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Summary. Fully developed laminar flow of an incompressible viscous fluid through a porous pipe with

suction and injection is considered. An exact solution of the Navier-Stokes equations is given. The solution

is in a series form in terms of the modified Bessel functions. The flow properties depend on the cross-

Reynolds number, V : a=m, where V is the suction velocity, a is the radius of the pipe and m is the kinematic

viscosity of the fluid. It is found that for large values of the cross-Reynolds number the flow near the

region of the suction shows a boundary-layer character. In this region, the velocity varies sharply and the

vorticity is concentrated near this region, and in the other parts of the pipe the vorticity does not show an

appreciable change. A complete description of the flow is presented by using the graphs of the velocity, the

volume flux across a plane normal to the flow and the vorticity.

1 Introduction

An exact solution of the Navier-Stokes equations for flow through a uniformly porous pipe is

given. Obtaining the exact solutions of the Navier-Stokes equations is very important for many

reasons. They provide a standard for checking the accuracies of many approximate methods

such as numerical or empirical. Although computer techniques make the complete integration

of the Navier-Stokes equations feasible, the accuracy of the results can be established by a

comparison with an exact solution. The exact solution given in this paper is for a flow in a

porous pipe. The flow of fluids over boundaries of porous materials has many applications in

practice such as boundary-layer control. A simple solution of the Navier-Stokes equations can

be obtained for flow over a porous plane boundary at which there is a uniform suction velocity.

This solution was found by Griffith and Meredith and was given in [1]. There is no solution of

the Navier-Stokes equations for flow over a porous plane boundary at which there is a uniform

injection velocity. However, if the porous plane is bounded by side walls, a solution of the

Navier-Stokes equations can be found for the injection case [2]. The flow between two parallel

porous plates with uniform suction at the upper plate and uniform injection at the lower plate

has been considered in [3]. For large values of the suction parameter based on the suction

velocity, a characteristic length and the kinematic viscosity of the fluid, the flow near the upper

plate has a boundary-layer character. Velocity varies sharply, the vorticity is concentrated near

the suction region, and it has nearly a constant value across the channel [3].

The flow in a duct of rectangular cross-section with uniform suction and injection has been

examined by Mehta and Jain [4], Sai and Rao [5], and Erdoğan [2]. The velocity, the vorticity

and the volume flux depend on the cross-Reynolds number and the aspect ratio. When the
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suction parameter approaches zero, the velocity reduces to that for the flow in a duct with

rectangular cross-section without porous walls. When the aspect ratio approaches zero, the

velocity reduces to that for the flow between two parallel porous walls. The vorticity for the

flow in a duct with rectangular cross-section with suction and injection has two components.

When the cross-Reynolds number approaches zero, the vorticity reduces to that for the flow in

a duct with rectangular cross-section without porous walls. When the aspect ratio approaches

zero, the vorticity reduces to that for the flow between two parallel porous plates. For large

values of the cross-Reynolds number the variation of the velocity and the vorticity near the

region of suction are sharp, and the flow in this region of the duct has a boundary-layer

character. In the other regions of the duct, the vorticity has a constant value.

Fully developed non-swirling laminar flow through a porous pipe with injection has been

investigated by many authors, and the complete solution to this problem together with a

discussion of previous research has been given by Terril and Thomas [6]. Fully developed

laminar flow with swirl in a porous pipe with injection has been examined by Terril and

Thomas [7]. The velocity for this flow is three-dimensional and varies along the pipe. Recently,

three-dimensional flow in a porous channel has been investigated in [8]. The flows considered

are only with injection (or suction) along the channel. Therefore, these flows can neither be

compared to that of a duct with rectangular cross-section with suction and injection nor to a

porous pipe with suction and injection.

In this paper, the flow in a porous pipe with injection and suction is considered. An exact

solution of the Navier-Stokes equations is obtained. A complete description of the solution is

presented by using the graphs of the velocity, the volume flux across a plane normal to the flow

and the vorticity. The velocity and the vorticity depend on only cross-sectional variables;

therefore, they do not change along the pipe. The flow considered is affected by a non-

dimensional parameter called the cross-Reynolds number. For large values of this parameter

near the suction region the flow has a boundary layer character. In this region, the velocity

varies sharply and the vorticity is concentrated near this region and does not change appre-

ciably across the pipe.

The velocity distribution for the flow considered is given in a series form in terms of the

modified Bessel function of the first kind of order n. When the suction parameter approaches

zero, the velocity reduces to that of the flow in a non-porous pipe. For large values of the

suction parameter the series for the velocity is slowly convergent. But the values of the velocity

can be calculated by using a computer. The variation of the velocity with the nondimensional

distance for various values of the suction parameter is illustrated in Fig. 2. This figure shows

that the curves which correspond to h ¼ p=2 and h ¼ 3p=2 overlap and the curve at h ¼ 0 is

different from those at h ¼ p=2 and h ¼ 3p=2. The variation of the velocity at h ¼ p is illus-

trated in Fig. 3. For large values of the suction parameter near the region of the suction, the

velocity distribution shows a boundary layer character. In this region, the velocity varies

sharply. Using the boundary-layer analysis an expression for the velocity is given.

The variation of the volume flux across a plane normal to the flow with the suction parameter

is illustrated in Fig. 4. When the suction parameter increases the volume flux decreases. The

volume flux, for which the suction parameter equals 10, has one half the value of the non-

porous pipe. When the suction parameter approaches zero, the volume flux reduces to that of

the Poiseuille flow for a non-porous pipe.

The vorticity has two nonzero components which are xr and xh, the z-component xz is zero,

where r, h, z are the cylindrical polar coordinates. In the case of flow in a non-porous pipe the

component xr does not occur. For the flow considered here, xr vanishes at h ¼ 0 and h ¼ p.
When the suction parameter approaches zero, xr reduces to zero. The variation of xr with the
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suction parameter k is such that xr increases with k first, has a maximum at about k ¼ 4 and

then decreases with k. The other component of the vorticity is xh and when the suction

parameter approaches zero, xh reduces to r/a which is the expression for flow in a non-porous

pipe. The variations of xh with r/a for various values of k at h ¼ 0 and h ¼ p are illustrated in

Fig. 5. It is interesting that there are similarities between the curves in Fig. 5 and those for the

flow in a channel of rectangular cross-section. The variation of xh with h shows that it has a

maximum at h ¼ p. For large values of the suction parameter the vorticity is concentrated near

the region of the suction. In this region the flow has a boundary-layer character. In other

regions of the pipe, the vorticity does not show an appreciable change. For large values of the

suction parameter the series that gives xh is slowly convergent. However, the values of xh for

various values of k can be calculated by using a computer. Although by using a method similar

to that given in [9] the asymptotic form of the series for vorticity can be obtained as in the case

of the velocity, the result is not practical.

2 Basic equations

Fully developed laminar flow of an incompressible viscous fluid in a porous pipe is considered.

The flow geometry and the coordinate system are illustrated in Fig. 1. The cylindrical polar

coordinates are used. The direction of the suction velocity is taken as the x-axis without loss of

generality. The region on the right-hand side of the pipe is the injection region and the region

on the left-hand side of the pipe is the suction region. The velocity field is

tr ¼ �V cos h; th ¼ V sin h; tz ¼ wðr; hÞ; ð1Þ

where tr, th, tz are the components of the velocity in the cylindrical polar coordinates and

V(>0) is the suction velocity. The Navier-Stokes equations are
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Fig. 1. Flow geometry and coordinate system

Axial flow of an incompressible viscous fluid 189



tr

@w

@r
þ th

r
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; ð4Þ

and the continuity equation is

@ðrtrÞ
@r

þ @th

@h
¼ 0; ð5Þ

where r, h, z are the cylindrical polar coordinates, q is the density of the fluid, p is the pressure and

m is the kinematic viscosity of the fluid. The continuity Eq. (5) is satisfied identically by Eq. (1).

Equations (2) to (4) show that dp=dz is a constant. Equations (2) to (4) reduce to

V � @w

@r
cos hþ 1

r

@w

@h
sin h

� �
¼ � 1

q
@p

@z
þ m

@2w

@r2
þ 1

r

@w

@r
þ 1

r2

@2w

@h2

� �
: ð6Þ

Equation (6) is the governing equation, and the boundary condition for the velocity is

wða; hÞ ¼ 0;

where a is the radius of the pipe.

3 The velocity distribution

In order to simplify Eq. (6) w can be expressed as

w ¼ 1

qV

dp

dz
r cos hþ e�ðkr=2aÞ cos hFðr; hÞ: ð7Þ

The first term in Eq. (7) is the inviscid solution and the second term shows the effect of the wall.

After inserting Eq. (7) into Eq. (6) one finds

@2F

@r2
þ 1

r

@F

@r
þ 1

r2

@ 2F

@h2
� k2

4
F ¼ 0; ð8Þ

where k ¼ Va=m is the cross-Reynolds number. The boundary condition becomes

Fða; hÞ ¼ � a

qm
dp

dz
cos h

� �
eðk=2Þ cos h: ð9Þ

The flow in a non-porous pipe is an axisymmetric flow, but the flow in a porous pipe considered

in this paper is not an axisymmetric flow. If one replaces h with �h in Eq. (9) the boundary

condition does not change. This suggests that Fðr; hÞ can be considered as an even function of

h. The solution of Eq. (8) subject to the condition given by Eq. (9) can be obtained by the

separation of variables. Since Fðr; hÞ is an even function of h, Fðr; hÞ can be expressed in the

following form :

Fðr; hÞ ¼
X
n¼0

GnðrÞ cos nh; ð10Þ

where GnðrÞ satisfies the differential equation

r2 d2Gn

dr2
þ r

dGn

dr
� k2

4
r2 þ n2

 !
Gn ¼ 0:

This differential equation is the Bessel differential equation for the modified Bessel function.

Using the uniformity condition at r ¼ 0, the solution becomes AnInðk r=2aÞ, where An are
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constants to be determined by the boundary condition (9), and InðxÞ is the modified Bessel

function of the first kind of order n. Equation (10) can be written as

Fðr; hÞ ¼
X
n¼0

AnInðk r=2aÞ cos nh:

Inserting this equation into Eq. (9) and using the identities given in [10]

eðk=2Þ cos h ¼ I0ðk=2Þ þ 2
X
n¼1

Inðk=2Þ cos nh ð11:1Þ

and

eðk=2Þ cos h cos h ¼ I1ðk=2Þ þ 2
X
n¼1

In�1ðk=2Þ þ Inþ1ðk=2Þ½ � cos nh; ð11:2Þ

one finds

A0 ¼ �
a

qV

dp

dz

I1ðk=2Þ
I0ðk=2Þ ; ð12Þ

An ¼ �
a

qV

dp

dz

In�1ðk=2Þ þ Inþ1ðk=2Þ
Inðk=2Þ for n ¼ 1; 2; 3; . . . : ð13Þ

Inserting the values of A0;A1;A2; . . . into Eq. (10) and then into Eq. (7), the expression for the

velocity becomes

w

� 1
4l

dp

dz
a2
¼ 4

k

(
� r

a
: cos hþ e�ðk r=2aÞ cos h I1ðk=2Þ

I0ðk=2Þ I0ðk r=2aÞ
�

þ
X
n¼1

In�1ðk=2Þ þ Inþ1ðk=2Þ
Inðk=2Þ Inðk r=2aÞ cos nh

#)
: ð14Þ

This solution of the Navier-Stokes equations is exact and valid for all values of k. For small

values of k, the expression for w can be obtained by Eq. (6) in the following form:

w

� 1
4l

dp

dz
a2
¼ 1� r2

a2
� k

4

r

a
� r3

a3

� �
cos hþ k2 � 1

32
1� r2

a2

� �2

þ 1

48

r2

a2
� r4

a4

� �
cos 2h

" #
þ O k3

� �
;

ð15Þ

where 1� ðr2=a2Þ denotes the velocity distribution for flow in a non-porous pipe.

Using the identities (11.1) and (11.2), it can be shown that the velocity given by Eq. (14)

satisfies the condition at r ¼ a. The variations of the velocity with r=a for various values of k at

h ¼ 0, h ¼ p=2 and h ¼ 3p=2 are illustrated in Fig. 2. It is clearly seen from Fig. 2 that the curves

of the velocity at h ¼ p=2 and h ¼ 3p=2 overlap and the curve at h ¼ 0 differs from those at

h ¼ p=2 and h ¼ 3p=2. The variation of the velocity with r=a for various values of k at h ¼ p is

illustrated in Fig. 3. The variation of the velocity at h ¼ p is much more different than the others.

This is clearly seen from the curves in Fig. 3. For large values of k near the region of the suction,

the variation of the velocity has a boundary-layer character. This effect has also been observed

for the flow in a porous duct of rectangular cross-section with suction and injection [2].

In order to analyse the boundary layer near the region of the suction, it is better to write the

governing equation (6) in Cartesian coordinates as follows:
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�V
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q
dp
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þ m

@2w
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þ @

2w

@y2

� �
: ð16Þ

For large values of k near the region of suction, the variation of the velocity with x is larger

than that of y, and then the governing equation in the boundary layer reduces to

�V
@w

@x
¼ � 1

q
dp

dz
þ m

@2w

@x2
; ð17Þ

where w depends on not only x but also y. The solution is

w ¼ 1

qV

dp

dz
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where A may be a function of y. The first term in the solution corresponds to the inviscid

solution for which the vorticity is equal to �ðdp=dzÞ=qV . By using the boundary condition

w ¼ 0 at r ¼ a, the solution in cylindrical polar coordinates becomes

w

� 1
4l

dp

dz
a2
¼ 4

k
� r

a
cos hþ e

k 1�r
að Þ cos h cos h

h i
: ð18Þ

Equation (18) can be used for large values of k, and it is valid in the boundary layer near the

region of the suction.

4 The volume flux

The volume flux across a plane normal to the flow is given by

Q ¼
Za

0

Z2p

0

w r dr dh:

Inserting the expression for w given by Eq. (14) into that forQ and using the identities given in [9]

InðaÞ ¼
1

2p

Z2p

0

ea cos h cos nh dh;

InðaÞ ¼
ð�1Þn

2p

Z2p

0

e�a cos h cos nh dh;

where a is a parameter and using the identity given in [11]

Za

0

rI2
nðkr=2aÞdr ¼ a2

2
1þ 4n2

k2

� �
I2
nðk=2Þ � I02n ðk=2Þ

� �
;

one finds

Q
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dz
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¼8
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I1ðk=2Þ
I0ðk=2Þ I2

0ðk=2Þ� I2
1ðk=2Þ

� 	

þ2
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n¼1

ð�1Þn I0nðk=2Þ
Inðk=2Þ 1þ4n2
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� �
I2
nðk=2Þ� I02n ðk=2Þ

� �)
;

ð19Þ

where primes denote differentiation with respect to the arguments. Using the identity given in [9]

�I0ðaÞI1ðaÞ þ 2
X
n¼1

ð�1Þnþ1
InðaÞI0nðaÞ ¼ 0;

Eq. (19) becomes

Q

� p
8l

dp

dz
a4
¼ 8

k
� I3

1ðk=2Þ
I0ðk=2Þ þ

X
n¼1

ð�1Þnþ1 In�1ðk=2Þ þ Inþ1ðk=2Þ
Inðk=2Þ In�1ðk=2ÞInþ1ðk=2Þ

" #
:

When k approaches zero the volume flux reduces to pð�dp=dzÞa4=8l which is the volume flux

for the flow in a non-porous pipe. The variation of the volume flux across a plane normal to the

flow with the cross-Reynolds number is illustrated in Fig. 4. As it is expected, when k increases
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the volume flux decreases. The value of the volume flux for k ¼ 10 is about half of that for the

flow in a non-porous pipe.

5 Vorticity distribution

The components of the vorticity in cylindrical polar coordinates are xr, xh and xz. The latter

component is zero. xr andxh are given in the following forms:

xr

� 1
2l

dp

dz
a
¼ 2

k
sin hþ k

2
e�ðkr=2aÞ cos hðsin hÞ I1ðk=2Þ
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�


þ
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Inðk=2Þ Inðkr=2aÞ sin h

)
; ð20Þ

xh
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dp
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a
¼� 2

k
� cos h� k

2
e�ðkr=2aÞ cos hðcos hÞ I1ðk=2Þ
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�


þ
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Inðk=2Þ Inðkr=2aÞ cos nh

#

þ k
4
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�
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In�1ðk=2Þ þ Inþ1ðk=2Þ
Inðk=2Þ In�1ðkr=2aÞ þ Inþ1ðkr=2aÞ½ � cos nh

#)
: ð21Þ

It is well known that in the case of a non-porous pipe the only nonzero component of the

vorticity is xh. xr is zero at r ¼ a. Indeed, at r ¼ a, Eq. (20) becomes

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

l

Q
p (dp/dz) a4 

8m–

Fig. 4. The variation of Q
�
� p
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dp

dz
a4 with k
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xr

� 1
2l

dp

dz
a
¼ 2

k
sin hþ k

2
ðsin hÞe�k

2 cos h I1ðk=2Þ½



þ
X
n¼1

In�1ðk=2Þ þ Inþ1ðk=2Þ½ � cos nh

#

� e�
k
2 cos h

X
n¼1

n In�1ðk=2Þ þ Inþ1ðk=2Þ½ � sin nh

)
: ð22Þ

Using the identities (11.1) and (11.2), Eq. (22) takes the following form:

xr

� 1
2l

dp

dz
a
¼ 2

k
sin hþ k

2
ðsin hÞ cos h� e�

k
2 cos h � @

@h
e�

k
2 cos h cos h

� �� �
 
:

This equation shows that xr is zero at r ¼ a for all values of h. When k approaches zero, xr

vanishes. Equation (20) indicates that xrðr=a; p=2Þ ¼ �xrðr=a; 3p=2Þ. The variation of

xr=ð�a dp=dzÞ=2l with r=a for various values of k shows that xr=ð�a dp=dzÞ=2l first in-

creases with k; reaches a maximum at about k ¼ 4 and then decreases. The value of

xr=ð�a dp=dzÞ=2l at r=a ¼ 0 can be calculated by the following equation:

xrð0; p=2Þ
� 1

2l
dp

dz
a
¼ 2

k
1þ k

2

I1ðk=2Þ
I0ðk=2Þ �

k
4

I0ðk=2Þ þ I2ðk=2Þ
I1ðk=2Þ

� �
:

The expression of xh is given by Eq. (21). When k approaches zero, xh takes the following

form:

xh

� 1
2l

dp

dz
a
¼ r

a
;

which is the vorticity component in the case of a non-porous pipe and xh ¼ 0 at r=a ¼ 0.

However, in the case of a porous pipe, xh at r=a ¼ 0 becomes

xh

� 1
2l

dp

dz
a
¼ � 2

k
� cos h� k

2

I1ðk=2Þ
I0ðk=2Þ þ

k
4

I0ðk=2Þ þ I2ðk=2Þ
I1ðk=2Þ

� �
;

where xhð0; pÞ ¼ �xhð0; 0Þ. For r ¼ a, xh can be written as
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xh

� 1
2l

dp

dz
a
¼ � 2

k
� cos h� k

2
e�

k
2 cos hðcos hÞ I1ðk=2Þ½



þ
X
n¼1

In�1ðk=2Þ þ In�1ðk=2Þ½ � cos nh

#

þ k
4

e�
k
2 cos h 2

I2
1ðk=2Þ

I0ðk=2Þ þ
X
n¼1

In�1ðk=2Þ þ Inþ1ðk=2Þ½ �2

Inðk=2Þ cos nh

" #)
:

For h ¼ p, using the identity given in [10]

I1ðk=2Þ þ
X
n¼1

ð�1Þn In�1ðk=2Þ þ Inþ1ðk=2Þ½ � ¼ �e�k=2;

one finds

xh

� 1
2l

dp

dz
a
¼ � 2

k
�1� k

2
þ k

4
e

k
2 2

I2
1ðk=2Þ

I0ðk=2Þ þ
X
n¼1

ð�1Þn In�1ðk=2Þ þ Inþ1ðk=2Þ½ �2

Inðk=2Þ

" #( )
:

The variations of xh=ð�a dp=dzÞ=2l with r=a for various values of k at h ¼ p and h ¼ 0 are

illustrated in Fig. 5. The curves in Fig. 5 show that for large values of k the vorticity is

concentrated near the region of the suction. This represents a boundary-layer character.

However, the variation of xh=ð�a dp=dzÞ=2l at h ¼ 0 indicates that the flow near the region of

the injection does not show a boundary-layer character.

For large values of k, the numerical calculations of the expressions of the velocity, the volume

flux and the vorticity can be realized by using a computer program without difficulty. Although

by using a method similar to that given in [9] the asymptotic forms of the series for the velocity,

the volume flux and the vorticity can be obtained, they are not practical.

6 Conclusions

The flow considered in this paper is an extension to a porous pipe of the flow through a porous

duct of rectangular cross-section with injection and suction. An exact solution of the Navier-

Stokes equations is given. It is found that the flow properties such as the velocity, the volume

flux across a plane normal to the flow and the vorticity depend on the cross-Reynolds number.

These flow properties are expressed in a series form in terms of the modified Bessel functions of

the first kind of order n. As the suction parameter approaches zero, they tend to the values for

the non-porous pipe. For large values of this parameter a boundary layer occurs near the region

of the suction. Using the boundary layer analysis the approximate expression for the velocity is

given. In this region the variation of the velocity and the vorticity are sharp. In the other parts

of the pipe they do not show an appreciable change. A complete description of the solution is

presented by using the graphs of the velocity, the volume flux and the vorticity. The vorticity

for flow in a non-porous pipe has only one component which is xh, but for flow in a porous

pipe there is also another component which is xr. The variation of xr shows a maximum at

about k ¼ 4. The variation of xh with h has a maximum at h ¼ p. This is due to the boundary

layer near the region of the suction, and the vorticity is concentrated near this region.
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