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Summary. According to the constitutive relation of linear thermoviscoelasticity, a mathematical model of

viscoelastic FGM thin plates under thermal loads is set up with the help of Laplace transformation method

and the introduction of ‘‘structural functions’’ and ‘‘thermal functions’’. The corresponding simplified

Gurtin’s type variational principle of FGM thin plates is presented by means of convolution bilinear

forms. By combining the Ritz method in the spatial domain and the Legendre interpolation method in the

temporal domain, the influence of temperature variation and effects of graded parameters on the quasi-

static responses of the FGM plate are investigated.

1 Introduction

Functionally graded materials (FGMs) have attracted considerable attention as a special class

of advanced inhomogeneous composite materials in many engineering applications since they

were first reported in 1980’s (see Yamanoushi, Koizumi and Hiraii [1], Koizumi [2]). FGMs

were initially designed as thermal barrier materials for aerospace structural applications and

fusion reactors. Due to superior thermo-mechanical performance, FGMs are now developed

for general use as structural components in extremely high-temperature environments. Sub-

stantial research work has been done on elastic behavior of the FGMs, particularly by

Williamson, Rabin and Drake [3], Obata and Noda [4], Praveen and Reddy [5], Loy, Lam and

Reddy [6], Reddy [7], Woo and Meguid [8], Han and Liu [9], He, Liew and Ng [10], Yang and

Shen [11].

Viscoelastic behavior of the materials should be considered when they serve in

high-temperature environments. Up to now there are few works on viscoelastic behavior of

FGMs. Paulino and Jin [12] have shown that the correspondence principle can still be used

to obtain the viscoelastic solution for a class of FGMs exhibiting relaxation (or creep)

functions with separable kernels in space and time. By using the revisited correspondence

principle for FGMs, they have subsequently studied crack problems of FGM strips sub-

jected to antiplane shear conditions (see Paulino and Jin [13], [14]). Yang [15] performed a

stress analysis in FGM cylinders where steady-state creep conditions are considered only for

homogeneous materials.

With regard to variational principles on homogeneous viscoelastic bodies, Reddy [16]

directly constructed a simplified Gurtin’s type functional for viscoelastic dynamic problems by

using a convolution bilinear form. Luo [17] further generalized the simplified Gurtin’s
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type variational principle. Dall’Asta and Menditto [18] studied the inverse variational problem

on a perturbed viscoelastic body. However, variational principles of special structures are rare.

Usually, the special feature of structures will make the ruling operator of a problem to

become more complex or/and nonsymmetrical, and the operator is different from that of a

3D-viscoelastic body essentially. Hence, this greatly increases the difficulty constructing the

corresponding functional. Dall’Asta and Menditto [19] pointed out this difficulty when they

studied the variational problem of a perturbed viscoelastic body. Cheng and Zhang [20] and

Zhang and Cheng [21] analyzed the inverse variational problem for the static and dynamic

analysis of viscoelastic thin plates. Cheng and Lu [22] analyzed the inverse variational problem

for the static and dynamic analysis of viscoelastic Timoshenko beams. By using the variational

integral method, Sheng and Cheng [23] gave the convolution-type functional and presented the

corresponding generalized variational principles and potential energy principle of viscoelastic

solids with voids.

There are few works on variational principles of homogeneous thermoviscoelastic bodies. By

the Laplace transformation method, Brilla [24] formulated a variational principle for linear

uncoupled thermoviscoelastic plates under clamped or simply supported boundary conditions,

and analyzed properties of eigenvalues and the convergence of the finite-element method. Altay

and Dokmeci [25] presented a differential type of variational principles in terms of the Laplace

transformed field variables for linear coupled thermoviscoelastic analysis of high-frequency

motions of thin plates. For the above variational principles were constructed in the Laplace

space by the classical Cartesian bilinear forms, the numerical error is inevitably enhanced. To

the authors’ knowledge, numerical results whether on the above classical variational principles

or on modern convolution-type variational principles of thermoviscoelastic bodies are seldom

reported (see Othman [26]).

Up to now variational principles on thermoviscoelastic functionally graded plates (FGPs)

have not been reported in the open literature. In the present study, for thermoviscoelastic

FGMs with material functions having separable kernels in space and time, according to the

integral type constitutive relation of linear thermoviscoelasticity, a mathematical model of

viscoelastic FGM thin plates under thermal loads is set up with the help of Laplace transfor-

mation method and the introduction of ‘‘structural functions’’ and ‘‘thermal functions’’. The

corresponding simplified Gurtin’s type variational principle of thermoviscoelastic FGM thin

plates is presented by means of the modern convolution bilinear forms as well as the classical

Cartesian bilinear forms. By combining the Ritz method in the spatial domain and the

Legendre interpolation method in the temporal domain, the influence of temperature variation

and effects of graded parameters on the quasi-static responses of the FGPs are investigated. By

using the property of the Legendre series, two approaches in the temporal domain are presented

to overcome the difficulty of numerical dates storage as a result of convolution type constitutive

relations in direct methods.

2 Mathematical model

Consider a thermoviscoelastic FGM thin plate with the thickness h. Assume that the coor-

dinate plane ox1x2 coincides with the undeformed mid-plane and the ox3-axis is perpendic-

ular to the mid-plane. Hence, the undeformed plate occupies the region to be

V ¼ fðx1;x2;x3Þ : ðx1;x2Þ 2 X; x3j j � h=2g, and its edge is @X ¼ @Xu þ @Xr, in which

@Xu and @Xr are the portions of the given edge displacements and given edge forces,
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respectively. Assume there is no body force applied on the plate, but there exist edge forces

ðX1ðtÞ;X2ðtÞ; 0Þ that are parallel to the mid-plane at the edge of the plate and transverse load

qðxa; tÞ effecting on the plate.

Letting the displacements at any point in the mid-plane be ui xa; tð Þ and the stress rij xk; tð Þ
and strain eij xk; tð Þ. (Here and afterward, the Greek subscript has the ranges 1 and 2, and the

Latin subscript has the ranges 1, 2 and 3), then we have the equations and conditions as

follows.

2.1 Constitutive equations

For an anisotropic thermoviscoelastic material, the Boltzmann relaxation law is given as (see

Christensen [27])

rij ¼ Gxt
ijklðx1;x2;x3; tÞ � ekl � uxt

ij ðx1;x2;x3; tÞ � h; ð1Þ

in which Gxt
ijklðx1;x2;x3; tÞ and uxt

ij ðx1;x2;x3; tÞ are relaxation functions and thermal strain

functions of the material, hðxi; tÞ denotes the infinitesimal temperature deviation from the base

temperature T0, and the symbol � expresses the linear Boltzmann operator defined as (see

Leitman and Fisher [28])

gðtÞ � uðtÞ ¼ gð0ÞuðtÞ þ _gðtÞ � uðtÞ ¼ gð0ÞuðtÞ þ
Z t

0

_gðt� sÞuðsÞds: ð2Þ

Assume that the material of the plate is homogeneous in-plane paralleling to the mid-plane, and

its properties change only along the ox3-axis. In other words usually relaxation functions and

thermal strain functions depend on spatial variable x3 and temporal variable t. For simplicity a

class of viscoelastic materials with separable kernel functions in space and time was often used

to study the behaviors of structures. Schovanec and Walton [29], [30], Herrmann and Schov-

anec [31], [32] and Alex and Schovanec [33] employed a separable form for the relaxation

functions to investigate a series of crack problems in nonhomogeneous viscoelastic media, such

as stationary cracks, quasi-static crack propagation, dynamic crack propagation and energy

release rate of quasi-static mode I crack propagation. Paulino and Jin [12]–[14], [34] studied

crack problems of FGMs exhibiting relaxation (or creep) functions with separable kernels in

space and time. In the present study, the following separable material functions are used:

Gxt
ijklðx1;x2;x3; tÞ ¼ f ðx3ÞGijklðtÞ; uxt

ij ðx1;x2;x3; tÞ ¼ kðx3ÞuijðtÞ: ð3Þ

From (1), (2) and (3), we can obtain

rij ¼ f ðx3ÞGijklðtÞ � ekl � kðx3ÞuijðtÞ � h: ð4Þ

According to Kirchhoff’s theory of plates, r33 ¼ 0 and ea3 ¼ 0: By the Laplace transformation

and its inverse transformation method, it is not difficult to obtain

e33 ¼ �gab � eab þ ½kðx3Þ=f ðx3Þ�g0ðtÞ � h; ð5Þ

in which

gabðtÞ � L�1½�G33ab=s�G3333�; g0ðtÞ ¼ L�1ðu33=sG3333Þ: ð6Þ

Substituting (5) into (4) yields

rab ¼ f ðx3ÞðGabcd þ G0abcdÞ � ecd � kðx3Þðuab þ u0abÞ � h; ð7Þ
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where

G0abcd � �Gab33 � gcd; u0ab ¼ �G0ab33ðtÞ � g0ðtÞ ð8Þ

Obviously the functions G0abcdðtÞ and u0abðtÞ depend on the relaxation functions GijklðtÞ and
uijðtÞ: Although they are not independent material functions, the functions G0abcd and u0ab play a

key role in establishing the initial-boundary-value problem. As G0abcd and u0ab express structural

and thermal features of a thermoviscoelastic FGM thin plate, we call them ‘‘structural func-

tions’’ and ‘‘thermal functions’’ of the plate, respectively.

For the isotropic thermoviscoelastic materials, we have (see Christensen [27])

GijklðtÞ ¼ ðG2 � G1Þdijdkl=3þ G1ðdikdjl þ dildjkÞ=2; uij ¼ udij; ð9Þ

in which G1 and G2 are the relaxation functions of isotropic materials, and u is the thermal

strain function of the isotropic material. Hence it is not difficult to get

g21 ¼ g12 ¼ 0; g � g11 ¼ g22 ¼ L�1½ðarG2 � �G1Þ=sð2�G1 þ �G2Þ�; ð10:1Þ

G012cd ¼ G021cd ¼ G0ab12 ¼ G0ab21 ¼ 0; ð10:2Þ

G01111 ¼ G01122 ¼ G02211 ¼ G02222 ¼ �ðG2 � G1Þ � g=3; ð10:3Þ

g0 ¼ L�1½3u=s 2G1 þ G2ð Þ�; ð10:4Þ

u012 ¼ u021 ¼ 0; u0 ¼ u011 ¼ u022 ¼ �ðG2 � G1Þ � g0=3: ð10:5Þ

So we can get the constitutive equation of isotropic thermoviscoelastic FGM plates

rab ¼ f x3ð ÞðG1 � eab þ dabG3 � eccÞ � k x3ð ÞdabU� h ð11Þ

in which

G3 ¼ G1 � g; U ¼ uþ u0: ð12Þ

The functions G3 and U are called ‘‘structural function’’ and ‘‘thermal function’’ of the iso-

tropic plate, respectively.

2.2 Geometry and motion equations

In the linear theory of plates, we have

eab ¼ �u3;abx3: ð13Þ

The motion equation of the plate is given by

ðQa þ u3;bNabÞ;a þ q ¼ qhu3;tt; Qa ¼ Mab;b; ð14Þ

in which the internal forces are defined by

Mab ¼
Zh=2

�h=2

rabx3dx3; Nab ¼
Zh=2

�h=2

rabdx3; Qa ¼
Zh=2

�h=2

ra3dx3: ð15Þ

Based on Eqs. (13)–(15), at the same time, letting hðxi; tÞ ¼ w0ðx3Þwðxa; tÞ, it is not difficult to

obtain

q x3ð Þhu3;tt ¼ AðG1 þ G3Þ � r4u3 þ BU�r2wþ u3;baNab þ q; ð16Þ
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in which

A ¼ �
Zh=2

�h=2

x2
3 f ðx3Þdx3; B ¼ �

Zh=2

�h=2

x3kðx3Þw0ðx3Þdx3: ð17Þ

2.3 Boundary and initial conditions

Assume that on @Xu the displacements are given and that on @Xr the forces are given, then we

have the following boundary conditions:

u3 ¼ ~u3; u3;n ¼ ~#; ðxa; tÞ 2 @Xu � ½0;T�; ð18:1Þ

Mn ¼ ~Mn; Vn ¼ ~Vn; ðxa; tÞ 2 @Xr � ½0;T�; ð18:2Þ

in which ~u3 and ~# are the known deflection and rotation angle on @Xu, ~Mn and ~Vn the known

bending moment and shear force on @Xr, and Mn and Vn are given as

Mn¼AðG1�u3;nnþG3�r2u3ÞþBU�w;

Vn¼A½ðG1þG3Þ�ðr2u3Þ;nþG1�ðu3;ns�u3;s=qsÞ;s�þBU�w;nþNnu3;nþNsu3;s;
ð19Þ

where qs is the radius of curvature of the edge, s is the arc length, and Nn and Ns are normal

and tangential membrane force, respectively. In fact, from the definitions (15) of bending

moments and shear forces and the constitutive equation (11), it is not difficult to obtain the

expressions (19) by the method similar to deriving the corresponding relations of elastic thin

plates (see Chien Weizhang [35]).

Assuming that the material and structure are in natural states when t 2
�
�1; 0�

�
and letting

u0
3 and _u0

3 be the values of u3 and _u3 ¼ u3;t at the initial time t ¼ 0þ, then the initial conditions

are

u3 ¼ _u3 ¼ 0 in �X� �1; 0�ð �;

u3 t¼0j ¼ u0
3 _u3 t¼0j ¼ _u0

3; in �X� t ¼ 0þ; ð20Þ

in which both the functions u0
3 and _u0

3 are known functions only in xa.

Thus, the governing equation (16), the boundary conditions (18) and the initial conditions

(20) form the initial-boundary-value problem for the static-dynamic analysis of thermovisco-

elastic FGM thin plates. It should be pointed out that the effects of mid-plane strains

induced by inhomogeneous properties of the FGP on the prediction of the deflection u3

are assumed to be infinitesimal and may be omitted. Some works (see Shen [36]) have

shown that the various traditional simplified theories of homogenous plates are accurate

enough to predict the global responses of FGPs, such as displacements, buckling loads, and

so on.

3 Variational principles

Now, the displacement u3 and the coordinates x1, x2, x3 are replaced by w, x, y, z, respec-

tively. The variational principle holds as follows:
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If Nabðx1; x2; tÞ ¼ Nabðx1; x2;T � tÞ; 8t 2 ½0;T�, the solution of the problem (16), (18), (20) is

equivalent to searching the stationary point of the functional P among all w satisfying (18.1),

and P is given by

P ¼ Pw þPh þPn þPb þPt; ð21Þ

Pw ¼ �
A

2

ZZ

X

½ðG1 þ G3Þ � ðw;xxþw;yy Þ � ðw;xxþw;yy Þ

þ 2G1 � ðw;xy �w;xy�w;xx �w;yy Þ�dxdy;

Ph ¼ �B

ZZ

X

U� w � ðr2wÞdxdy; Pn ¼
1

2

ZZ

X

ðNabw;a Þ �w;b dxdy;

Pb ¼ �
ZZ

X

q �wdxdyþ
Z

@Xr

ð ~Mn �w;n � ~Vn �wÞds;

Pt ¼
ZZ

X

qðzÞh 1

2
_w � _wþ ðwjt¼0 �w0Þwjt¼T � _w0wjt¼T

� �
dxdy:

Observing that the Boltzmann operator has the property

(i) ðA� BÞ � C ¼ A� B � C ¼ A� ðB � CÞ ¼ A� C � B; ð22:1Þ

(ii) if SðtÞ ¼ SðT � tÞ; 8t 2 ½0;T�; then ðSAÞ � B ¼ ðSBÞ � A ð22:2Þ

it can be obtained

dPw ¼ �
ZZ

X

AðG1 þ G3Þ � r4w � dwdxdy�
Z

@Xr

½AG1 �w;nn þ AG3 � ðr2wÞ� � dw;nds

þ
Z

@Xr

½AðG1 þ G3Þ � ðr2wÞ;n þ AG1 � ðw;ns �w;s=qsÞ;s þ
1

2
BU� w;n� � dwds; ð23:1Þ

dPh ¼ �B

ZZ

X

U� ðr2wÞ � dwdxdy� B

Z

@Xr

U� w � dw;ndsþ B

Z

@Xr

U� w;n � dwds; ð23:2Þ

dPb ¼ �
ZZ

X

q � dwdxdyþ
Z

@Xr

ð ~Mn � dw;n � ~Vn � dwÞds; ð23:3Þ

dPt ¼
ZZ

X

qðzÞh½€w � dwþ ðwjt¼0�w0Þd _wjt¼Tþð _wjt¼0� _w0Þdwjt¼T �dxdy; ð23:4Þ

dPn ¼ �
ZZ

X

½ðw;baNabÞ � dw�dxdyþ
Z

@Xr

ðNnw;n þ Nsw;sÞ � dwds: ð23:5Þ

Substituting (23) into dP ¼ dPw þ dPh þ dPn þ dPb þ dPt ¼ 0, we obtain the variational

equation
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dP ¼ �
ZZ

X

½AðG1 þ G3Þ � r4wþ BU�r2wþw;baNab þ q� q zð Þhw;tt� � dwdxdy

�
Z

@Xr

ðMn � ~MnÞ � dw;ndsþ
Z

@Xr

ðVn � ~VnÞ � dwds

þ
ZZ

X

qðzÞh½ðwjt¼0 �w0Þd _wjt¼T þ ð _wjt¼0 � _w0Þdwjt¼T �dxdy ¼ 0:

ð24Þ

Observing the arbitrariness of dw, ðdwÞ;n, d _w t¼Tj , dw t¼Tj and using the Titchmarsh theorem

(see Leitman [28]) and the fundamental preliminary theorem (see Chien Weizhang [35]) of the

calculus of variations, this yields Eq. (16), the boundary conditions (18.2) and the initial

conditions (20).

The variational principle is essentially a simplified Gurtin’s type variational principle, in

which both the classical Cartesian bilinear form and the modern convolution bilinear form are

used simultaneously. But the key to find the functional P is the introduction of the structural

function G3 and the thermal function U.

4 The quasi-static analysis

As applications, we consider quasi-static responses of thermoviscoelastic FGPs under trans-

verse mechanical loads and thermal loads. The functional P (21) can be degenerated into

P ¼ �A

2

ZZ

X

ðG1 þ G2Þ � ½ðw;xx þw;yyÞ � ðw;xx þw;yyÞ

þ 2G1 � ðw;xy �w;xy �w;xx �w;yyÞ�dxdy

� B

ZZ

X

U� w � ðw;xxþw;yy Þdxdy�
ZZ

X

q �wdxdyþ
Z

@Xr

ð ~Mn �w;n � ~Vn �wÞds: ð25Þ

Letting Poisson’s ratio cðtÞ ¼ const, basing on the relations between �EðsÞ and �cðsÞ (see,

Christensen [27])

�cðsÞ ¼ ð�G2ðsÞ � �G1ðsÞÞ=sð�G1ðsÞ þ 2�G2ðsÞÞ; ð26:1Þ

�EðsÞ ¼ 3�G1ðsÞ�G2ðsÞ=ð�G1ðsÞ þ 2�G2ðsÞÞ; ð26:2Þ

it is easy to obtain

G3ðtÞ ¼
c

1� c
G1ðtÞ; G1ðtÞ þ G3ðtÞ ¼

1

1� c
G1ðtÞ ¼

EðtÞ
1� c2

; UðtÞ ¼ 1� 2c
1� c

uðtÞ; ð27Þ

where EðtÞ is a uniaxial relaxation function. At the same time, we introduce the dimensionless

variables and parameters as follows:
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n ¼ x=Rc; g ¼ y=Rc; f ¼ z=h; W ¼ w=h; û ¼ u=phið0Þ;

A0 ¼ 12A=h3 ¼ �12

Z1=2

�1=2

f2
f ðfÞdf; B0 ¼ B=h3 ¼ �

Z1=2

�1=2

fkðfÞw0ðfÞdf;

eðsÞ ¼ DðsÞ
Dð0Þ ¼

EðsÞ
Eð0Þ ; QðtÞ ¼ R4

cqðtÞ
Dð0Þh; ŵ ¼ ð1� 2cÞuð0ÞhwR2

c

ð1� cÞDð0Þ ;

DðsÞ ¼ EðsÞh3

12ð1� c2Þ ;
~V�n ¼

R3
cV �n

Dð0Þh;
~M�n ¼

R2
c

~Mn

Dð0Þh; s ¼ t=tc; S ¼ T=tc;

ð28Þ

where Rc is the characteristic length of the plate, and tc is the characteristic time of the material,

so the functional P becomes

P ¼ �A0

2

ZZ

X

e� ½ðW;nnþW ;gg Þ � ðW ;nnþW;gg Þ þ 2ð1� cÞðW;ng �W ;ng�W ;nn �W;gg Þ�dndg

� B0
Z

X

û� ŵ � ðW;nnþW;gg Þdndg�
ZZ

X

Q �Wdndgþ
Z

@Xr

ð ~M�n �W ;n�~V�n �WÞds: ð29:1Þ

For plates only with the simply-supported or/and clamped edge, P may be simplified as

P ¼ �A0

2

ZZ

X

e� ½ðW ;nnþW ;gg Þ � ðW;nnþW;gg Þ�dndg:

� B0
ZZ

X

û� ŵ � ðW ;nnþW;gg Þdndg�
ZZ

X

Q �Wdndg:

ð29:2Þ

The general solution of deformation for a simply supported plate can be written as

Wðn; g; s;SÞ ¼ CijkðSÞ sinðipnÞ sinðjpgÞLkðs;SÞ; i � m; j � n; k � r; ð30Þ

where Lkðs;SÞ is an orthonormalization system of Legendre polynomials in the interval [0, S]

given by

Lkðs;SÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

S

r
Sk

22kk!

dk

dsk

2s
S
� 1

� �2

�1

" #k
8<
:

9=
;; k ¼ 0; 1; . . . ; r: ð31Þ

It is not difficult to prove that the Legendre polynomials have the following property:

Lkðs;SÞ � Lsðs;SÞ ¼ ð�1Þkdks; ð32Þ

where dks is the Kronecker symbol and the repeated index k does not denote a summation.

Observing the simply supported boundary conditions ~M�n ¼ ~V�n ¼ 0, substituting (30) into

(29.2), we can get

CijkðSÞ ¼
4QðSÞ � LkðS;SÞ � 4ði2 þ j2ÞB0û� ŵ � LkðS;SÞ

�1kþ1ijði2 þ j2Þ2p6A0eðSÞ
ð1� cos ipÞð1� cos jpÞ: ð33Þ

During the above calculations, the uniformly distributed transverse load QðsÞ and the tem-

perature field ŵðn; g; sÞ are known functions. Substituting (33) into (30), the maximal deflection

of the thermoviscoelastic FGM square plate is obtained,
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Wmaxðs;SÞ ¼ Wðn; g; s;SÞjn¼g¼1=2

¼ 4QðSÞ � LkðS;SÞ � 4ði2 þ j2ÞB0û� ŵ � LkðS;SÞ
ð�1Þ

iþj

2 þk
ijði2 þ j2Þ2p6A0eðSÞ

Lkðs;SÞð1� cos ipÞð1� cos jpÞ:
ð34Þ

In computation, two numerical approaches can be used to obtain the deflection. One is called

the method s�S, in which if the integral upper limit S is given, then the time history of the

deflection Wmaxðs;SÞ is calculated by the formula (34). The other is called as method S�S, in

which the different upper limit S is given to get the deflection WmaxðS;SÞ, and the time history of

the deflection is plotted with WmaxðS;SÞ vs. S. In the following computation the plate sizes are

taken as n ¼ g ¼ 1.

4.1 Reponses of homogenous thermoviscoelastic plates under transverse mechanical loads

Let the temperature variation function ŵðn; g; sÞ ¼ 0 and the graded functions f ðfÞ ¼ kðfÞ ¼ 1;

the problem can be degenerated into the case of homogenous viscoelastic plates (see Cheng and

Zhang [20], Zhang and Cheng [21]). Figure 1 shows the comparison between the numerical

results obtained by the above two methods and the exact solution presented by Cheng and

Zhang [20], in which QðsÞ ¼ 1þ e�0:05s, eðsÞ ¼ 0:5þ 0:5e�0:06s, m ¼ n ¼ 5, r ¼ 7: It can be

seen from Fig. 1 that in the time interval [0,100] a large difference exists between the exact

solution and the numerical result obtained by the method s–S even if the Legendre polynomial

term r is increased bigger enough. On the contrary, the numerical curve obtained by the method

S�S is very close to the exact solution. Hence the method S�S is better than the method s–S for

capturing the initial response of the plate. Figure 2 reveals that the numerical results obtained by

the two methods are all approximate to the exact result in the interval [100, 200]. But the

numerical curve predicted by the method s–S is more close to the analytical solution. So as for

predicting the steady state response of the plate the method s–S is better than method S–S.

Based on the initial and steady state analysis, the method S�S is preferred in the following

computation. The result is similar to the conclusion that the higher-order accuracy of DQ

method at the end of a time step can be obtained if the Legendre and Radau grids are used (see

Fung [37]). Figure 3 reveals that the numerical curves obtained by the method S�S get more

and more close to the exact solution with the increase of the Legendre polynomial term r.
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Fig. 1. The maximal deflection of the

homogenous viscoelastic plate
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4.2 Reponses of thermoviscoelastic FGPs under thermal loads

Responses of thermoviscoelastic FGPs subjected to two types of temperature change across the

thickness are studied. If the material is a standard linear solid, the relaxation function and the

thermal function can be written as eðsÞ ¼ 0:5þ 0:5e�a1s, ûðsÞ ¼ 0:5þ 0:5e�a2s, in which a1

and a2 are the reciprocal of the mechanical relaxation time and the reciprocal of the thermal

relaxation time, respectively. The functionally gradient functions are f ðfÞ ¼ e�b1f, kðfÞ ¼ eb2f,

in which b1 and b2 are graded parameters of FGMs which show the heterogeneous effect along

the thickness. In computation we take a1 ¼ a2 ¼ a, b1 ¼ b2 ¼ b, the mechanical load QðsÞ ¼ 0,

and the indices m ¼ n ¼ 5, r ¼ 7.

First, a uniform temperature variation across the thickness is applied. Assume a uniform

temperature variation across the thickness as

ĥ ¼ w0w
0ðfÞŵðn; g; sÞ; w0ðfÞ ¼ 1; ŵðn; g; sÞ ¼ ð1� e�0:05sÞ: ð35Þ

Figure 4 shows the maximal deflection of the thermoviscoelastic FGP under the uniform

temperature field when the graded parameter b changes from 0:3 to 0:5. Obviously the
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deflection increases with the increment of the graded parameter b. In other words, the greater

the difference in material property across the thickness is, the bigger the deflection of the FGP

under the uniform temperature field is. During the above calculation, let a ¼ 0:06, w0 ¼ 10.

Next a nonhomogeneous temperature variation across the plate thickness is applied. For

simplicity, the temperature field is assumed as

ĥ ¼ w0ðfÞŵðn; g; sÞ; ð36Þ

where the in-plane spatial part of the field is homogeneous and the temporal part of the field

can be simulated by

ŵðn; g; sÞ ¼ ð1� e�0:05sÞ; ð37:1Þ

and the thickness part of the field w0ðfÞ obeys the heat conduction equation and the boundary

conditions (see, Eslami and Javaheri [38], Javaheri and Eslami [39])

d

df
kðfÞdw0ðfÞ

df

� �
¼ 0; ð37:2Þ

f ¼ �1=2; w0 ¼ w0t; f ¼ 1=2; w0 ¼ w0b; ð37:3Þ

where w0t and w0b is the upside temperature and underside temperature of the plate, respectively.

The coefficient of thermal conduction k is a function of the thickness direction f. The solution
for the temperature distribution across the FGP thickness becomes

w0ðfÞ ¼ w0b Dw0
KðfÞ � Kð1=2Þ

Kð�1=2Þ � Kð1=2Þ þ 1

� �
; ð38:1Þ

in which

KðfÞ ¼
Z

k�1ðfÞdf; Dw0 ¼ ðw0t � w0bÞ=w0b: ð38:2Þ

If kðfÞ ¼ 1, then (38.1) is reduced to the linear temperature distribution of homogeneous plates,

w0ðfÞ ¼ w0b½Dw0ð1=2� fÞ þ 1�: ð39Þ

If kðfÞ ¼ eb3f, then (38.1) can be transformed into the nonlinear temperature distribution of

FGPs,
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w0 ¼ w0b Dw0
e�b3f � e�b3=2

eb3=2 � e�b3=2
þ 1

� �
; ð40Þ

in which b3 is the graded parameter of the thermal conductivity coefficient.

Figure 5 shows the effect of the graded parameter b on the maximal deformation of the

thermoviscoelastic FGP under the nonlinear temperature change (40) across the thickness when

a ¼ 0:06, w0b ¼ 10, Dw0 ¼ 1, and b3 ¼ b. Obviously large differences exist between responses

to the uniform temperature field (35) and responses to the nonlinear temperature field (40).

Negative deflection shows that the deformed FGP locates on the top of the undeformed mid-

plane. And the increase of the graded parameter b will help to the rigidity of FGPs under

nonlinear temperature fields.

Figure 6 shows the effect of the temperature difference Dw0 on the maximal deflection of

thermoviscoelastic FGPs subject to the nonlinear temperature change (40) across the thickness

when a ¼ 0:06, w0b ¼ 10, and b3 ¼ b ¼ 0:5. The deflection becomes larger and larger when the

temperature difference Dw0 enhances from 1 to 3.

Finally, the effect of the relaxation time on the deflection of the thermoviscoelastic FGP is

studied when the temperature field is uniform or nonlinearly changes across the thickness. The

relaxation time tcr and the parameter a are related by a ¼ 1=tcr. Figures 7 and 8 show the effect
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of the parameter a on the deflection of the thermoviscoelastic FGP subject to the uniform

temperature field (35) or nonlinear temperature field (40) across the thickness. The larger the

parameter a is, the earlier the thermoviscoelastic FGP attains its steady state. That is to say, the

thermoviscoelastic FGP reaches its final state more quickly with the decrease of the relaxation

time. In Fig. 7 w0 ¼ 10, b ¼ 0:5, and in Fig. 8 w0b ¼ 10, Dw0 ¼ 1, and b3 ¼ b ¼ 0:5:

5 Conclusions

The mathematical model (16), (18), (20) of thermoviscoelastic FGPs is set up. The corre-

sponding simplified Gurtin’s type variational principle (21) is presented by means of modern

convolution bilinear forms as well as classical Cartesian bilinear forms. The influence of the

temperature variation and graded parameters on quasi-static responses of thermoviscoelastic

FGPs are investigated by combining the Ritz method in the spatial domain and the Legendre

interpolation method in the temporal domain. By using the property of the Legendre series, two

numerical approaches in the temporal domain are introduced to calculate the deformation.
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Numerical results show that the method S�S is superior to the method s–S. For the

thermoviscoelastic FGP subjected to the uniform temperature field, its steady state locates

downside the undeformed mid-plane, and enhancing the graded parameter b will increase the

deformation. But for the thermoviscoelastic FGP subject to the nonlinear temperature field

across the thickness, its steady state locates upside the undeformed mid-plane, and enhancing

the graded parameter b will reduce the deformation. When the temperature difference en-

hances, the deflection of the thermoviscoelastic FGP becomes larger and larger. So the tem-

perature variation and graded parameter play a very important role in quasi-static responses of

FGPs. The thermoviscoelastic FGP reaches its steady state earlier when the relaxation time

becomes smaller.
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