of the present theory for thermal buckling response is established by direct
comparison with the exact 3D piezothermoelasticity solution [13] for simply-supported cross-
ply symmetrically laminated hybrid plates. Since TOT uses the same global third order vari-
ation for the displacement field across the thickness, without the layerwise terms, and has the
same number of displacement variables as the present theory (ZIGT), present results are also
compared with the coupled TOT [22] extended for the buckling case. This comparison will
establish the effect of the layerwise terms for the displacements incorporated in the ZIGT. In
these nonlinear 2D plate theories, the governing equations of equilibrium do not incorporate
the pre-buckling transverse normal strain ). Therefore, buckling temperatures for the exact 3D
solution have been obtained without and with the neglect of 82, which are denoted as 0, and
07 , respectively. These results and the errors of the present theory and TOT are given in Table 1
for square hybrid plates (a), (b) and (c) with S = 20 for both load cases. For all plates with
b/a = 1, the critical buckling mode corresponds to (m,7) = (1,1). It is observed that, indeed,
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Table 3. 3D results for 0, of plate (a) for different b/a ratios (load case 2, S = 10)

b/a 1.0 1.2 1.5 2.0 4.0

0: 4.52742 3.89978 3.27611 2.69948 2.04495

cr

¢) has a very significant effect on the buckling temperature. It is also found that the error due to
neglecting 2 and that due to the displacement field approximations in the 2D theories are of
opposite signs in many cases. Therefore, in order to ascertain the error due to displacement
approximations across the laminate thickness in the 2D theories, the subsequent 3D results are
obtained without considering &0.
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T R Tor 1t < < 1t N e
B
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0(0.5a, 0, z) 6,(0.5a, 0.5b, z) 7,,(0.5a, 0, z)

Fig. 4. Distributions of 7, 6, 7. for thermal buckling mode of square hybrid plate (a) under load case 2
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Fig. 5. Distributions of %, 6, 7., for thermal buckling mode of square hybrid plate (b) under load case 2

The variation of the percentage error of buckling temperatures with respect to the 3D results
07, with the thickness parameter //a is presented in Fig. 2 for square hybrid plates (a), (b) and
(c) for load cases 1 and 2. For reference, the 3D results 0}, for span-to-thickness ratios
S =a/h =175, 10, 20, 40, 100 are listed in Table 2. It is revealed that though the buckling
temperatures of plates under closed and open circuit conditions are considerably different, the
errors in the 2D theories in the two cases differ only marginally. The error is generally little
higher for the open circuit condition than for the closed one. The maximum error in the ZIGT
for the buckling temperature for thick plates with S = 7.5 is 1.8%, whereas the error in TOT is
80.0, 8.6 and 44.1% for plates (a), (b) and (c), respectively. Even for thin plates with S = 20, the
error in TOT for ézr is as high as 17.0% and 13.7% for plates (a) and (c). The extent of error in
TOT results for plate (a) confirms that this plate indeed offers a good test case for assessing the
accuracy of 2D theories for thermal buckling. The present theory successfully passes this test.
As is well known, equivalent single layer theories like TOT yield highly inaccurate results for
sandwich plates, whereas ZIGT yields excellent results for these plates too.

The variations of the percentage error in ZIGT and TOT for the buckling temperature with
the side ratio (b/a) are shown in Fig. 3 for plate (a) with S =10 under load case 2. For
reference, the 3D results of 9zr of plate (a) with S = 10 for b/a = 1.0, 1.2, 1.5, 2.0, 4.0 are listed
in Table 3. It is revealed that whereas the error in ZIGT remains low with little change, the
error in TOT reduces with the increase in b/a.

The through-the-thickness distributions of predominant modal inplane displacements /7,
normal stresses 6,/6, and transverse shear stresses 7., /7, for the thermal buckling mode at
(,y) locations where they are maximum are compared in Figs. 4-6 for square hybrid plates
(a), (b) and (c) for load case 2 for S = 7.5 and 10. It is observed that the present distributions
are in excellent agreement with the exact modal distributions for all plates even for the thick
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Fig. 6. Distributions of %, G, T, for thermal buckling mode of square hybrid plate (c) under load case 2

ones with S = 7.5. In contrast, the distributions obtained from TOT have large error even for
S = 10. The present theory is able to accurately capture the layerwise zigzag distribution of the
modal inplane displacements obtained from the 3D solution, but the global distribution of the
inplane displacements used in TOT is unable to capture it. This explains why ZIGT yields
accurate results and TOT does not. The presented results cover a wide variety of possible cases
as is evident from the qualitative distinct nature of the through-the-thickness distributions of
the modal entities for the three plates.

The effect of the ratio b/a on the accuracy of the through-the-thickness distributions is
illustrated in Fig. 7 by plotting the distributions for two values of b/a = 1.5 and b/a = 4 for
plate (a) with S = 10. It is seen that whereas ZIGT yields accurate distributions for all ratios
b/a, the error in the TOT reduces with the increase in b/a.

6 Conclusions

A geometrically nonlinear electromechanically coupled zigzag theory is developed for hybrid
piezoelectric plates under electrothermomechanical loading. The theory considers layerwise
distribution of the inplane displacements across the thickness and accounts for the transverse
normal strain caused by the thermal and potential fields, but the displacement field is expressed
in terms of only five displacement variables as in TOT. The nonlinear theory is used to obtain
the initial thermal buckling response of symmetrically laminated plates. The accuracy of the
theory is established directly by comparison with the exact 3D piezothermoelasticity solution
for a simply supported highly inhomogeneous hybrid test plate, a composite plate and a
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Fig. 7. Effect of b/a on distributions of 7, G, 7> for thermal buckling mode of hybrid plate (a) under
load case 2

sandwich plate with the piezo-surfaces under closed and open circuit conditions. The buckling
temperatures predicted by the present theory are found to be in excellent agreement with the 3D
solution which neglects the pre-buckling transverse normal strain. In contrast, TOT results may
have significant errors even for thin plates with S = 20. The present results are superior, since
this theory can accurately predict the zigzag distributions of inplane displacements as obtained
from 3D exact solutions. The present theory is applicable for hybrid sandwich plates too, for
which TOT yields poor results.
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