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Summary. A coupled geometrically nonlinear efficient zigzag theory is presented for electrothermome-

chanical analysis of hybrid piezoelectric plates. The geometric nonlinearity is included in Von Karman

sense. The thermal and potential fields are approximated as piecewise linear across sublayers. The

deflection accounts for the transverse normal strain due to thermal and electric fields. The inplane dis-

placements are considered to have layerwise variations, but are expressed in terms of only five primary

displacement variables, independent of the number of layers. The coupled nonlinear equations of equi-

librium and the boundary conditions are derived from a variational principle. The nonlinear theory is used

to obtain the initial buckling response of symmetrically laminated hybrid plates under inplane electro-

thermomechanical loading. Analytical solutions for buckling of simply-supported plates under thermo-

electric load are obtained for comparing the results with the available exact three-dimensional (3D)

piezothermoelasticity solution. The comparison establishes that the present results are in excellent

agreement with the 3D solution, when the pre-buckling transverse normal strain is neglected in the latter

solution. The present results are also compared with the third order theory with the same number of

displacement variables to highlight the positive effects of the layerwise terms in the displacement field

approximations of the zigzag theory.

1 Introduction

Smart composite and sandwich plates with some sensory and actuator piezoelectric layers

constitute an important element of adaptive structures in aerospace, aeronautical, automotive

and other applications. Because of the high temperature environments (caused by solar radi-

ation, aerodynamic and propulsive heating etc.) that these structures are often exposed to,

study of thermal buckling and its control is essential for the design of such structures. A good

amount of research has been dedicated to the study of thermal buckling behavior of composite

and sandwich plates. Three-dimensional (3D) thermoelasticity solutions of buckling of elastic

multilayered anisotropic, cross-ply and angle-ply composite plates have been presented for

simply-supported boundary conditions [1]–[3]. The first order shear deformation theory

(FSDT) with and without predictor-corrector procedures for shear correction factors [4]–[8],

third order theories (TOTs) [9], [10], zigzag theory [11] and discrete layerwise theory (DLT) [12]
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have been employed for thermal buckling analysis of composite and sandwich plates. Study on

thermal buckling of hybrid laminated plates with surface-bonded or embedded piezoelectric

layers is relatively limited in the open literature. The authors [13] have presented an exact 3D

piezothermoelasticity solution for buckling of simply supported symmetrically laminated hy-

brid plates. They showed that (i) the pre-buckling transverse normal strain induced due to

thermoelectric load, which is neglected in 2D plate theories, has significant effect on the

buckling temperature, and (ii) electric boundary conditions (open circuit and closed circuit) too

can significantly alter the buckling temperature, which can not be predicted by an uncoupled

plate theory. Tzou and Zhou [14] have presented nonlinear classical laminate theory (CLT)

without considering direct piezoelectric and pyroelectric coupling effects for deflection, buck-

ling and dynamics of multilayered circular plates under thermal load. Ishiara and Noda [15]

employed the uncoupled CLT to study thermal buckling of symmetrically laminated rectan-

gular composite plates. Shen [16], [17] employed uncoupled refined TOT for thermal post-

buckling analyses of symmetric cross-ply and antisymmetric angle-ply composite plates with

piezo-actuators. Oh et al. [18] have presented an uncoupled DLT to study post-buckling and

vibration response of piezolaminated plates under thermoelectric loads. The equivalent single

layer (ESL) theories (e.g., CLT, FSDT, TOT) use the same global variations for the dis-

placements across the entire laminate thickness and can not account for the zigzag nature of

variation of the inplane displacements as obtained from the 3D solutions. DLTs are accurate,

but suffer from an excessive number of displacement variables in proportion to the number of

layers. The authors [19], [20] have presented a coupled efficient layerwise (zigzag) theory for

linear static and buckling analysis of hybrid plates under electromechanical loading. This

theory considers layerwise variations for the displacements, but the number of primary dis-

placement variables is reduced to only five as in FSDT and refined TOT. Comparison of results

of this theory with the exact 3D solutions for simply supported hybrid plates of highly inho-

mogeneous lay-ups established the high accuracy of this theory for the electromechanical

response.

This work presents an efficient coupled geometrically nonlinear zigzag theory for hybrid

plates under electrothermomechanical load. The nonlinear theory is used to obtain the thermal

buckling response of symmetrically laminated hybrid plates. Both open and closed circuit

conditions are considered. The geometric nonlinearity is included due to deflection only in the

sense of Von Karman. The potential and thermal fields are approximated as piecewise linear

across a number of subdivisions in the layers. The deflection field is sub-layerwise quadratic

which explicitly accounts for the transverse normal strain induced by the electric and thermal

fields. The inplane displacements are approximated as a combination of a global third order

variation across the thickness and a layerwise linear variation. The number of primary dis-

placement variables is reduced to five by enforcing exactly the conditions of zero transverse

shear stresses at the top and bottom and their continuity at the layer interfaces. The nonlinear

coupled equilibrium equations and boundary conditions are derived using a variational

principle.

2 Thermal, potential and displacement field approximations of zigzag theory

The configuration of the hybrid plate made of L perfectly bonded orthotropic laminas of total

thickness h is shown in Fig. 1. The piezoelectric layers bonded to the surfaces or embedded in

the elastic laminate are of orthorhombic materials of class mm2 symmetry, with poling along
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the z-direction. The reference plane z ¼ 0 either passes through or is the bottom surface of the

k0-th layer from bottom.

Partially geometrically nonlinear strain-displacement relations in the spirit of Von Karman

are employed, wherein the geometric nonlinearity due to deflection w0ðx; yÞ ¼ wðx; y; 0Þ of the
midplane is included. The corresponding Lagrange strain-displacement relations and the

electric field-potential relations are

ex ¼ ux;x þ
1

2
w2

0;x; ey ¼ uy; y þ
1

2
w2

0; y; cxy ¼ ux; y þ uy;x þw0;xw0; y;

ez ¼ w; z; cyz ¼ uy; z þw; y; czx ¼ ux; z þw;x;

Ex ¼ �/;x; Ey ¼ �/; y; Ez ¼ �/; z;

ð1Þ

where ux, uy and w denote the inplane and transverse displacements, / denotes the electric

potential, ex, ey, ez, cxy, cyz, czx are the strain components and Ex, Ey, Ez are the electric field

components. The subscript comma denotes differentiation. Considering the usual assumption

of 2D plate theories, rz ’ 0 [19], the 3D constitutive equations for a piezoelectric medium,

relating stresses r, s and electric displacements Dx, Dy, Dz with strains, electric field components

and temperature rise h reduce to

r ¼ �Qe� �eT
3 Ez � �bh; s ¼ Q̂c� êE; D ¼ êTcþ ĝE; Dz ¼ �e3eþ �g33Ez þ �p3h; ð2Þ

where

r ¼

rx

ry

sxy

2
664

3
775; s ¼

szx

syz

" #
; D ¼

Dx

Dy

" #
; e ¼

ex

ey

cxy

2
664

3
775; c ¼

czx

cyz

" #
; E ¼

Ex

Ey

" #
; ð3Þ

and for general angle-ply lamina

a

b

y
z

z = zL

z = z0

 zk-1

1st Layer

h/2

h/2

x

k0-th Layer

Piezoelectric
LayersL-th Layer

k-th Layer

Fig. 1. Geometry of a hybrid plate
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�Q ¼

�Q11
�Q12

�Q16

�Q12
�Q22 Q16

�Q16 Q26
�Q66

2
66664

3
77775
; Q̂ ¼

�Q55
�Q45

�Q45
�Q44

2
4

3
5; ê ¼

�e15 �e14

�e25 �e24

2
4

3
5; ĝ ¼

�g11 �g12

�g12 �g22

2
4

3
5; �b ¼

�b1

�b2

�b6

2
66664

3
77775
;

�e3 ¼ �e31 �e32 �e36½ �:
ð4Þ

�Qij, �eij, �gij,
�bi, �p3 are the reduced elastic stiffnesses, piezoelectric stress constants, electric

permittivities, stress-temperature coefficients and pyroelectric constant.

The temperature field hðx; y; zÞ for the plate can be obtained by solving the heat conduction

equation analytically for some geometries or by the finite element method. For the present

theory, the temperature h is assumed as piecewise linear between nh points zl
h, l ¼ 1; 2; . . . ;nh,

across the thickness, and the potential / is approximated as piecewise linear between n/ points

z
j

/, j ¼ 1; 2; . . . ;n/, across the thickness:

hðx; y; zÞ ¼ Wl
hðzÞhlðx; yÞ; /ðx; y; zÞ ¼ W j

/ðzÞ/
jðx; yÞ; ð5Þ

where hlðx; yÞ ¼ hðx; y; zl
hÞ, /jðx; yÞ ¼ /ðx; y; zj

/Þ. Wl
hðzÞ and W j

/ðzÞ are linear interpolation

functions and summation convention is used for indices l and j. For discretization of h, each
layer can be divided into as many sublayers as required for the desired accuracy. For dis-

cretizing /, the piezoelectric layers is divided into a number of sublayers and a series of elastic

layers is combined into one.

The variation of deflectionw is obtainedby integrating the constitutive equation for ez inwhich the

contributions due to the thermal and electric fields are retained, i.e., ez ¼ w; z ’ �d33/; z þ a3h )

wðx; y; zÞ ¼ w0ðx; yÞ � �Wj

/ðzÞ/
jðx; yÞ þ �Wl

hðzÞhlðx; yÞ; ð6Þ

where �W j
/ðzÞ ¼

R z

0 d33W j
/;zðzÞdz is a piecewise linear function and �Wl

hðzÞ ¼
R z

0 a3W
l
hðzÞdz is a

piecewise quadratic function. The inplane displacements ux;uy for the k-th layer are assumed

to follow a layerwise linear variation with a global third-order variation across the thickness:

uðx; y; zÞ ¼ ukðx; yÞ � zw0d
ðx; yÞ þ zwkðx; yÞ þ z2nðx; yÞ þ z3gðx; yÞ; ð7Þ

where

u ¼
ux

uy

2
4

3
5; w0d

¼
w0;x

w0;y

2
4

3
5; uk ¼

ukx

uky

2
4

3
5; wk ¼

wkx

wky

2
4

3
5; n ¼

nx

ny

2
4

3
5; g ¼

gx

gy

2
4

3
5;

ð8Þ

uk is the translation and wk is related to the shear rotation of the k-th layer. For the

mid-plane which passes through the k0-th layer, denote u0ðx; yÞ ¼ uk0
ðx; yÞ ¼ uðx; y; 0Þ,

w0ðx; yÞ ¼ wk0
ðx; yÞ.Using the 2ðL� 1Þ conditions each for the continuity ofu and the transverse

shear stresses s at the layer interfaces and the four shear traction-free conditions, the (4Lþ 4)

variables uk, wk, n, g in Eq. (7) are expressed in terms of only 4 variables u0 and w0 to yield

uðx; y; zÞ ¼ u0ðx; yÞ � zw0d
ðx; yÞ þ RkðzÞw0ðx; yÞ þ RkjðzÞ/j

dðx; yÞ þ �RklðzÞhl
dðx; yÞ; ð9Þ

where /j
d ¼ ½/

j
;x /j

; y�
T, hl

d ¼ ½h
l
;x hl

; y�
T and RkðzÞ, RkjðzÞ, �RklðzÞ are 2� 2 matrices of layer-

wise cubic functions of z whose coefficients are dependent on the material properties and the

lay-ups.
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3 Coupled nonlinear equations of equilibrium

Let the plate be subjected to normal forces p1
z, p2

z per unit area on the bottom and top surfaces

along the z-direction. qji
is the the extraneous surface charge density at the interface z ¼ z

ji

/, where

/ ji is prescribed. The total number of such prescribed potentials is �n/. The variational principle

for the piezoelectric medium [21] can be expressed, using the notation h. . .i ¼
PL

k¼1

R z�
k

zþ
k�1

ð. . .Þdz

for integration across the thickness, as
Z

A

½hrxdex þ rydey þ sxydcxy þ syzdcyz þ szxdczx þ Dxd/;x þ Dyd/;y þ Dzd/;zi

� p1
zdwðx; y; z0Þ � p2

zdwðx; y; zLÞ þ Dzðx; y; z0Þd/1 � Dzðx; y; zLÞd/n/ � qji
d/ ji �dA

�
Z

CL

hrndun þ snsdus þ snzdwþ Dnd/ids ¼ 0; 8 du0; dw0; dw0; d/j; ð10Þ

where A denotes the mid-plane surface area of the plate and CL is the boundary curve of the

midplane of the plate with normal n and tangent s. The above variational equation is expressed

in terms of du0, dw0, dw0, d/j and stress and electric displacement resultants to yield the

nonlinear equilibrium equations and the boundary conditions. The stress resultants

N ¼ ½Nx Ny Nxy�T, M ¼ ½Mx My Mxy�T, P ¼ ½Px Pyx Pxy Py�T, S j ¼ ½S j
x S j

yx S j
xy S j

y�T,
Q ¼ ½Qx Qy�T, �Qj ¼ ½�Qj

x
�Qj

y�
T, V ¼ ½Vx Vy�T, V

j

/ ¼ ½V
j

/x
V

j

/y
�T and the electric displacement

resultants Hj ¼ ½Hj
x Hj

y�
T and Gj are defined by

F1 ¼ NT MT PT SjT
h iT

¼ ½h f T
3 ri�; F2 ¼ Qx Qy

�Qj
x

�Qj
y

� �T¼ ½h f T
4 si�

V ¼ hsi; Vj
/ ¼ h �W j

/si; Hj ¼ hW j
/ðzÞDi; Gj ¼ hW j

/;zðzÞDzi;
ð11Þ

where f3 ¼ I3 zI3 Uk Ukj
� �

; f4 ¼ Rk
; z Rkj

; z � �W j
/ðzÞI2

� �
, In being a n� n identity matrix

and

Uk ¼
Rk

11 0 Rk
12 0

0 Rk
21 0 Rk

22

Rk
21 Rk

11 Rk
22 Rk

12

2
664

3
775; Ukj ¼

R
kj

11 0 R
kj

12 0

0 R
kj

21 0 R
kj

22

R
kj

21 R
kj

11 R
kj

22 R
kj

12

2
664

3
775: ð12Þ

Using the definitions in Eq. (12), Eq. (10) yields the following coupled nonlinear field equations

consisting of five equations of force equilibrium and n/ equations for charge equilibrium:

Nx;x þ Nxy; y ¼ 0; Nxy; x þ Ny; y ¼ 0;

Mx;xx þ 2Mxy;xy þMy; yy þ ðNxw0;x þ Nxyw0; yÞ;x þ ðNxyw0; x þ Nyw0; yÞ;x þ F3 ¼ 0;

Px;x þ Pyx; y � Qx ¼ 0; Pxy;x þ Py; y � Qy ¼ 0;

�Qj
x;x þ �Qj

y; y � Sj
x;xx � Sj

xy;xy � Sj
yx;xy � Sj

y; yy þ Hj
x;x þ Hj

y; y � G j þ F j
6 ¼ 0; j ¼ 1; 2; . . . ;n/;

ð13Þ

where the mechanical load F3 ¼ p1
z þ p2

z and the electrical loads F j
6 ¼ Dzðx; y; zLÞdjn/�

Dzðx; y; z0Þdj1 þ qji
djji

. The five equilibrium equations in Eq. (13) correspond to the balance of

linear momentum and moment of momentum for the static case. The variationally consistent

boundary conditions obtained from Eq. (10) are the prescribed values of one of the factors of

each of the following products:
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u0n
Nn; u0s

Nns; w0ðVn þMns;s þ Nnw0;n þ Nnsw0;sÞ; w0;nMn;

w0n
Pn; w0s

Pns; /;n
jSj

n; / j½Hj
n � V j

/n
� S j

ns;s�

and at corners si : w0ðsiÞDMnsðsiÞ; / jðsiÞDSj
nsðsiÞ

ð14Þ

with

Vn ¼ ðMx; x þMxy; yÞnx þ ðMxy;x þMy; yÞny;

V
j

/n
¼ ðSj

x;x þ Sj
yx; yÞnx þ ðSj

y; y þ Sj
xy;xÞny � �Q j

xnx � �Q j
yny:

Substituting the expressions of r, s, D, Dz from Eq. (2) into Eq. (11) and using Eqs. (1), (5),

(6) and (9) yields

F1 ¼ A�e1 þ bj0/j0 þ Alhl
dd � clhl þ 1

2
A�Uww0d

; F2 ¼ �A�e2 þ �bj0/j0

d þ �A lhl
d;

Gj ¼ b jT

�e1 � Ejj0/j0 þ b jlhl
dd þ c jlhl þ 1

2
b jwUww0d

; Hj ¼ �b jT

�e2 � �Ejj0/ j0

d þ �b jlhl
d;

ð15Þ

where

�e1 ¼ u0x;x u0y;y u0x; y þ u0y;x �w0;xx �w0; yy

�

�2w0; xy w0x;x
w0x;y

w0y;x
w0y; y

/ j
;xx / j

;xy /j
;yx /j

;yy

iT
;

�e2 ¼ w0x
w0y

/ j
;x / j

;y

h iT
; Uw ¼

w0;x 0

0 w0; y

w0; y w0;x

2
6664

3
7775; �Ukl ¼

�Rkl
11 0 �Rkl

12 0

0 �Rkl
21 0 �Rkl

22

�Rkl
21

�Rkl
11

�Rkl
22

�Rkl
12

2
6664

3
7775;

ð16Þ

½A; Al; A�� ¼ h f T
3 ðzÞ�Q½ f3ðzÞ; �UklðzÞ; I3�i; ½ �A; �A l� ¼ h f T

4 ðzÞQ̂½ f4ðzÞ; �C klðzÞ�i;

b j0 ¼ h f T
3 ðzÞ�eT

3 W j0

/;zðzÞi; �b j0 ¼ h f T
4 ðzÞêW

j0

/ðzÞi; E jj0 ¼ h�g33W
j

/;zðzÞW
j0

/;zðzÞi;

�E jj0 ¼ hĝW j

/ðzÞW
j0

/ðzÞi;

�C klðzÞ ¼ �R kl
;zðzÞ þ �W l

hðzÞI2; c l ¼ h �f
T
3 ðzÞ�bW l

hðzÞi; c jl ¼ hp̂3W
j

/;zðzÞW
l
hðzÞi;

b jl ¼ hW j

/;zðzÞ�e3
�UklðzÞi; �b jl ¼ hW j

/ðzÞê
T �C klðzÞi; b jw ¼ h�e3W

j

/;zi;

A ¼

A11 A12 . . . A1;10 A
j0

1;11 A
j0

1;12 A
j0

1;13 A
j0

1;14

A21 A22 . . . A2;10 A
j0

2;11 A
j0

2;12 A
j0

2;13 A
j0

2;14

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

A10;1 A10;2 . . . A10;10 A
j0

10;11 A
j0

10;12 A
j0

10;13 A
j0

10;14

A
j

11;1 A
j

11;2 . . . A
j

11;10 A
jj0

11;11 A
jj0

11;12 A
jj0

11;13 A
jj0

11;14

A
j

12;1 A
j

12;2 . . . A
j

12;10 A
jj0

12;11 A
jj0

12;12 A
jj0

12;13 A
jj0

12;14

A
j

13;1 A
j

13;2 . . . A
j

13;10 A
jj0

13;11 A
jj0

13;12 A
jj0

13;13 A
jj0

13;14

A
j

14;1 A
j

14;2 . . . A
j

14;10 A
jj0

14;11 A
jj0

14;12 A
jj0

14;13 A
jj0

14;14

2
6666666666666666664

3
7777777777777777775

¼ AT; bj0 ¼

b j0

1

b j0

2

..

.

b j0

10

b jj0

11

b jj0

12

b jj0

13

b jj0

14

2
666666666666666664

3
777777777777777775

;
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Al ¼

Al
11 Al

12 Al
13 Al

14

Al
21 Al

22 Al
23 Al

24

..

. ..
. ..

.

Al
10;1 Al

10;2 Al
10;3 Al

10;4

A
jl

11;1 A
jl

11;2 A
jl

11;3 A
jl

11;4

A
jl

12;1 A
jl

12;2 A
jl

12;3 A
jl

12;4

A
jl

13;1 A
jl

13;2 A
jl

13;3 A
jl

13;4

A
jl

14;1 A
jl

14;2 A
jl

14;3 A
jl

14;4

2
666666666666664

3
777777777777775

; A� ¼

A11 A12 A13

A21 A22 A23

..

. ..
. ..

.

A10;1 A10;2 A10;3

A
j

11;1 A
j

11;2 A
j

11;3

A
j

12;1 A
j

12;2 A
j

12;3

A
j

13;1 A
j

13;2 A
j

13;3

A
j

14;1 A
j

14;2 A
j

14;3

2
666666666666664

3
777777777777775

; c l ¼

c l
1

c l
2

..

.

c l
10

c jl

11

c jl

12

c jl

13

c jl

14

2
66666666666664

3
77777777777775

; ð17Þ

�A ¼

�A11
�A12

�Aj0

13
�Aj0

14

�A21
�A22

�Aj0

23
�Aj0

24

�Aj

31
�Aj

32
�Ajj0

33
�Ajj0

34

�Aj

41
�Aj

42
�Ajj0

43
�Ajj0

44

2
66666664

3
77777775
¼ �A T; �A l ¼

�Al
11

�Al
12

�Al
21

�Al
22

�Ajl

31
�Ajl

32

�Ajl

41
�Ajl

42

2
6666664

3
7777775
; �b j0 ¼

�bj0

11
�bj0

12

�bj0

21
�bj0

22

�bjj0

31
�bjj0

32

�bjj0

41
�bjj0

42

2
66666664

3
77777775
;

�bjl ¼
�bjl

11
�bjl

12

�bjl

21
�bjl

22

" #
; �Ejj0 ¼

�Ejj0

11
�Ejj0

12

�Ejj0

21
�Ejj0

22

" #
; bjl ¼ ½bjl

1 bjl

2 bjl

3 bjl

4 �; bjw ¼ ½bjw

1 bjw

2 bjw

3 �:

Substituting Eq. (15) for the resultants into Eq. (13) yields the nonlinear electromechanically

coupled equations of equilibrium in terms of the primary displacement and potential variables,
�U:

L �U þ Ln �U ¼ �P; ð18Þ

where

�U ¼ u0x
u0y

w0 w0x
w0y

/1 . . . /n/

h iT
; �P¼ P1 P2 P3 P4 P5 P1

6 . . .P
n/

6

� �T
: ð19:1;2Þ

L is a symmetric matrix of linear differential operators in x and y, which are listed in [19]. Ln �U are

the nonlinear terms due to geometric nonlinearity. For cross-ply plates, considering that �Q45 ¼ 0,

Q16 ¼ �Q26 ¼ 0, �e14 ¼ �e25 ¼ 0, �b6 ¼ 0; �g12 ¼ 0, �e36 ¼ 0, the nonlinear terms Ln �U are obtained as

ðLn �UÞ1 ¼
1

2
½A11w2

0; x þ A12w2
0; y�; x þ ½A33w0; xw0; y�;y;

ðLn �UÞ2 ¼
1

2
½A21w2

0; x þ A22w2
0; y�; y þ ½A33w0; xw0; y�; x;

ðLn �UÞ3 ¼ Nxw0;xx þ Nyw0;yy þ 2Nxyw0; xy þw0; xðNx; x þ Nxy; yÞ þw0; yðNxy;x þ Ny; yÞ

þ 1

2
½A41w2

0;x þ A42w2
0;y�;xx þ

1

2
½A51w2

0;x þ A52w2
0;y�;yy þ ½2A63w0;xw0;y�;xy;

ðLn �UÞ4 ¼
1

2
½A71w2

0; xþA72w2
0; y�; x þ ½A83w0; xw0; y�; y;

ðLn �UÞ5 ¼ ½A93w0;xw0;y�;x þ
1

2
½A10;1w2

0;xþA10;2w2
0;y�;y;

ðLn �UÞ5þj ¼
1

2
bjw

1 w2
0; x þ

1

2
bjw

2 w2
0; y þ

1

2
½Aj

11; 1w2
0; x þ A

j

11; 2w2
0; y�; xx

þ ½ðAj

12; 3 þ A
j

13; 3Þw0; xw0; y�;xy þ
1

2
½Aj

14; 1w2
0; x þ A

j

14; 2w2
0; y�; yy; j ¼ 1; . . . n/:

ð20Þ
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The elements of load vector �P are

P1¼�Al
11h

l
;xxx�ðAl

14þAl
32þAl

33Þh
l
;xyyþcl

1h
l
;x;

P2¼�ðAl
21þAl

32þAl
33Þh

l
;xxy�Al

24h
l
;yyyþcl

2h
l
;y;

P3¼�F3�Al
41h

l
;xxxx�ðAl

44þAl
51þ2Al

62þ2Al
63Þhl

;xxyy�Al
54h

l
;yyyyþcl

4h
l
;xxþcl

5h
l
;yy;

P4¼�Al
71h

l
;xxxþðAl

74þAl
82þAl

83Þhl
;xyyþðcl

7þ �Al
11Þhl

;x;

P5¼�ðAl
92þAl

93þAl
10;1Þhl

;xxy�Al
10;4h

l
;yyyþðcl

10þ �Al
22Þhl

;y;

P
j

6¼�F
j

6�ð �Ajl

31þ �bjl

11�bjl

1þcjl

11Þh
l
;xx�ð �Ajl

42þ �bjl

22�bjl

4þcjl

14Þh
l
;yy

þcjlhlþA
jl

11;1h
l
;xxxxþðA

jl

11;4þA
jl

12;2þA
jl

12;3þA
jl

13;2þA
jl

13;3þA
jl

14;1Þh
l
;xxyyþA

jl

14;4h
l
;yyyy:

ð21Þ

4 Buckling under uniform electrothermomechanical load

For buckling, consider a symmetrically laminated plate subjected to uniform inplane normal

strains e0
x, e0

y, zero shear strain c0
xy ¼ 0, uniform temperature rise h0 and actuation potentials

independent of the x- and y-coordinates. This pre-buckling equilibrium state is denoted by

superscript ð Þ0. For the symmetrically laminated plate under symmetrical loading about the

xy-plane,

w0
0 ¼ 0; w0

x ¼ w0
y ¼ 0: ð22Þ

Considering this, the plate constitutive equations (15) and equilibrium equations (13) yield

N0
x ¼ A11e

0
x þ A12e

0
y þ b j0

1/0j0 � c1h
0; ð23:1Þ

N0
y ¼ A12e

0
x þ A22e

0
y þ b j0

2/0j0 � c2h
0; ð23:2Þ

Ejj0/0j0 ¼ b j

1e
0
x þ b j

2e
0
y � F

0j

6 þ cjh0: ð23:3Þ

where c1 ¼
Pnh

l¼1 cl
1, c2 ¼

Pnh
l¼1 cl

2 and cj ¼
Pnh

l¼1 cjl. Defining U ¼ /1/2 . . . /n/
� �T

,

C ¼ c1 c2 . . . cn/
� �T

, bj ¼ b1
j b2

j . . . b
n/

j

h iT
and F6 ¼ F1

6 F2
6 . . . F

n/

6

� �T
, Eq. ð23:3Þ can be

written in matrix form as

EU0 ¼ b1e
0
x þ b2e

0
y � F0

6 þ Ch0: ð24Þ

U0 is partitioned into a set of unknown output voltages U0
s at z

j

/’s where / is not prescribed and

a set of known input actuation voltages U0
a at the actuated surfaces. Accordingly, Eq. (24) is

partitioned and arranged as

Ess Esa

Eas Eaa

" #
U0

s

U0
a

" #
¼

b1s

b1a

" #
e0
x þ

b2s

b2a

" #
e0
y �

F0
6s

F0
6a

" #
þ

Cs

Ca

" #
h0: ð25Þ

Solving Eq. (25) for U0
s and substituting it into Eq. (23) yields the pre-buckling forces N0

x, N0
y in

terms of the known loading parameters:
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N0
x ¼ ðA11 þ bT

1sE
�1
ss b1sÞe0

x þ ðA12 þ bT
1sE
�1
ss b2sÞe0

y

þ ðbT
1a � bT

1sE
�1
ss EsaÞU0

a � bT
1sE
�1
ss F0

6s � ðc1 � bT
1sE
�1
ss CsÞh0;

N0
y ¼ ðA12 þ bT

2sE
�1
ss b1sÞe0

x þ ðA22 þ bT
2sE
�1
ss b2sÞe0

y

þ ðbT
2a � bT

2sE
�1
ss EsaÞU0

a � bT
2sE
�1
ss F0

6s � ðc2 � bT
2sE
�1
ss CsÞh0:

ð26Þ

Let the solution for just after buckling be denoted by ð̂ Þ on the entities. The size of the buckling

mode � �U is described by an arbitrary small parameter �. Thus, Û ¼ �U0 þ � �U with �U given by

Eq. (19.1). Substituting this solution into Eqs. (18), using Eq. (22) and considering upto first

order terms in � yield the following stability equations for �U:

L �U þ 0 0 ðN0
xw0; xx þ N0

yw0; yyÞ 0 0 0
� �T¼ �P ¼ 0 0 0 0 0 �F j

6

� �T
: ð27Þ

For a set of zero incremental potential at the actuator locations, zero incremental electric

displacement at the unknown potential locations and zero incremental temperature, the

incremental load F̂
j

6 is zero for index j corresponding to such surfaces.

To assess the accuracy of the theory, by comparison with the available 3D piezothermo-

elasticity solution [13], the analytical Navier solution of Eq. (27) for buckling is obtained for

simply-supported rectangular plates of sides a and b along the axes x and y for the boundary

conditions

at x ¼ 0;a : Nx;u0y
;w0;w0y

;Mx;Px;/
j;Sj

x ¼ 0;

at y ¼ 0; b : Ny;u0x
;w0;w0x

;My;Py;/
j;Sj

y ¼ 0;
ð28Þ

for j ¼ 1; . . . ;n/. The solution for the ðm;nÞth spatial mode of buckling is taken as:

w0 /j

u0x
w0x

u0y
w0y

2
664

3
775 ¼

½ w0 /j
� �

mn
� sinð �mxÞ sinð�nyÞ

½ u0x
w0x

� �
mn
� cosð �mxÞ sinð�nyÞ

½ u0y
w0y

� �
mn
� sinð �mxÞ cosð�nyÞ

2
664

3
775 ð29Þ

with �m ¼ mp=a, �n ¼ np=b. Substituting these into Eq. (27) yields

ðK � KGÞ �Umn ¼ �Pmn; ð30Þ

where KG is the geometric stiffness matrix with the only non-zero element

KGð3; 3Þ ¼ � �m2N0
x � �n2N0

y . K is the symmetric stiffness matrix. Partitioning electric potentials

U into the unknown and known parts Us and Ua, Eq. (30) can be written for

~U
mn ¼ u0xmn

u0ymn
w0mn w0xmn

w0ynm
Umn

s

h iT
as

ð ~K � ~KGÞ ~Umn ¼ ð ~K � kK�GÞ ~Umn ¼ 0: ð31Þ

The above equation represents a generalized eigenvalue problem and the eigenvalue k is the

buckling load factor. The eigenvalues and eigenvectors are obtained by a QR algorithm after

reducing to Heissenberg form.

5 Assessment of the theory for thermal buckling

For numerical evaluation of the new theory for thermal buckling response, hybrid plates of

three different laminate configurations (a), (b) and (c) are considered. The stacking order is

mentioned from the bottom. The elastic substrate of plate (a) has five plies of equal thickness
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0:16h of materials 2=1=3=1=2 with orientations of the principal material axis 1 as

½90�=0�=0�=0�=90��. It is a good test case for assessing a 2D theory since the plies have highly

inhomogeneous stiffness in tension and shear. The substrate of plate (b) is a graphite-epoxy

composite laminate of material 4 with four layers of equal thickness 0:2h with lay-up

½0�=90�=90�=0��. The substrate of plate (c) is a five-layer sandwich having graphite-epoxy faces

½0�=90�� and a soft core with thicknesses 0:04h=0:04h=0:64h=0:04h=0:04h. All the plates have

two PZT-5A layers, each of thickness 0:1h, bonded to their elastic substrate on its top and

bottom surfaces. The PZT-5A layers have poling in þz-direction. The top and the bottom

of the substrate are grounded. The material properties are selected as [13]: ½ðY1;Y2;

Y3;G12;G23;G31Þ; m12; m13; m23; ða1; a2; a3Þ� ¼

Material 1: ½ð6:9; 6:9; 6:9;1:38;1:38;1:38ÞGPa; 0:25;0:25;0:25;ð35:6;35:6;35:6Þ�10�6 K�1�,
Material 2: ½ð224:25;6:9;6:9;56:58;1:38;56:58ÞGPa;0:25;0:25;0:25;ð0:25;35:6;35:6Þ�10�6 K�1�,
Material 3: ½ð172:5;6:9;6:9;3:45;1:38;3:45ÞGPa, 0:25;0:25;0:25;ð0:57;35:6;35:6Þ�10�6 K�1�,
Material 4: ½ð181;10:3;10:3;7:17;2:87;7:17ÞGPa, 0:28;0:28;0:33;0:02;22:5;22:5Þ�10�6 K�1�,
Face: ½ð131:1;6:9;6:9;3:588;2:3322;3:588Þ GPa, 0:32;0:32;0:49;ð0:0225;22:5;22:5Þ�10�6 K�1�,
Core: ½ð0:2208;0:2001;2760;16:56;455:4;545:1Þ MPa, 0:99;3�10�5;3�10�5;ð30:6;30:6;30:6Þ
�10�6 K�1�,

PZT-5A: ½ð61:0; 61:0; 53:2; 22:6; 21:1; 21:1ÞGPa; 0:35; 0:38; 0:38; ð1:5; 1:5; 2:0Þ � 10�6 K�1�, and

½ðd31;d32;d33;d15;d24Þ, ðg11; g22; g33Þ, p3�¼½ð�171;�171; 374; 584; 584Þ�10�12m/V, ð1:53;

1:53; 1:5Þ �10�8F/m, 0:0007Cm�2 K�1�, where Yi, Gij, mij, ai, dij, gij and p3 denote Young’s

moduli, shear moduli, Poisson’s ratios, coefficients of linear expansion, piezoelectric strain

constants, electric permittivities and pyroelectric constant, respectively.

The pre-buckling thermal load cases consist of a uniform temperature rise h0 of the plates

with the top and bottom surfaces under (1) closed circuit condition with /1 ¼ /n/ ¼ 0, and (2)

open circuit condition with Dzðz0Þ ¼ DzðzLÞ ¼ 0. In the present problem, the open circuit

condition induces a uniform sensory potential on the surfaces, as can be seen from Eq. (19).

This corresponds to the piezoelectric layers being electroded at the surfaces, resulting in

equipotential areas. The ends of the plates are immovable, i.e. e0
x ¼ e0

y ¼ 0. The critical value of

h0 for buckling is defined as hcr. The results are non-dimensionalized with S ¼ a=h:

�hcr ¼ a0hcrS
2; �/cr ¼ /crd0S3=a; ð�u; �v; �wÞ ¼ ðSu;Sv;wÞ=maxðwÞ;

ð�rx; �ryÞ ¼ ðrx; ryÞS2h=Y0 maxðwÞ; ð�szx; �syzÞ ¼ ðszx; syzÞS3h=Y0 maxðwÞ;

where maxðwÞ denotes the largest value of w through the thickness, d0 ¼ 374� 10�12 CN�1,

a0 ¼ 22:5� 10�6 K�1, and Y0 ¼ 6:9 GPa for laminates (a) and (c) and 10:3 GPa for laminate

(b).

Table 1. 3D results for �hcr and �h�cr and % errors for ZIGT and TOT with respect to 3D results for
hybrid plates (S ¼ 20, b=a ¼ 1)

Case Plate Exact % error in ZIGT % error in TOT

�hcr
�h�cr

�hcr
�h�cr

�hcr
�h�cr

1 (a) 12:209 10:785 �11:44 0:25 2:82 16:40

(b) 15:844 14:410 �8:75 0:33 7:48 1:72

(c) 32:692 27:099 �16:85 0:31 6:84 12:39

2 (a) 7:7703 7:1767 �7:30 0:36 8:06 17:00

(b) 8:7090 8:2679 �4:61 0:48 3:21 1:95

(c) 7:8339 7:4735 �4:28 0:34 8:50 13:74
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The accuracy of the present theory for thermal buckling response is established by direct

comparison with the exact 3D piezothermoelasticity solution [13] for simply-supported cross-

ply symmetrically laminated hybrid plates. Since TOT uses the same global third order vari-

ation for the displacement field across the thickness, without the layerwise terms, and has the

same number of displacement variables as the present theory (ZIGT), present results are also

compared with the coupled TOT [22] extended for the buckling case. This comparison will

establish the effect of the layerwise terms for the displacements incorporated in the ZIGT. In

these nonlinear 2D plate theories, the governing equations of equilibrium do not incorporate

the pre-buckling transverse normal strain e0
z. Therefore, buckling temperatures for the exact 3D

solution have been obtained without and with the neglect of e0
z, which are denoted as �hcr and

�h�cr, respectively. These results and the errors of the present theory and TOT are given in Table 1

for square hybrid plates (a), (b) and (c) with S ¼ 20 for both load cases. For all plates with

b=a ¼ 1, the critical buckling mode corresponds to ðm;nÞ ¼ ð1; 1Þ. It is observed that, indeed,

80

60

8 45

30

15

0

45

30

15

0

4

Present

Load case 1
TOT

0

0.0

%
 e

rr
or

%
 e

rr
or

0.05 0.1

0.0 0.05 0.1
h/a

Plate (a) Plate (b) Plate (c)
h/a h/a

0.0 0.05 0.1 0.0 0.05 0.1

0.0 0.05 0.1 0.0 0.05 0.1

8

4

0

40

20

0

80

60
load case 2

40

20

0

Fig. 2. Percentage error of buckling temperature for square hybrid plates (a), (b) and (c) under load

cases 1 and 2

Table 2. 3D results for �h�cr of square hybrid plates (a), (b) and (c) under load cases 1 and 2

S Plate (a) Plate (b) Plate (c)

case 1 case 2 case 1 case 2 case 1 case 2

7:5 5:1220 3:3231 9:9003 5:5373 11:029 2:8582

10 6:9207 4:5274 11:721 6:6242 15:706 4:1436

20 10:785 7:1767 14:41 8:2679 27:099 7:4735

40 12:632 8:4744 15:324 8:8381 33:29 9:4107

100 13:278 8:9337 15:604 9:0143 35:59 10:155
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e0
z has a very significant effect on the buckling temperature. It is also found that the error due to

neglecting e0
z and that due to the displacement field approximations in the 2D theories are of

opposite signs in many cases. Therefore, in order to ascertain the error due to displacement

approximations across the laminate thickness in the 2D theories, the subsequent 3D results are

obtained without considering e0
z.

1

60

40

20

0
2

%
 e

rr
or

Present
TOT

Load case 2
S=10

b/a
3 4 Fig. 3. Variation of percentage error of buckling

temperature with ratio b=a for plate (a)

0.5

0.0
z/h

z/h

−0.5

0.5

−1 0

Exact
Present
TOT

S = 7.5

S = 10

1 −120 −60 −0 60 120 0 30 60 90

−120 −60 −0 60 120 0 25 50 75 100−1 0
u (0.5a, 0, z)

1

0.0

−0.5

sy(0.5a, 0.5b, z) tyz(0.5a, 0, z)

Fig. 4. Distributions of �v, �ry, �syz for thermal buckling mode of square hybrid plate (a) under load case 2

Table 3. 3D results for �h�cr of plate (a) for different b=a ratios (load case 2, S ¼ 10)

b=a 1:0 1:2 1:5 2:0 4:0

�h�cr 4:52742 3:89978 3:27611 2:69948 2:04495
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The variation of the percentage error of buckling temperatures with respect to the 3D results
�h�cr with the thickness parameter h=a is presented in Fig. 2 for square hybrid plates (a), (b) and

(c) for load cases 1 and 2. For reference, the 3D results �h�cr for span-to-thickness ratios

S ¼ a=h ¼ 7:5, 10, 20, 40, 100 are listed in Table 2. It is revealed that though the buckling

temperatures of plates under closed and open circuit conditions are considerably different, the

errors in the 2D theories in the two cases differ only marginally. The error is generally little

higher for the open circuit condition than for the closed one. The maximum error in the ZIGT

for the buckling temperature for thick plates with S ¼ 7:5 is 1:8%, whereas the error in TOT is

80:0, 8:6 and 44:1% for plates (a), (b) and (c), respectively. Even for thin plates with S ¼ 20, the

error in TOT for �h�cr is as high as 17:0% and 13:7% for plates (a) and (c). The extent of error in

TOT results for plate (a) confirms that this plate indeed offers a good test case for assessing the

accuracy of 2D theories for thermal buckling. The present theory successfully passes this test.

As is well known, equivalent single layer theories like TOT yield highly inaccurate results for

sandwich plates, whereas ZIGT yields excellent results for these plates too.

The variations of the percentage error in ZIGT and TOT for the buckling temperature with

the side ratio (b=a) are shown in Fig. 3 for plate (a) with S ¼ 10 under load case 2. For

reference, the 3D results of �h�cr of plate (a) with S ¼ 10 for b=a ¼ 1:0, 1:2, 1:5, 2:0, 4:0 are listed

in Table 3. It is revealed that whereas the error in ZIGT remains low with little change, the

error in TOT reduces with the increase in b=a.

The through-the-thickness distributions of predominant modal inplane displacements �u=�v,

normal stresses �rx=�ry and transverse shear stresses �szx=�syz for the thermal buckling mode at

ðx; yÞ locations where they are maximum are compared in Figs. 4–6 for square hybrid plates

(a), (b) and (c) for load case 2 for S ¼ 7:5 and 10. It is observed that the present distributions

are in excellent agreement with the exact modal distributions for all plates even for the thick
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Fig. 5. Distributions of �u, �rx, �szx for thermal buckling mode of square hybrid plate (b) under load case 2
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ones with S ¼ 7:5. In contrast, the distributions obtained from TOT have large error even for

S ¼ 10. The present theory is able to accurately capture the layerwise zigzag distribution of the

modal inplane displacements obtained from the 3D solution, but the global distribution of the

inplane displacements used in TOT is unable to capture it. This explains why ZIGT yields

accurate results and TOT does not. The presented results cover a wide variety of possible cases

as is evident from the qualitative distinct nature of the through-the-thickness distributions of

the modal entities for the three plates.

The effect of the ratio b=a on the accuracy of the through-the-thickness distributions is

illustrated in Fig. 7 by plotting the distributions for two values of b=a ¼ 1:5 and b=a ¼ 4 for

plate (a) with S ¼ 10. It is seen that whereas ZIGT yields accurate distributions for all ratios

b=a, the error in the TOT reduces with the increase in b=a.

6 Conclusions

A geometrically nonlinear electromechanically coupled zigzag theory is developed for hybrid

piezoelectric plates under electrothermomechanical loading. The theory considers layerwise

distribution of the inplane displacements across the thickness and accounts for the transverse

normal strain caused by the thermal and potential fields, but the displacement field is expressed

in terms of only five displacement variables as in TOT. The nonlinear theory is used to obtain

the initial thermal buckling response of symmetrically laminated plates. The accuracy of the

theory is established directly by comparison with the exact 3D piezothermoelasticity solution

for a simply supported highly inhomogeneous hybrid test plate, a composite plate and a
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Fig. 6. Distributions of �u, �rx, �szx for thermal buckling mode of square hybrid plate (c) under load case 2
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sandwich plate with the piezo-surfaces under closed and open circuit conditions. The buckling

temperatures predicted by the present theory are found to be in excellent agreement with the 3D

solution which neglects the pre-buckling transverse normal strain. In contrast, TOT results may

have significant errors even for thin plates with S ¼ 20. The present results are superior, since

this theory can accurately predict the zigzag distributions of inplane displacements as obtained

from 3D exact solutions. The present theory is applicable for hybrid sandwich plates too, for

which TOT yields poor results.
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