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Summary. The steady flow of a fluid, called a fourth-grade fluid, between two parallel plates is considered.

Depending upon the relative motion of the plates we analyze four types of flows: Couette flow, plug flow,

Poiseuille flow and generalized Couette flow. In each case, the nonlinear differential equation describing

the velocity field is solved using perturbation technique and homotopy analysis method. The pressure

distribution is also found. It is observed that the homotopy analysis method is more efficient and flexible

than the perturbation technique.

1 Introduction

Couette flows are generated by the action of boundaries in relative motion. Typical examples of

commonly used boundaries are two parallel plates or two coaxial cylinders or a flat plate and a

convex cone with its apex touching the plate. In this paper, we consider steady plane Couette

flows obtained in the region between parallel plates sliding with respect to each other.

The fluid between the plates is of fourth grade which is a non–Newtonian fluid and fails to

obey Newton’s viscosity law. Such a fluid cannot be described as simply as Newtonian fluids.

Non–Newtonian fluids are not of rare occurrence. As remarked in 1½ �; they are to be found

close at hand everywhere. Many solid-liquid and liquid-liquid suspensions, solutions of macro-

molecules, molten plastics, mammalian whole blood and synovial fluid (fluid found in health

joints) are treated as non–Newtonian fluids. The study of such fluids is therefore of wide

interest and significance for researchers in biological and non-biological fields.

The classification of non–Newtonian fluids as second grade or higher grade fluids is based

on the differential type of constitutive equations involving the Rivlin-Ericksen tensor. It has

been shown by many authors that in several problems in which the flow is slow enough, in

the visco-elastic sense, the results given by Oldroyd’s constitutive equations are substantially

those of the second or third order Rivlin-Ericksen constitutive equation. As remarked in 2½ �;
it seems reasonable to use second or third-order Rivlin-Ericksen equations in carrying out

the calculations. This is particularly so in view of the fact that the calculations would

generally be still simpler. For this reason, in the present paper we consider a fourth-grade

fluid.

In obtaining plane Couette flows using a fourth grade fluid, four different problems

depending on the relative motion of the sliding plates are considered: (i) one plate is moving

and the other is at rest, giving simple Couette flow; (ii) both plates are moving with same speed
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in the same direction, giving plug flow; (iii) both plates are stationary, and the fluid is forced

under constant pressure gradient, producing Poiseuille flow, and (iv) either of the two plates is

moving with constant speed in the presence of an external pressure gradient, generating gen-

eralized plane Couette flow.

The steady plane flow problems of a fourth grade fluid are usually solved by perturbation

techniques. In [2], Erdogan used such a technique to solve the nonlinear differential equation

describing the steady pipe flow of a fourth-grade fluid. Recently, the homotopy analysis method

has been widely used to tackle nonlinear partial differential equations. Regarding the homotopy

analysis method and its applications we refer to [3] and [4]. Recently, Ayub, Rashid and Hayat

[5] applied this method to obtain some exact flows of a third-grade fluid past a porous plate. In

another paper [6], Hayat, Khan and Ayub used it to give some explicit analytic solutions of an

Oldroyd 6-constant fluid.

In this paper, we use the perturbation method as well as the homotopy analysis method to

obtain the solutions of steady plane Couette flows, and the corresponding results are compared.

The organization of the paper is as follows: Section 2 contains the basic equations. Section 3

gives the solution of the four problems of Couette flows using perturbation technique. In

Sect. 4.1, the basic idea of the homotopy analysis method is discussed and the method is then

used in Sects. 4.2 to 4.5 to analyze the four problems of Couette flows. Section 5 is reserved for

conclusions.

2 Basic equations

Let us consider two infinite parallel plates separated by a constant distance 2d. We use an ðx; yÞ
coordinate system, where x is in the direction of motion of the fluid between the plates and the

y-axis is perpendicular to the plates.

The basic equations governing the motion of an incompressible fluid, neglecting the thermal

effects and body forces, are

div v ¼ 0; ð1Þ

q
Dv

Dt
¼ �$pþ div s; ð2Þ

where q is the constant density, v the velocity vector, p the pressure, s the stress tensor, and D
Dt

denotes the material derivative.

As discussed in [7]–[9], the stress tensor s defining a fourth-grade fluid is given by

s ¼
X4

i¼1
Si; ð3Þ

where

S1 ¼ lA1; S2 ¼ a1A2 þ a2A2
1;

S3 ¼ b1A3 þ b2 A1A2 þA2A1ð Þ þ b3 tr A2ð ÞA1;

S4 ¼ c1A4 þ c2 A3A1 þ A1A3ð Þ þ c3 A2
2

� �
þ c4 A2A2

1 þ A2
1A2

� �

þ c5 trA2ð ÞA2ð Þ þ c6 tr A2ð ÞA2
1 þ c7 tr A3 þ c8 tr A2A1ð Þð ÞA1;

where l is the coefficient of viscosity and a1; a2; b1; b2; b3; c1; c2; c3; c4; c5; c6; c7 and c8 are

material constants. The Rivlin-Ericksen tensors An are defined by
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Ao ¼ I; the identity tensor;

and An ¼
DAn�1

Dt
þ An�1 rvð Þ þ rvð ÞtAn�1; n � 1: ð4Þ

Since the flow is one-dimensional, we assume that

v ¼ u yð Þ; 0; 0ð Þ: ð5Þ

For steady one-dimensional flow of a fourth grade fluid, Eq. (2) in component form yields:

x-component:

�dp

dx
þ l

d2u

dy2
þ 6 b2 þ b3ð Þ du

dy

� �2
d2u

dy2
¼ 0: ð6Þ

y-component:

�dp

dy
þ ð2a1 þ a2Þ

d

dy

du

dy

� �2
 !

þ 4 c3 þ c4 þ c5 þ
c6

2

� �
d

dy

du

dy

� �4

¼ 0: ð7Þ

Introducing the generalized pressure p� by the relation

p� ¼ �pþ ð2a1 þ a2Þ
du

dy

� �2

þ4 c3 þ c4 þ c5 þ
c6

2

� � du

dy

� �4

ð8Þ

and substituting p� in Eq. (7), we find that

dp�

dy
¼ 0; ð9Þ

showing that p� ¼ p�ðxÞ. Consequently, Eq. (6) reduces to the single equation

�dp�

dx
þ l

d2u

dy2
þ 6 b2 þ b3ð Þ du

dy

� �2
d2u

dy2
¼ 0: ð10Þ

This is a second-order nonlinear ordinary differential equation. We note that in Eq. (10) no

contribution comes from S2 and S4.

3 Perturbation method

The perturbation method is the traditional technique to solve nonlinear problems. The basic

theme of the method is to expand the required solution in powers of the parameter � (small

or large), present in the differential equation, substitute the assumed solution in the equa-

tion and equate the coefficients of like powers of � on the both sides of the equation to

obtain a system of differential equations and solve them using the initial/boundary condi-

tions.

In the following, we use the perturbation method to solve Eq. (10) with boundary conditions

corresponding to different problems of Couette flow.

3.1 Plane Couette flow problem

Let us assume that of the two plates the upper plate moves with constant speed U, while the

lower plate remains at rest and that there is no pressure gradient. Then Eq. (10) governing the

flow of the fourth-grade fluid between the plates becomes
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l
d2u

dy2
þ 6 b2 þ b3ð Þ du

dy

� �2
d2u

dy2
¼ 0: ð11Þ

The corresponding boundary conditions are

u yð Þ ¼ 0 at y ¼ 0;

u yð Þ ¼ U at y ¼ 2d:
ð12Þ

Taking � ¼ 6 b2 þ b3ð Þ=l as small parameter, we consider the perturbation expansion

u yð Þ � u� yð Þ þ �u1 yð Þ þ �2u2 yð Þ þ . . . : ð13Þ

Using Eq. (13) in Eqs. (11), (12) and then equating like powers of � we obtain the following

problems:

Zeroth-order problem

d2uo

dy2
¼ 0 ð14Þ

with boundary conditions

uo yð Þ ¼ 0 at y ¼ 0;

uo yð Þ ¼ U at y ¼ 2d;
ð15Þ

the corresponding solution being

uo yð Þ ¼ U

2d
y: ð16Þ

First-order problem

d2u1

dy2
þ duo

dy

� �2
d2uo

dy2
¼ 0 ð17Þ

subject to the boundary conditions

u1 yð Þ ¼ 0 at y ¼ 0;

u1 yð Þ ¼ 0 at y ¼ 2d:
ð18Þ

Substituting uo in Eq. (17), the solution of (17) satisfying conditions (18) is given by

u1 yð Þ ¼ 0: ð19Þ

Second-order problem

d2u2

dy2
þ duo

dy

� �2
d2u1

dy2
þ 2

duo

dy

du1

dy

d2uo

dy2
¼ 0 ð20Þ

the boundary conditions being

u2 yð Þ ¼ 0 at y ¼ 0;

u2 yð Þ ¼ 0 at y ¼ 2d:
ð21Þ

Substituting for uo and u1 from Eqs. (16) and (19), respectively, and using Eq. (21) we obtain

u2 yð Þ ¼ 0: ð22Þ

Thus, the perturbation solution up to second order is given by

u yð Þ ¼ U

2d
y: ð23Þ
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We remark that the solution (23) for the plane Couette flow using a fourth-grade fluid comes

out to be the same as for the Newtonian fluid and also for the Oldroyd 6-constant model

obtained by Hayat et al in [6].

3.2 Plug flow problem

For plug flow we assume that both the plates move with constant speed U, and the pressure

gradient is zero. Therefore the flow is due to the motion of both the plates. In this case the

equation governing the motion will remain the same as Eq. (11), however the boundary con-

ditions, with x-axis in the lower plate, will take the form

u yð Þ ¼ U at y ¼ 0;

u yð Þ ¼ U at y ¼ 2d:

ð24Þ

Here we take � as in Sect. 3.1 and substitute Eq. (13) into Eq. (11) using the boundary

conditions (24). Then we obtain:

Zeroth-order problem

d2uo

dy2
¼ 0 ð25Þ

and the boundary conditions are

uo yð Þ ¼ U at y ¼ 0;

uo yð Þ ¼ U at y ¼ 2d:

ð26Þ

The solution of the zeroth-order problem becomes

uo yð Þ ¼ U: ð27Þ

First-order problem

d2u1

dy2
þ duo

dy

� �2
d2uo

dy2
¼ 0 ð28Þ

with the boundary conditions

u1 yð Þ ¼ 0 at y ¼ 0;

u1 yð Þ ¼ 0 at y ¼ 2d:

ð29Þ

Making use of uo in (28) and solving the resulting equation with conditions (29) for first-order

solution, we get

u1 yð Þ ¼ 0: ð30Þ

Second-order problem

d2u2

dy2
þ duo

dy

� �2
d2u1

dy2
þ 2

duo

dy

du1

dy

d2uo

dy2
¼ 0 ð31Þ

under the boundary conditions

u2 yð Þ ¼ 0 at y ¼ 0;

u2 yð Þ ¼ 0 at y ¼ 2d:

ð32Þ
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Substituting the zeroth-and first-order solutions into Eq. (31) and solving the resulting equation

which satisfies the boundary conditions (32), we obtain

u2 yð Þ ¼ 0: ð33Þ

Thus, the perturbation solution of the plug flow problem up to second order can be written as

u yð Þ ¼ U: ð34Þ

3.3 Fully developed plane Poiseuille flow problem

For fully developed plane Poiseuille flow, we assume that the upper plate and the lower plates

are stationary, and the fluid is forced under constant pressure gradient. Then the equation of

motion (10) in the presence of the constant pressure gradient A takes the form

d2u

dy2
þ 6 b2 þ b3ð Þ

l
du

dy

� �2
d2u

dy2
¼ A

l
; where A ¼ dp�

dx
: ð35Þ

Taking the x-axis midway between the plates, the boundary conditions are

u yð Þ ¼ 0 at y ¼ �d;

u yð Þ ¼ 0 at y ¼ d:

ð36Þ

Proceeding as before, we obtain:

Zeroth-order problem

d2uo

dy2
¼ A

l
ð37Þ

along with the boundary conditions

uo yð Þ ¼ 0 at y ¼ �d;

uo yð Þ ¼ 0 at y ¼ d:

ð38Þ

We obtain the solution of zeroth-order problem given by

uo yð Þ ¼ A

2l
y2 � d2
� �

: ð39Þ

First-order problem

d2u1

dy2
þ duo

dy

� �2
d2uo

dy2
¼ 0 ð40Þ

under the boundary conditions

u1 yð Þ ¼ 0 at y ¼ �d;

u1 yð Þ ¼ 0 at y ¼ d:

ð41Þ

When we substitute uo in Eq. (40), the first-order solution is given by

u1 yð Þ ¼ A3

12l3
d4 � y4
� �

: ð42Þ

Second-order problem

The second-order problem along with the boundary conditions is given by
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d2u2

dy2
þ duo

dy

� �2
d2u1

dy2
þ 2

duo

dy

du1

dy

d2uo

dy2
¼ 0; ð43Þ

u2 yð Þ ¼ 0 at y ¼ �d;

u2 yð Þ ¼ 0 at y ¼ d:
ð44Þ

Using the expressions of uo and u1 in Eq. 43ð Þ, we obtain the second-order solution in the form

u2 yð Þ ¼ 1

18

A5

l5
y6 � d6
� �

: ð45Þ

Therefore, the solution of the fully developed plane Poiseuille flow problem up to second order

takes the form

u yð Þ ¼ A

2l
y2 � d2
� �

þ � A3

12l3
d4 � y4
� �	 


þ �2 1

18

A5

l5
y6 � d6
� �	 


: ð46Þ

3.4 Generalized plane Couette flow problem

In generalized plane Couette flow either of the two plates is moving with constant speed U, and

an external pressure gradient A is present. In contrast to the previous problem this flow is not

symmetric with respect to the central line. So we take the origin on the lower plate. The

corresponding equation governing the motion of the fluid with pressure gradient A is

d2u

dy2
þ 6 b2 þ b3ð Þ

l
du

dy

� �2
d2u

dy2
¼ A

l
; where A ¼ dp�

dx
; ð47Þ

subject to the boundary conditions

u yð Þ ¼ 0 at y ¼ 0;

u yð Þ ¼ U at y ¼ 2d:
ð48Þ

As in the earlier problems, the zeroth-order, first-order and second-order problems are:

Zeroth-order problem

d2uo

dy2
¼ A

l
ð49Þ

along with the boundary conditions

uo yð Þ ¼ 0 at y ¼ 0;

uo yð Þ ¼ U at y ¼ 2d:
ð50Þ

First-order problem

d2u1

dy2
þ duo

dy

� �2
d2uo

dy2
¼ 0 ð51Þ

under the boundary conditions

u1 yð Þ ¼ 0 at y ¼ 0;

u1 yð Þ ¼ 0 at y ¼ 2d:
ð52Þ

Second-order problem

The second-order problem along with the boundary conditions is given by
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d2u2

dy2
þ duo

dy

� �2
d2u1

dy2
þ 2

duo

dy

du1

dy

d2uo

dy2
¼ 0; ð53Þ

u2 yð Þ ¼ 0 at y ¼ 0;

u2 yð Þ ¼ 0 at y ¼ 2d:
ð54Þ

The corresponding solutions are

uoðyÞ ¼
U

2d
y� A

2l
2dy� y2
� �

; ð55Þ

u1ðyÞ ¼ �
1

12

A3

l3
y4 þ Gy3 � Hy2 þMy; ð56Þ

where

G ¼ 1

6

A3

l3
� 1

6

A2

l2

U

d
;

H ¼ 1

2

A3

l3
d2 þ 1

2

A2

l2
U � 1

4

A

l
U2

d
;

M ¼ 8
A3

l3
d3 � 1

3

A2

l2
Udþ A

2l
U2

d
;

and

u2ðyÞ ¼ �
1

18

A5

l5
y6 � ly5 þmy4 � ny3 þ k1y2 � k2y; ð57Þ

where

l ¼ 1

3

A5

l5
d� 1

6

A4

l4

U

d
;

m ¼ 5

6

A5

l5
d2 � 5

6

A4

l4
U þ 5

24

A3

l3

U2

d2
;

n ¼ 11

3

A5

l5
d3 � 29

18

A4

l4
Udþ 11

12

A3

l3

U2

d
� A2

8l2

U3

d3
;

k1 ¼
17

2

A5

l5
d4 � 16

3

A4

l4
Ud2 þ 17

12

A3

l3
U2 � A2

2l2

U3

d2
þ A

32l
U4

d4
;

k2 ¼
13

24

A5

l5
d5 � 74

9

A4

l4
Ud3 þ 5

6

A3

l3
U2d� A2

2l2

U3

d
þ 1

16

A

l
U4

d3
:

Thus, the final solution obtained by the perturbation method up to second order is

u yð Þ ¼ U

2d
y� A

2l
2dy� y2
� �

þ � � 1

12

A3

l3
y4 þ Gy3 � Hy2 þMy

	 


þ �2 � 1

18

A5

l5
y6 � ly5 þmy4 � ny3 þ k1y2 � k2y

	 

: ð58Þ
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4 Homotopy analysis method

4.1 Basic idea

To explain the basic idea of the homotopy analysis method, we consider the differential equation

A½uðyÞ� ¼ 0; ð59Þ

where A is a nonlinear operator and uðyÞ is an unknown function of the independent variable

y: Let uoðyÞ denote an initial approximation of uðyÞ and let L denote the auxiliary linear

operator with the property

Lf ¼ 0 when f ¼ 0: ð60Þ

We then construct the so-called homotopy

H½/ðy; qÞ; q� ¼ 1� qð ÞL½/ðy; qÞ � uoðyÞ� þ qA½/ðy; qÞ�; ð61Þ

where q 2 ½0; 1� is an embedding parameter and /ðy; qÞ a function of y and q. When q ¼ 0 then

Eq. (61) takes the form

H½/ðy; qÞ; q�jq¼0 ¼L½/ðy; 0Þ � uoðyÞ�:

From Eq. (60) it follows that

/ðy; 0Þ ¼ uoðyÞ

is the solution of

H½/ðy; qÞ; q�jq¼0 ¼ 0:

Again, when q ¼ 1; Eq. (61) shows that

H½/ðy; qÞ; q�jq¼1 ¼A½/ðy; 1Þ�;

and therefore from Eq. (59) it follows that

/ðy; 1Þ ¼ uðyÞ

is the solution of

H½/ðy; qÞ; q�jq¼1 ¼ 0:

Thus, when the embedding parameter q varies from 0 to 1, the solution / y; qð Þ of the equation
H½/ðy; qÞ; q� ¼ 0;

which depends upon the embedding parameter q, varies from the initial approximation uoðyÞ to
the solution u yð Þof Eq. (59). In topology, Eq. (61) describing a continuous variation is called

deformation.

In what follows we revisit the Couette flow problems discussed in Sect. 3 and apply the

homotopy analysis method to obtain their solutions.

4.2 Plane Couette flow problem

As discussed in Sect. 3.1, Eq. (11) governs the plane Couette flow subject to boundary con-

ditions (12). In this case, Eq. (61) becomes

1� qð ÞL eu y; qð Þ � uo yð Þ½ � ¼ qh
@2eu y; qð Þ
@y2

þ 6 b2 þ b3ð Þ
l

@eu y; qð Þ
@y

� �2
@2eu y; qð Þ
@y2

" #
: ð62Þ
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The boundary conditions (12) yield

eu 0; qð Þ ¼ 0; eu 2d; qð Þ ¼ U: ð63Þ

The system (62) and (63) constructs the homotopy and for brevity we call it the zeroth-order

deformation equations.

We choose

L ¼ @2

@y2
ð64Þ

as an auxiliary linear operator, and

uo yð Þ ¼ U

2d
y ð65Þ

as the initial guess which satisfies the boundary conditions (12); h is an auxiliary parameter and

q is an embedding parameter such that q 2 ½0; 1�: In Eq. (62) we set q ¼ 0 to obtain

eu y; 0ð Þ ¼ uo yð Þ; ð66Þ

and q ¼ 1 to obtain

eu y; 1ð Þ ¼ u yð Þ: ð67Þ

By virtue of Eqs. (66) and (67), the variation of q from 0 to 1 is just the continuous variation of

euðy; qÞ from the initial guess approximation uo yð Þ to the unknown solution u yð Þ of 11ð Þ subject
to (12).

Assume that the deformation eu y; qð Þ governed by Eqs. (62) and (63) is smooth enough, so

that

u kð Þ
o yð Þ ¼ @

keu y; qð Þ
@qk

����
q¼0

; k � 1; ð68Þ

namely, the k-th order deformation derivative exists. Then according to Eq. (66) and Taylor’s

formula, we have

eu y; qð Þ ¼ uo yð Þ þ
X1

k¼1

u
kð Þ

o yð Þ
k!

" #
qk: ð69Þ

Defining

uk yð Þ ¼ u
kð Þ

o yð Þ
k!

ð70Þ

and using Eqs. (67), (69) and (70) we get at q ¼ 1

u yð Þ ¼
X1

k¼0

uk yð Þ; ð71Þ

which gives the relationship between the initial guess approximation uo yð Þ and the unknown

solution of u yð Þ: Now differentiating the zeroth-order deformation (62) and (63) k times with

respect to q and then setting q ¼ 0 we have

L uk yð Þ � vkuk�1 yð Þ½ � ¼ hRk yð Þ; k � 1; ð72Þ

with the boundary conditions

uk 0ð Þ ¼ uk 2dð Þ ¼ 0: ð73Þ
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Here

Rk yð Þ ¼ u00k�1 þ
6 b2 þ b3ð Þ

l

Xk�1

j¼0

u00k�1�j

Xj

i¼0

u0iu
0
j�i ð74Þ

and

vk ¼
0; k � 1;
1; k � 2;

�
ð75Þ

primes denote the derivative with respect to y. We call Eqs. (72) and (73) k-th order defor-

mation equations k � 1ð Þ. For the first-order solution of the problem with k ¼ 1 in (72) and

(73), we obtain the corresponding solution

u1 yð Þ ¼ 0: ð76Þ

Similarly, setting k ¼ 2; the second-order solution obtained by homotopy analysis method is

u2 yð Þ ¼ 0: ð77Þ

Finally, the homotopy solution up to second-order of the Couette flow problem with fourth-

grade fluid is

u yð Þ ¼ U

2d
y: ð78Þ

Here we can see that the homotopy analysis method solution does not involve the auxiliary

parameter h, and the solutions from the two methods are in complete agreement.

4.3 Plug flow problem

Here we apply the homotopy analysis technique to solve the problem (11) with boundary

conditions (24). The zeroth-order deformation for this case is again of the form of Eq. (62):

1� qð ÞL eu y; qð Þ � uo yð Þ½ � ¼ qh
@2eu y; qð Þ
@y2

þ 6 b2 þ b3ð Þ
l

@eu y; qð Þ
@y

� �2@2eu y; qð Þ
@y2

" #
ð79Þ

with the boundary conditions

eu 0; qð Þ ¼ U; eu 2d; qð Þ ¼ U: ð80Þ

As before, let

L ¼ @2

@y2
ð81Þ

be an auxiliary linear operator and

uo yð Þ ¼ U ð82Þ

an initial guess approximation which satisfies the conditions (24), h an auxiliary parameter, q

an embedding parameter such that q 2 ½0; 1�: From Eqs. (79) and (80) we observe that the k-th

order deformation equations for the plug flow problem will be the same as in the case of plane

Couette flow. Proceeding as before, we obtain first-and second-order homotopy solutions in the

form

u1 yð Þ ¼ 0 ð83Þ

and
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u2 yð Þ ¼ 0; ð84Þ

giving the homotopy analysis solution up to second order in the form

u yð Þ ¼ U: ð85Þ

The solution (85) for the plug flow problem is the same as obtained in Sect. 3.2 by the per-

turbation method.

4.4 Fully developed plane Poiseuille flow problem

To apply the homotopy analysis method to the problem (35) subject to conditions (36), we first

select an auxiliary linear operator

L ¼ @2

@y2
: ð86Þ

Then, we construct for Eq. (35) the family of differential equations giving the zeroth-order

deformation, namely

1� qð ÞL eu y; qð Þ � uo yð Þ½ � ¼ qh
@2eu y; qð Þ
@y2

þ 6 b2 þ b3ð Þ
l

@eu y; qð Þ
@y

� �2@2eu y; qð Þ
@y2

� A

l

" #
ð87Þ

together with the boundary conditions

eu �d; qð Þ ¼ 0; eu d; qð Þ ¼ 0: ð88Þ

In view of the boundary conditions (36), we choose

uo yð Þ ¼ A

2l
y2 � d2
� �

ð89Þ

as initial guess approximation. When q ¼ 0, Eqs. (87) and (88) give

eu y; 0ð Þ ¼ uo yð Þ; ð90Þ

and when q ¼ 1, they give

eu y; 1ð Þ ¼ u yð Þ: ð91Þ

By virtue of Eqs. (90) and (91), euðy; qÞ varies from the initial guess uo yð Þ to the exact solution

u yð Þ as the embedding parameter q increases from 0 to 1.

To obtain the k-th order deformation for the system (87) and (88), we differentiate k times

with respect to q and set q ¼ 0, then for k � 1 we have

L uk yð Þ � vkuk�1 yð Þ½ � ¼ hRk yð Þ ð92Þ

subject to the boundary conditions

uk �dð Þ ¼ uk dð Þ ¼ 0: ð93Þ

Here

Rk yð Þ ¼ u00k�1 þ
2 b2 þ b3ð Þ

l

Xk�1

j¼0

u00k�1�j

Xj

i¼0

u0iu
0
j�i þ nk

A

l
ð94Þ

and

vk ¼
0; k � 1;
1; k � 2;

�
ð95Þ
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nk ¼
1; k � 1;
0; k � 2;

�
ð96Þ

where primes denote the derivative with respect to y:

Now to obtain the first order homotopy solution, we set k ¼ 1 and q ¼ 0 in Eqs. (92) and

(93). The solution of the resulting linear differential equation is given by

u1 yð Þ ¼ h

2
b2 þ b3ð ÞA

3

l4
y4 � d4
� �

: ð97Þ

Again when we put k ¼ 2 and q ¼ 0 for the second order solution of the problem, we come up

with the second-order solution as under

u2 yð Þ ¼ 1þ hð Þ 4h b2 þ b3ð ÞA
3

l4
y4 � d4
� �� �	 


ð98Þ

þ 4h2 b2 þ b3ð Þ2A5

l7
y6 � d6
� �

: ð99Þ

Thus, the final expression for the homotopy analysis method solution up to second order is

u yð Þ ¼ A

2l
y2 � d2
� �

þ h

2
b2 þ b3ð ÞA

3

l4
y4 � d4
� �

þ 1

2!

h
1þ hð Þ 4h b2 þ b3ð ÞA

3

l4
y4 � d4
� �� �� 

þ 4h2 b2 þ b3ð Þ2A5

l7
y6 � d6
� �i

: ð100Þ

It can be observed from Eq. (100), that if we set h ¼ �1, we recover the perturbation solution.

4.5 Generalized Couette flow problem

The zeroth-order deformation for the problem (47) with the boundary conditions (48) takes the

form

1� qð ÞL eu y; qð Þ � uo yð Þ½ � ¼ qh
@2eu y; qð Þ
@y2

þ 6 b2 þ b3ð Þ
l

@eu y; qð Þ
@y

� �2
@2eu y; qð Þ
@y2

� A

l

" #
ð101Þ

subject to the boundary conditions

eu 0; qð Þ ¼ 0; eu 2d; qð Þ ¼ U; ð102Þ

where

L ¼ @2

@y2
ð103Þ

is an auxiliary linear operator. The initial guess which satisfies the boundary condition (48) is

uo yð Þ ¼ U

2d
y� A

2l
2dy� y2
� �

: ð104Þ

As we applied homotopy analysis method in the previous sections, similarly in this case we

follow the same steps to obtain the first-and second-order solutions:
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u1 yð Þ ¼ 6 b2 þ b3ð Þh 1

12

A3

l4
y4 � By3 þ Cy2 � Dy

	 

; ð105Þ

where

B ¼ 1

3

A3

l4
d� 1

6

A2

l3

U

d
;

C ¼ 1

2

A3

l4
d2 � 1

2

A2

l3
U þ A

8l2

U2

d2
;

D ¼ 1

3

A3

l4
d3 � 1

3

A2

l3
Udþ 1

4

A

l
U2

d
;

and

u2 yð Þ ¼ 6 b2 þ b3ð Þ 1þ hð Þh
h 1

12

A3

l4
y4 � 1

3

A3

l4
d� 1

6

A2

l3

U

d

� �
y3

þ 1

2

A3

l4
d2 � 1

2

A2

l3
U þ 1

8

A

l2

U2

d2

� �
y2 �

� 1

3

A3

l4
d3 � 1

3

A2

l3
Ud

þ 1

4

A

l
U2

d

�
y

i
þ 1

2!

n
36 b2 þ b3ð Þ2h2

h
� 1

18

A5

l7
y6 � Oy5

þ Ry4 �W1y3 þW2y2 � Xy

i
� 6 b2 þ b3ð Þ 1þ hð ÞhTy

o
; ð106Þ

where

O ¼ 2

3

A5

l7
d� 1

3

A4

l6

U

d
;

R ¼ 5

3

A5

l7
d2 � 5

3

A4

l6
U þ 5

12

A3

l5

U2

d2
;

W1 ¼
22

3

A5

l7
d3 � 29

9

A4

l6
Udþ 11

6

A3

l5

U2

d
� A2

4l4

U3

d3
;

W2 ¼ 17
A5

l7
d4 � 8

3

A4

l6
Ud2 þ 17

6

A3

l5
U2 � A2

l4

U3

d2
þ A

16l3

U4

d4
;

X ¼ 13

12

A5

l7
d5 � 148

9

A4

l6
Ud3 þ 5

3

A3

l5
U2d� A2

l4

U3

d
þ A

8l3

U4

d3
;

T ¼ 2

3

A3

l4
d3 � 2

3

A2

l3
Udþ A

2l2

U2

d
:

Therefore, the final homotopy solution of the problem up to second order becomes
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u yð Þ ¼ U

2d
y� A

l
2dy� y2
� �

þ 6 b2 þ b3ð Þh 1

12

A3

l4
y4 � By3 þ Cy2 � Dy

	 


6 b2 þ b3ð Þ 1þ hð Þh
h 1

12

A3

l4
y4 � 1

3

A3

l4
d� 1

6

A2

l3

U

d

� �
y3

þ 1

2

A3

l4
d2 � 1

2

A2

l3
U þ 1

8

A

l2

U2

d2

� �
y2 �

� 1

3

A3

l4
d3 � 1

3

A2

l3
Ud

þ 1

4

A

l
U2

d

�
y

i
þ 1

2!

n
36 b2 þ b3ð Þ2h2

h
� 1

18

A5

l7
y6 � Oy5

þ Ry4 �W1y3 þW2y2 � Xy

i
� 6 b2 þ b3ð Þ 1þ hð ÞhTy

o
: ð107Þ

If we set h ¼ �1 in solution 107ð Þ; the pertubation solution can be recovered.

The pressure distribution for the Poiseuille flow and the generalized plane Couette flow is

given by

p ¼ ð2a1 þ a2Þ
du

dy

� �2

þ4 c3 þ c4 þ c5 þ
c6

2

� �
du

dy

� �4

: ð108Þ

The shearing viscosity coefficient l, and the material constants b1; b2; b3;c1; c2; c7 and c8 do not

play any role in the pressure distribution.

5 Conclusions

In this paper, plane Couette flows are studied using a fourth grade fluid. Depending on the

relative motion of the plate’s four problems, namely, plane Couette flow, plug flow, Poiseuille

flow and generalized plane Couette flow are discussed. Perturbation technique as well as the

homotopy analysis method are used to solve the four problems, and the results are compared.

Unlike the perturbation technique, homotopy analysis method does not require the presence

of a parameter, small or large, in the equations governing the motion. However, the solution of

the problem generally involves an auxiliary parameter h, which provides a family of solution

expressions.

For plane Couette flow and plug flow problems, the two methods give the same solutions

which do not depend on h. Also, our solution for plane Couette flow is the same as that for a

Newtonian fluid and for the Oldroyd model with 6-constant obtained in [6].

For fully developed plane Poiseuille flow and generalized plane Couette flow problems, the

solutions obtained by homotopy analysis method are more general than those given by the

perturbation method, which be obtained by setting h ¼ �1 in the solutions from the homotopy

analysis method. Thus, homotopy analysis method is more efficient and flexible than pertur-

bation method.

Acknowledgement

The authors are grateful for the constructive remarks of the reviewer which were helpful in preparing
the revised version.

Homotopy analysis for fourth-grade fluids 131



References

[1] Harris, J.: Rheology and non–Newtonian flow. London New York: Longman 1977
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