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Summary. The purpose of this study is to model the elastoplastic behavior of particle-reinforced

metal-matrix composites with particle-matrix interfacial debonding. The partially debonding process at the

interface is represented by the debonding angles. The equivalent orthotropic elastic moduli are constructed

for the debonded yet isotropic particles to characterize the reduction of the load-transfer ability in the

debonded directions. To simulate the debonding evolution and the transition between various debonding

modes, the volume fractions of various particles are expressed in terms of the Weibull’s statistical func-

tions. Micromechanical homogenization procedures are utilized to estimate the effective moduli and the

overall yield function of the resultant multi-phase composites. The associative plastic flow rule and iso-

tropic hardening law are postulated based on the continuum plasticity theory. The effects of partially

interfacial debonding on the overall yield surfaces and stress-strain relations of the composites are

investigated and illustrated via numerical examples as well.

1 Introduction

In the last few decades, particle-reinforced metal-matrix composites (PRMMCs) have been

rapidly developed to meet the need for better materials with higher standards of performance

and in-service reliability. While the enhanced mechanical properties mostly come from the

reinforcing particle phase, the latter also leads to new damage mechanisms that restrict the

potential for widespread use of composites. Minimizing these limitations through microstruc-

tural design requires a thorough understanding of the micro-mechanisms of their intrinsic

damage processes. Among the three prevalent damage micro-mechanisms in PRMMCs (i.e.,

debonding at the matrix-particle interface, internal particle-cracking, and ductile plastic local-

ization in the matrix [1], [2]), matrix-particle interfacial debonding is the predominant damage

mode when the interfacial strength is relatively weak and the composite system is under high

triaxial loading. To model the interfacial debonding in composites, Jasiuk and Tong [3], Pagano

and Tandon [4], Qu [5], Sangani and Mo [6] introduced either a linear spring-layer with van-

ishing thickness or an inter-layer with constant thickness. In their models, a different elastic

constant of the spring-/inter-layer from the matrix and reinforcements is used to simulate the

loss of load-transfer ability through the interface due to debonding. Since the spring-/inter-layer

elastic properties in their models are not position-dependent, their models are not applicable for
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partial debonding mechanisms. Another simple yet physically meaningful means used to model

the interfacial debonding is the equivalent stiffness method [7]–[9] in which the isotropic deb-

onded particles are replaced by the perfectly bonded particles with constructed equivalent

anisotropic stiffness to characterize the reduction of the load-transfer ability of the debonded

interface. Thus, the conventional Eshelby’s inclusion theory and the micromechanics method

[10]–[12] can be applied to deal with the multi-phase composites.

To capture the progressive process of the interfacial debonding, the evolution of the damage,

and the transition between various debonding modes, the present authors have recently

developed a micromechanical framework to simulate the interfacial debonding between the

matrix and reinforcing particles, and to estimate its effect on the overall elastic behavior of

particle-reinforced composites [13]. In this model, the progressive damage process is repre-

sented by the debonding angles that are governed by external loads. To extend the study, a

plastic model is proposed in this paper to investigate the effect of the progressive partial

interfacial-debonding on the overall nonlinear response of ductile composites containing ran-

domly dispersed particles. The effective yield function of the composite with partial interfacial

debonding is derived in explicit form, and the effective elastoplastic-damage constitutive

behaviors of the composites under various loading conditions are numerically simulated and

compared with available experimental results.

2 Progressive interfacial debonding model

In this study, the ductile composites with randomly distributed spherical particles are consid-

ered. With the increase of the applied loads, some particles may start to debond from the

matrix; see Fig. 1. To model the progressive interfacial debonding, the micromechanical model

proposed by Liu et al. [13] is adopted in this study and briefly reviewed in this section.

2.1 Debonding modes

Interfacial debonding is a local phenomenon. Emanating from the assumption that the normal

stress controls the debonding initiation on the interface, as the (tensile) normal stress reaches a

critical interfacial bonding strength rcri, the debonding process would initiate at the point P.

The debonding criterion can be conveniently written as

ba

Fig. 1. Schematic diagram of microstructures of PRMMCs: a Initial state (undamaged); b interfacial

debonding under loading

2 H. T. Liu et al.



rnormal ¼ rcri: ð1Þ

Here, the local normal stress rnormal can be expressed as the three local principal stresses

(r1; r2; r3 and r1 � r2 � r3) under the local Cartesian coordinate system as

rnormal ¼ r1ðsin / cos hÞ2 þ r2ðsin / sin hÞ2 þ r3ðcos /Þ2; ð2Þ

where the three axes of the local coordinates coincide with the three principal directions of the

local stress field r inside a particle. h and / are the two Eulerian angles shown in Fig. 2. The

local stress field r inside a particle can be calculated using Eshelby’s micromechanical theory

[10], [11] and the equivalent method that is described in [13].

The relationship between the local principal stresses and the critical debonding strength

results in the following four different types of interfacial debonding modes. Here, the deb-

onding area is represented using two debonding angles that are defined corresponding to

various debonding modes (see Fig. 3). In mode 1 (rcri � r1 � r2 � r3), the particle is perfectly

bonded to the matrix since none of the principal stresses reaches the critical bonding strength.

In mode 2 (r1 � rcri � r2 � r3), only one principal stress is greater than the critical interfacial

bonding strength rcri. Therefore, the interfacial debonding initiates from the local x1-direction

and propagates progressively towards the other two principal directions. The debonding area

(the shaded area in Fig. 3a) is represented by the corresponding debonding angles að2Þ12 and að2Þ13

(cf. Fig. 3a), which can be calculated based on the debonding criterion Eq. (1) and the normal

stress expression Eq. (2) as

að2Þ1c ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 � rcri

r1 � rc

r

; c ¼ 2; 3: ð3Þ

When r1 � r2 � rcri > r3 , mode 3 debonding is activated. The debonding is complete in the

entire x1–x2 plane and develops from the x1- and x2-axes towards the x3-axis, respectively. The

two corresponding debonding angles að3Þ13 and að3Þ23 (Fig. 3b) denote the debonding processes in

the planes of x1–x3 and x2–x3, respectively, and can be expressed as follows:

að3Þc3 ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc � rcri

rc � r3

r

; c ¼ 1; 2: ð4Þ

P

x2

x1

x3

f

q

Fig. 2. Two Eulerian angles h and / representing
the surface point P on the one-eighth of spherical

particle in the local coordinates

Progressive interfacial debonding 3



Finally, in mode 4, when all three principal stresses exceed the critical bonding strength, the

normal stress at any point on a particle surface is greater than the critical strength. The entire

interface is now debonded. It is noted that, for all of the above four different debonding modes,

the range of debonding angles is between 0 and p=2. The lower and upper bounds of the

debonding angles in a certain pair of principal directions correspond to the perfect bonding and

total debonding, respectively, between these directions.

2.2 Equivalent elastic stiffness for debonded particles

The partially interfacial debonding results in the partial loss of load-transfer capacity in the

debonding directions, which is simulated by the reduction of the corresponding elastic stiffness

of the debonded particles in that direction [13], [14]. Therefore, the partially debonded isotropic

particles are replaced by perfectly bonded particles with constructed equivalent orthotropic

stiffness tensors. To establish the relationship between the debonding angles and the loss of

tensile load-transfer capacity, which is manifested by a reduction in elastic stiffness, three

distinct interfacial damage parameters D
ðbÞ
i serving as the measures of elastic stiffness reduction

in certain directions are defined using the ratio between the projected damage area in a certain

direction and the original interface area. Here, the superscript b ¼ 1; 2; 3; 4 refers to the four

distinct debonding modes and the subscript i ¼ 1; 2; 3 represents the damage effect on the three

principal directions, respectively. For instance, Fig. 4 shows an example of mode 2 debonding,

where the debonding parameters are defined as D
ð2Þ
1 ¼

D
A1=A, D

ð2Þ
2 ¼

D
A2=A and D

ð2Þ
3 ¼

D
A3=A,

respectively.

In accordance with the four different debonding modes presented in the previous section, the

interfacial damage parameters can be developed as follows for various debonding modes,

respectively:

D
ð1Þ
1 ¼ D

ð1Þ
2 ¼ D

ð1Þ
3 ¼ 0; ð5Þ

bx1

x2

x3 x3

x2

x1

(2)

(2)
a13

a12

(3)
a13

(3)
a23

a

Fig. 3. The debonding areas and debonding angles of a mode 2, and b mode 3 interfacial debonding
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D
ð2Þ
1 ¼ sin að2Þ12 sin að2Þ13 ;

D
ð2Þ
2

2

p
að2Þ13 �

sin að2Þ13 cos2 að2Þ12 sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að2Þ12 � sin2 að2Þ13

q

= cos að2Þ12

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að2Þ12 � sin2 að2Þ13

q

2

6

6

4

3

7

7

5

;

D
ð2Þ
3 ¼

2

p
að2Þ12 �

sin að2Þ12 cos2 að2Þ13 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að2Þ12 � sin2 að2Þ13

q

= cos að2Þ13

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að2Þ12 � sin2 að2Þ13

q

2

6

6

4

3

7

7

5

;

ð6Þ

D
ð3Þ
1 ¼

2

p
að3Þ23 þ

sin2 að3Þ13 cos að3Þ23 sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að3Þ13 � sin2 að3Þ23

q

= sin að3Þ13

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að3Þ13 � sin2 að3Þ23

q

2

6

6

4

3

7

7

5

;

D
ð3Þ
2 ¼

2

p
að3Þ13 þ

sin2 að3Þ23 cos að3Þ13 sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að3Þ13 � sin2 að3Þ23

q

= sin að3Þ23

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 að3Þ13 � sin2 að3Þ23

q

2

6

6

4

3

7

7

5

;

D
ð3Þ
3 ¼ 1� cos að3Þ13 cos að3Þ23 ;

ð7Þ

D
ð4Þ
1 ¼ D

ð4Þ
2 ¼ D

ð4Þ
3 ¼ 1: ð8Þ

The debonding damage parameters vary from 0 to 1. A greater value of the damage parameter

signifies a more significant level of reduction in tensile load-transfer capability.

With the help of the above damage parameters defined in Eqs. (5)–(8), the equivalent

orthotropic stiffness tensors for the b-mode (b ¼ 1; 2; 3; 4) partially debonded particles are

constructed as follows to decrease the load-transfer ability of damaged particles:

C
ðbÞ
ijkl ¼ kðbÞIK dijdkl þ lðbÞIJ dikdjl þ dildjkð Þ; ð9Þ

x1

x
2

x
3

A1

A3

A2

Fig. 4. The damage parameters are defined as the

ratio between the projected damaged area in a
certain direction and the original interface area

interfacial debonding

Progressive interfacial debonding 5



where

kðbÞIK ¼ kð1Þ 1� D
ðbÞ
I

� �

1� D
ðbÞ
K

� �

;

lðbÞIJ ¼ lð1Þ 1� D
ðbÞ
I

� �

1� D
ðbÞ
J

� �

;

ð10Þ

where kð1Þ and lð1Þ denote the isotropic Lame constants of the original (perfectly bonded)

particles and dij is the Kronecker delta. Here, we follow Mura’s tensorial indicial notation [12],

i.e., the repeated lower-case indices are summed up from 1 to 3, whereas the upper-case indices

take on the same numbers as the corresponding lower-case ones but are not summed up. This

indicial expression facilitates the subsequent derivations and computations.

By using the elastic equivalency treatment, all partially debonded particles are replaced by

perfectly bonded particles with the aforementioned equivalent orthotropic elastic stiffnesses.

Therefore, multi-phase micromechanical approaches can be established to characterize the

progressive interfacial debonding processes of metal matrix composites.

2.3 Microstructural damage evolution of particle debonding

The evolution of the volume fractions of the damaged particles can be simulated using a two-

parameter Weibull distribution function as [15]

Pi ¼
1� exp � ri�rcri

S

� �M
h i

; ri � rcri

0; ri < rcri

(

ði ¼ 1; 2; 3Þ: ð11Þ

Here, the Weibull parameter M signifies the evolution rate of the volume fraction of debonded

particles. The parameter S is not independent when the relationship between the mean value of

the Weibull distribution function and the critical bonding strength rcri is established. For

example, when an intermediate debonding evolution rate M = 5 is chosen and the mean of the

Weibull function is equal to the critical bonding strength, S can be calculated as S ¼ 1:09rcri.

The volume fractions of the four various damage modes /ðbÞ (b ¼ 1; 2; 3; 4) are expressed as

follows to characterize the evolution of interfacial partial debonding and the transition between

the four debonding modes:

/ð4Þ ¼ /Total
P3;

/ð3Þ ¼ /Total
P2 � P3½ �;

/ð2Þ ¼ /Total
P1 � P2½ �;

/ð1Þ ¼ /Total 1� P1½ �;

ð12Þ

where /Total is the total volume fraction of all particles in the composite. The probabilistic

function Pi (i= 1; 2; 3) (Eq. (11)) represents a normal stress controlled debonding process and

can be treated as the debonding probability in the i-th principal direction. When the smallest

principal stress (the third principal stress) reaches the critical stress, the other two principal

stresses are greater or equal to the critical stress, and thus the total debonding (the fourth

mode) occurs. Therefore, the evolution of the fourth debonding mode is characterized by P3.

Similarly, the third debonding mode (two-dimensional debonding) and the second debonding

mode (one-dimensional debonding) are controlled by P2 and P1, respectively. With the increase

of external loading, part of the two-dimensional debonding converts to the total debonding,

and part of the one-dimensional debonding evolves into the two-dimensional debonding.

6 H. T. Liu et al.



Hence, the volume fractions of the four debonding modes are constructed as Eq. (12) to reflect

the transition of debonding modes.

3 Effective yield function

Although the plastic deformation in composites is highly localized, the mean-field principles

(homogenization procedures) can be directly applied to estimate the effective yield strength of

composites since the initial yielding and plastic hardening of composites should be attributed to

the collective responses of particle-matrix interactions [12]. To obtain the effective yield func-

tion of PRMMCs, the averaging homogenization is generally performed within a mesoscopic

representative volume element (RVE); see, e.g., Nemat-Nasser and Hori [16]. At any local

matrix material point x, the microscopic stress rðxÞ is assumed to satisfy the von Mises J2-yield

criterion and the local matrix yield function takes the form

Fðr; �ep
mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r : Id : r
p

� Kð�ep
mÞ � 0; ð13Þ

where �ep
m and Kð�ep

mÞ are the equivalent plastic strain and the isotropic hardening function of

the matrix-only material, respectively. Moreover, Id denotes the deviatoric part of the fourth-

rank identity tensor I.

Following the ensemble-volume averaging processes proposed by Ju and Sun [17], the overall

yield function for the composites can be expressed as

�F ¼ ð1� /ð1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffi

hHim
q

� Kð�epÞ � 0; ð14Þ

where �ep represents the effective equivalent plastic strain. It should be noted that the effect of

the various debonding modes on the overall yield function is reflected through the change of

stress field. This is shown in the expression of hHim, which is a function of the volume fraction

/ðiÞ, (i ¼ 1; 2; 3; 4) (see Eqs. (19) and (20)). The expression of hHim for the composite with four

phases of particles (corresponding to the four debonding modes) can be approximately ob-

tained by neglecting the interaction among neighboring particles as

hHimðxÞ ffi H0 þ
X

4

b¼1

I

x0=2NðxÞ

½HðbÞðxjx0Þ � H0�PðbÞðx0Þdx0; ð15Þ

where H0 ¼ r0 : Id : r0 is the square of the far-field stress norm applied on the composite and

NðxÞ is the exclusion zone of x for the center location x0 of a particle in the probability space,

which is identical to the shape and size of the particle. PðbÞðx0Þ is the probability density

function for finding a b-phase particle in the exclusion zone of the particle center located at x0.

In addition, HðbÞ is the stress-norm collection contribution from the b-phase particles, i.e.,

HðbÞ ¼ rðbÞðxÞ : Id : rðbÞðxÞ; b ¼ 1; 2; 3; 4; ð16Þ

where the local stress tensor in the matrix due to a b-phase particle centered at x0 can be written

as (cf. [17])

rðxÞ ¼ r0 þ C0 : �Gðx� x0Þ : �ðbÞ� ; ð17Þ

in which �
ðbÞ
� is the eigenstrain tensor in the b-phase particles that can be expressed explicitly for

spherical particles [13]; �G is the exterior-point Eshelby’s tensor [18] and has the following simple

form for spherical particles:

Progressive interfacial debonding 7



�GijklðxÞ ¼
q3

30ð1� m0Þ
�

3q2 þ 10m0 � 5
� �

dijdkl þ 15 1� q2
� �

dijnknl

þ 3q2 � 10m0 þ 5
� �

dikdjl þ dildjkð Þ
þ15 1� 2m0 � q2

� �

dklninj þ 15 7q2 � 5
� �

ninjnknl

þ15 m0 � q2
� �

diknjnl þ dilnjnk þ djkninl þ djlninkð Þ

2

6

6

6

6

4

3

7

7

7

7

5

; ð18Þ

where v0 is the Poisson’s ratio of the matrix and q ¼ a=r, in which a is the radius of the sphere,

r ¼ ffiffiffiffiffiffiffiffiffi

xixi

p
, and ni = xi /r.

For simplicity, let us consider that all particles are uniformly randomly distributed in the

composites. Therefore, PðbÞðx0Þ can be assumed to be NðbÞ=V (b ¼ 1; 2; 3; 4), where NðbÞ is the

total number of b-phase particles uniformly dispersed in volume V of RVE. After a series of

lengthy but straightforward derivations, we arrive at the following ensemble-averaged hHim
expression:

hHim ¼ r0 : T : r0; ð19Þ

where the components of the fourth-rank tensor T for spherical particles take the form

Tijkl ¼ T
ð1Þ
IK dijdkl þ T

ð2Þ
IJ ðdikdjl þ dildjkÞ ð20Þ

with

T
ð1Þ
IK ¼ �

1

3
þ 2

675ð1� m0Þ2
�

ð65m2
0 � 50v0 þ 2Þ

P

4

b¼1

/ðbÞ

B
ðbÞ
II

B
ðbÞ
KK

�75ð1� 2m0Þ2
P

4

b¼1

/ðbÞðCðbÞ
II
þCðbÞ

KK
Þ

B
ðbÞ
II

B
ðbÞ
KK

þ225ð1� 2m0Þ2
P

4

b¼1

/ðbÞCðbÞ
II

CðbÞ
KK

B
ðbÞ
II

B
ðbÞ
KK

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

;

T
ð2Þ
IJ ¼

1

2
þ ð35m2

0 � 50m0 þ 23Þ
225ð1� m0Þ2

X

4

b¼1

/ðbÞ

B
ðbÞ
IJ B

ðbÞ
IJ

: ð21Þ

Here, /ðbÞ denotes the volume fraction of the b-phase particles. Other parameters in the above

equation are rendered as

B
ðbÞ
IJ ¼ 2ðVIJ þ N

ðbÞ
IJ Þ; b ¼ 1; 2; 3; 4; ð22Þ

CðbÞI1

CðbÞI2

CðbÞ
I3

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼
U11 þW11 U21 þM

ðbÞ
21 U31 þM

ðbÞ
31

U12 þM
ðbÞ
12 U22 þW22 U32 þM

ðbÞ
32

U13 þM
ðbÞ
13 U23 þM

ðbÞ
23 U33 þW33

8

>

>

<

>

>

:

9

>

>

=

>

>

;

�1
UI1 þM

ðgÞ
I1

UI2 þM
ðgÞ
I2

UI3 þM
ðgÞ
I3

8

>

>

<

>

>

:

9

>

>

=

>

>

;

;

with

U11 ¼
2

3
� 4

3
m0; U12 ¼ U13 ¼ U21 ¼ U31 ¼

4

3
m0 �

2

3
;

U22 ¼ U33 ¼ 3� 4

3
m0; U23 ¼ U32 ¼

4

3
m0 �

1

6
;

V11 ¼ V12 ¼ V21 ¼ V13 ¼ V31 ¼
2

3
� 4

3
m0;

V22 ¼ V23 ¼ V32 ¼ V33 ¼
7

6
� 4

3
m0;
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M
ðbÞ
IJ ¼

kð0Þð1� D
ðbÞ
IK dkkÞ � 2lð0ÞDðbÞIJ

2ðlðbÞII � lð0ÞÞ
;

N
ðbÞ
IJ ¼

lð0Þ

2ðlðbÞIJ � lð0ÞÞ
;

D
ðbÞ
I1

D
ðbÞ
I2

D
ðbÞ
I3

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

¼

X11 kðbÞ12 � kð0Þ kðbÞ13 � kð0Þ

kðbÞ12 � kð0Þ X22 kðbÞ23 � kð0Þ

kðbÞ13 � kð0Þ kðbÞ23 � kð0Þ X33

2

6

6

6

6

6

4

3

7

7

7

7

7

5

�1
kð2ÞI1 � kð0Þ

kð2ÞI2 � kð0Þ

kð2ÞI3 � kð0Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

ð23Þ

and

WII ¼ M
ðbÞ
II þ 2N

ðbÞ
II ;

XII ¼ kðbÞII � kð0Þ þ 2ðlðbÞII � lð0ÞÞ; I = 1, 2, 3: ð24Þ

The general relationship between the applied far-field stress �r0 and the macroscopic (ensemble-

volume averaged) stress �r takes the form [19]

r0 ¼ P : �r; ð25Þ

where the fourth-rank tensor P reads

P ¼ fCð0Þ � ½Iþ ðI� SÞ � Y� �Cð0Þ
�1

g�1 ð26Þ

with

Y ¼
X

4

b¼1

/ðbÞ½Sþ ðCðbÞ �C
ð0ÞÞ�1 � Cð0Þ��1; ð27Þ

where S is the Eshelby’s tensor given in [13] for spherical particles. The combination of Eqs.

(19) and (25) leads to an alternative expression of the ensemble-averaged square of the current

stress norm as

hHim ¼ �r : �T : �r; ð28Þ

where the fourth-rank tensor reads �T ¼ PT � T � P. It is observed from the above equation that

hHim can be reduced to the corresponding equation in [17] if no particle debonding occurs in

the composites (i.e., /ð1Þ > 0 and /ðbÞ ¼ 0; b ¼ 2; 3; 4). Furthermore, Eq. (28) will recover the

classical J2-invariant for the matrix-only material (i.e., /ðbÞ ¼ 0; b ¼ 1; 2; 3; 4).

4 Composite constitutive modeling

For the small deformation theory, the total macroscopic strain �e consists of two parts:

�e ¼ �ee þ �ep; ð29Þ

where �ee denotes the overall elastic strain, and �ep represents the overall plastic strain of the

composites. The relationship between the macroscopic stress �r and macroscopic elastic strain �ee

reads

�r ¼ �C : �ee; ð30Þ

Progressive interfacial debonding 9



in which the effective elastic stiffness of composites can be determined as [19]

�C ¼ C
ð0Þ � ½Iþ ðY�1 � SÞ�1�: ð31Þ

In the above equation, Y has previously been defined in Eq. (27). The plastic flow of composites

is postulated to be associative for simplicity. The macroscopic plastic strain rate for PRMMCs

thus takes the form

_�e
p ¼ _k

@�F

@�r
; ð32Þ

where _k is the plastic consistency parameter. Moreover, �F is the overall yield function of

composites (cf. Eq. (14)). The simple isotropic power-law hardening function Kð�epÞ is proposed
as

Kð�epÞ ¼
ffiffiffi

2

3

r

ry þ hð�epÞq½ �: ð33Þ

Here, ry denotes the initial yield stress of matrix material, and h and q signify the linear and

exponential isotropic hardening parameters.

The foregoing characterization together with the Kuhn-Tucker conditions

_k � 0; �F � 0; _k�F ¼ 0; _k _�F ¼ 0 ð34Þ

then constitutes an effective elastoplastic-damage constitutive formulation for particle-rein-

forced metal matrix composites with a progressive, partial interfacial debonding process.

The proposed composite framework as formulated in Eqs. (29)–(34) is based on the

micromechanics approach, the ensemble-averaging homogenization procedures, and the

statistical distribution method. The proposed formulation offers a potentially viable

framework to estimate the overall elastoplastic-damage stress-strain responses of the metal

matrix composites.

5 Numerical examples

5.1 Uniaxial tensile loading

The uniaxial stress-strain curves are often referred to as important indicators of mechanical

behaviors of composite materials. In order to illustrate the proposed micromechanics-based

model, let us first consider the uniaxial tension loading. In this case, the components of the

macroscopic stress �r can be expressed as �r11 > 0 and �rij ¼ 0 for all other stress components.

Unless noted otherwise, during the subsequent numerical simulations, the selected composite

system signifies the SiC particle reinforced aluminum matrix composite. The Young’s moduli

and Poisson’s ratios of SiC particles and the aluminum matrix are taken as Ep = 450 GPa,

Em = 70 GPa, vp = 0.2 and vm = 0.3, where the subscripts p and m represent the particles

and the matrix, respectively. The Weibull’s parameter is selected as M = 5. The yield

strength is taken as ry ¼ 300 MPa and the hardening parameters are assumed to be h = 1.0

GPa and q = 0.5, respectively. Numerical simulations on the uniaxial elastoplastic-damage

stress-strain behaviors of PRMMCs are displayed in Fig. 5. Clearly, the effective stress-strain

responses for a 15% volume fraction of spherical particles with progressive interfacial deb-

onding lie between those of the porous material (the lower bound) and the composite

material without debonding (the upper bound). The interfacial bonding strength plays an

10 H. T. Liu et al.



important role in the interfacial debonding process, and has significant effects on the overall

elastoplastic-damage behaviors of the composites, see Fig. 5. Specifically, less strain hard-

ening can be clearly observed for composites with lower interfacial bonding strengths. For
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Fig. 5. The overall stress-strain curves of PRMMCs with progressive interfacial debonding
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Fig. 6. The evolution of debonding angles (solid line) and volume fraction (dashed line) with the
increased overall strain in uniaxial loading case
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example, with a very low bonding strength (i.e., rcri ¼ 0:4 ry in Fig. 5), the interfacial deb-

onding occurs even before the composite reaches its overall yield point and therefore a

softening portion can be observed.
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Fig. 7. The comparison between the prediction of current model and the experimental result [20]
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Under the uniaxial loading condition, the first local principal stress is tensile and the other

two local principal stresses are compressive with the same magnitudes. Therefore, only one

debonding mode – debonding along the loading direction – will occur. In Fig. 6, the solid line

shows the debonding-angle progression as a function of the overall strain history. Because of

the equality of the second and third local principal stresses, the debonding angles að2Þ12 and að2Þ13

are equal to each other. From this figure, it is observed that the debonding angle increases

rapidly at the beginning stage, and then becomes saturated as the overall deformation increases,

implying that it is increasingly more difficult to further debond due to the compressive principal

stresses in the second and third principal directions. The dashed line in Fig. 6 displays the

evolution process of the damaged volume fraction of particles. Since there is only one

debonding mode (mode 2), /ð2Þ increases during the entire loading process while the other

damaged volume fractions (/ð3Þ and /ð4Þ) remain zero.

Figure 7 exhibits the comparison between our analytical model predictions and the experi-

mental results of particulate-reinforced SiC/Al5456 composites reported by Papazian and Adler

[20]. With the introduction of progressive interfacial debonding, our current model obtains a

better prediction than the non-debonding model. The effects of debonding on the overall initial

yield strengths of the composites are rendered in Fig. 8. When the particle volume fraction is

zero, there are no reinforcements in the composite and therefore it becomes a matrix-only

material. The overall yield strengths of the composites increase with increasing volume frac-

tions of particles without considering debonding, which reflects the enhancing hardening

influence of the existence of reinforcing particles. By contrast, for porous materials with voids,

a higher volume fraction of voids leads to a decrease of the overall initial yield strength. With

higher particle concentrations in the composites, the interfacial debonding mechanism creates
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more pronounced effects on the overall initial yield strengths of the composites. Moreover, as

the bonding strength becomes weaker, particle debonding occurs in an early loading stage; and

as the overall initial yield takes place, there are already many void-like particles in the com-

posites. As a consequence, the overall initial yield strengths of the weak-interface composites go

even lower than the matrix-only material, and the voids-prone composites behave like porous

materials.

5.2 Triaxial tensile loading

Under the uniaxial loading condition, only one debonding mode is active since only the first

local principal stress is tensile. To investigate the transformation between different debonding

modes, the composite is subjected to the triaxial loading case, in which �r11 > 0; �r22 ¼ 0:6�r11

and �r33 ¼ 0:4�r11. Figure 9 shows the evolution and transformation of the damage volume

fractions. With the increase of the overall external loading, the first local principal stress reaches

the critical strength first and activates the second debonding mode (one-dimensional debond-

ing). Further increasing the external loading, the third debonding mode (two-dimensional

debonding) becomes active when the second local principal stress reaches the critical strength.

At the beginning stage, the number of newly formed mode-2 particles from the perfectly

bonded (mode-1) particles is larger than the amount of mode-2 particles that evolve into mode-

3 and mode-4 ones. Therefore, both /ð2Þ and /ð3Þ increase with the increasing external loading

until a specific point where more mode-2 particles become mode-3 and mode-4 while /ð2Þ begins
to decrease. Finally, all the local principal stresses go beyond the critical strength, and all four

modes of particles exist in the matrix simultaneously. The progression of debonding angles is

shown in Fig. 10. Comparing with the uniaxial loading case, the debonding process develops

more rapidly and the debonding angles reach the maximum value (90	) finally due to the tensile
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state of the principal stresses in all directions. When the second principal stress reaches the

critical strength, the debonding angle að2Þ12 becomes 90	 indicting a total debonding between the

local x1- and x2-directions. Therefore, the two-dimensional debonding mode is activated

(referring to /ð3Þ in Fig. 9). The debonding angle in x1x3-direction (að2Þ13 ) keeps developing under
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the two-dimensional debonding mode (að3Þ13 ). Once all the debonding angles progress to 90, the

total debonding mode (mode-4) is achieved (referring to /ð4Þ in Fig. 9).

To investigate the effects of interfacial particle debonding on the overall initial yield surfaces,

axisymmetric (biaxial) loading cases are considered here. In this loading case,

�r11 > 0; �r22 ¼ �r33 > 0 and �r12 ¼ �r13 ¼ �r23 ¼ 0. The initial effective yield surfaces are pre-

sented in terms of the normalized volumetric and effective stresses in Figs. 11 and 12. Specif-

ically, the volumetric and effective stresses can be easily obtained from their basic definitions

under the axisymmetric condition as �rv ¼ ð�r11 þ 2�r22Þ=3 and �re ¼ �r11 � �r22, respectively.

Figure 11 shows that the overall initial yielding of the composites is not of the von Mises type,

even though the particles are spherical in shape and randomly distributed. The effect of

interfacial bonding strength is significant on the normalized volumetric yield stress, whereas

considerably less influence is observed on the normalized effective yield stress. With decreasing

bonding strength, early debonding occurs in the composite and causes the degradation of the

initial plastic yielding point for the volumetric stress. On the other hand, for a constant

(specified) bonding strength, the effects of particle volume fraction on the overall initial yield

surface in the volumetric and effective stress space are exhibited in Fig. 12. In particular,

decreasing particle volume fraction leads to an increase in the normalized volumetric yield

stress yet a decrease in the normalized effective yield stress. This unique feature clearly illus-

trates that the non–von-Mises type of composite yielding is mainly caused by the existence of

particles. As the volume fraction of particles reduces to zero, the matrix-only material recovers

the von Mises plastic yielding, as expected.

6 Concluding remarks

Emanating from the eigenstrain concept of micromechanics and homogenization, the ensemble-

averaged elastoplastic-damage constitutive equations are derived for PRMMCs with

progressive partial interfacial debonding evolution. The debonding areas are represented by the

corresponding debonding angles. Four different debonding modes are considered and the

corresponding equivalent orthotropic stiffness tensors are constructed systematically. The

proposed formulation is subsequently applied to the uniaxial and the axisymmetric (biaxial)

tensile loading conditions to illustrate the potential capabilities of the present framework.

Comparisons between the model predictions and the available experimental data are also

conducted. The effects of the partial particle debonding on the overall initial yield stresses and

yield surfaces are discussed in detail. It is noted that the proposed elastoplastic-damage for-

mulation is amenable to generalization to handle multi-axial loading conditions. Further

research is warranted to extend the current framework to accommodate the spheroidal and

other particle shapes. In addition to the stress-based particle-debonding criterion, the strain-

based, the energy-based or the mixed matrix-particle interfacial debonding criteria can be taken

into consideration for different composite materials.
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