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Summary. Delamination may reduce the buckling of the laminated plate. In this paper, a semi-analytical,

semi-exact method, namely the strip transfer function method based on Mindlin’s first-order shear

deformation theory is developed to investigate the buckling of a delaminated plate. First, a composite plate

with bulit-in rectangular delamination is divided into two kinds of rectangular super-units, one with a

delamination and one without. The variational principle is used to obtain equilibrium equations and

boundary conditions. Then, by displacement continuity and force balance of nodes that connect two

super-units, the characteristic equation for the buckling analysis of the delaminated plate is derived.

Consequently, buckling load and mode are computed. By comparing the results of the plate with through-

the–width delamination to the analytic solutions of a beam and the results of the finite element method, the

validity of this method is tested. Furthermore, the influence of length, depth and position of the delam-

ination, the boundary condition and the plying angle of the material on the buckling load is analyzed.

1 Introduction

Delaminations of different shapes might emerge in fiber-reinforced composite structures during

their manufacturing and using process. Delamination has great influence on the loading

capacity of structures under axial compression load especially when a local buckling mode

exists, which cannot be ignored. Thus it is of much theoretical and practical significance to

research the influence of delamination on the loading capacity of structures and to analyze

different types of buckling modes for delaminated structures.

Many researchers have been studying the local buckling and post-buckling characteristics of

structures with surface delaminations using the Rayleigh-Ritz method in recent years. Con-

sidering the effects of stretching-shearing coupling and bending-twisting coupling, Chen and Li

[1], [2] performed the theoretical and experimental studies on the buckling characteristics of

composite laminates with rectangular, elliptic or belt-shape surface delaminations. Yin and

Jane [3], [4] gained the buckling and post-buckling solutions for laminates with elliptic aniso-

tropic delaminations and pointed out the lowest order in the Rayleigh-Ritz method to get force,

moment and energy releasing rate as results with adequate precision. Zhang and Yu [5] ana-

lyzed the axial symmetric and non-symmetric buckling problems for laminates with circular

delaminations in further detail.

Instead of applying analytic or semi-analytic methods, the structures with various shapes of

built-in delaminations were analyzed using the finite element method (FEM) [6], [7]. Although
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the FEM is the most powerful and versatile tool for different structural systems including

delaminated plates, it does have some drawbacks as a numerical method. Actually, it is com-

putationally intensive, needs large amounts of computer memory and does not provide explicit

and closed-form solutions.

In this paper, a semi-analytical, semi-exact method, namely the strip transfer function

method based on Mindlin’s first-order shear deformation theory is used to analyze the buckling

problems of a laminated plate with a bulit-in rectangular delamination. The delaminated plate

is divided into two kinds of rectangular super-units. In lateral direction, those super-units are

dispersed into many strip elements. Unlike in the FEM, the displacement field of the super-

units is interpolated by polynomials in terms of nodal line displacements, which are functions of

the strip longitudinal coordinate. The strip distributed transfer function method is used to get

the exact and closed-form solution of the super-unit along the strip longitudinal direction.

Finally, the buckling load and mode of the delaminated plate are computed with higher

accuracy and efficiency through a special treatment for the super-units with a delamination and

a synthesized method. However, it should be noticed that the possible contact between

delamination surfaces in particular cases is not taken into consideration at present.

2 Super-unit model

For studying the buckling problem of a delaminated plate, two types of super-units are con-

sidered. One (Fig. 1a) is a general super-unit without delamination, and the other (Fig. 1b) is a

delaminated super-unit including a delamination. The general super-unit is dispersed into NS

rectangular strip elements by (NS+1) nodal lines in lateral direction. The j-th strip element of

width bj includes the j-th and the (jþ 1)-th nodal line and four nodes (Fig. 2). Oxy is the local

coordinate system for the j-th strip element and o lies at the center of the j-th nodal line. As for

the delaminated super-unit, the dispersing method is varied. Because of delamination in

A1B1C1D1, the delaminated region is split into two sublaminates as top and bottom. So there

are three nodal lines at a delamination tip A1B1 or C1D1: two nodal lines belonging to the top

and bottom sublaminate, respectively, in the delaminated region, and another nodal line in the

undelaminated region. And there are two nodal lines in the top and bottom sublaminates at

E1F1 in the delaminated region, respectively.

The j-th nodal line displacements are written as

ujðx; zÞ ¼ u0jðxÞ þ zwxjðxÞ; ð1:1Þ
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Fig. 1. Rectangular super-elements
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vjðx; zÞ ¼ v0jðxÞ þ zwyjðxÞ; ð1:2Þ

wjðx; zÞ ¼ w0jðxÞ; ð1:3Þ

in which u0jðxÞ, v0jðxÞ’ w0jðxÞ � and wxjðxÞ; wyjðxÞ are the j-th nodal line shifting and

rotational displacement components, respectively.

The vector composed of all of the above-defined displacement functions of the j-th nodal line

can be written as

ujðxÞ ¼ fu0jðxÞ wxjðxÞ v0jðxÞ wyjðxÞ w0jðxÞgT ; ð2Þ

where the superscript T denotes the transpose of the matrix.

In order to increase the interpolation precision, the inner nodal line and the corresponding

displacement vector kjðxÞ, whose definition is similar to ujðxÞ, are introduced for each strip

element. By doing this we can increase the calculating precision without influence on the

harmonization between two elements. Therefore, the nodal line displacement vector of the j-th

strip element is defined as

WjðxÞ ¼ fuT
j ðxÞ kT

j ðxÞ uT
jþ1ðxÞg

T : ð3Þ

For the strip element mkðk ¼ 1; 2Þ at a delamination tip (A1B1 or C1D1 in Fig. 1b), the dis-

placement vector uk
mðxÞ at the tip is related to the nodal line displacement vector umðxÞ in the

no-delamination strip element m� 1 (Fig. 3). Their relationship is

uk
mðxÞ ¼ TmkumðxÞ; ð4Þ

where

Tmk ¼
Gk 02�2 02�1

02�2 Gk 02�1

01�2 01�2 1

2
64

3
75; Gk ¼

1 dk

0 1

" #
;

and 0i�j is an i� j zero matrix and dk is the relative location in z-direction between the middle

surface of the strip element mk and m� 1.

inner nodal line

node

j+1

j

y
j

o x

b

Fig. 2. The j-th strip element
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Fig. 3. Relation among displacements of nodal lines

at the delamination tip (a point denotes a nodal line)
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Let the strip element mk be the k-th strip element. Consequently, the nodal line displacement

vector is expressed as

WkðxÞ ¼ �TmkfuT
mðxÞ kT

k ðxÞ uT
kþ1ðxÞg

T ; ð5Þ

in which �Tmk ¼
Tmk 05�10

010�5 I10

" #
and Ii is the identity matrix of order i.

The displacement field for all kinds of strip elements can be obtained by interpolation in

terms of the nodal line displacements in y-direction:

uj ¼

u0j

wxj

v0j

wyj

w0j

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼ NðyÞWjðxÞ ¼

N1ðyÞ
N2ðyÞ
N3ðyÞ
N4ðyÞ
N5ðyÞ

2
66666664

3
77777775

WjðxÞ; ð6Þ

where N(y) is the shape function matrix for the nodal line displacement interpolation and j is

the serial number of the strip element.

Therefore, the relationship between the strain and the nodal line displacement vector for the

j-th strip element is

ej ¼ B0 B1½ �
Wj

Wj;x

( )
; ð7Þ

where transverse normal strains are ignored and

ej ¼ fe1j e2j e4j e5j e6jgT ;

B0 ¼ ½015�1 N3;y þ zN4;y

� �T
N5;y þN4

� �T
N2ð ÞT N1;y þ zN2;y

� �T �T ;

B1 ¼ ½ N1 þ zN2ð ÞT 015�1 015�1 N5ð ÞT N3 þ zN4ð ÞT �T :

For an orthotropic layer, the constitutive relations are given in the form

rj ¼ �Qjej; ð8Þ

where �Qj is the stiffness matrix of the layer, and

rj ¼ r1j r2j r4j r5j r6j

� �T
:

The potential energy for the j-th strip element is written as

Lj ¼
1

2

Z
x

Z
y

"Z
z

rT
j ejdzþ Nxj

@wj

@x

� �2

þ Nyj

@wj

@y

� �2

þ2Nxyj

@wj

@x

@wj

@y

#
dydx; ð9Þ

where Nxj, Nyj and Nxyj are membrane forces in the j-th strip element.

Substituting Eqs. (7) and (8) into Eq. (9), we have

Lj ¼
1

2

Z a=2

�a=2

�
WT

j;xk11jWj;x þ 2WT
j k01jWj;x þWT

j k00jWj

�
dx; ð10Þ

in which k11j, k01j, k00j are called the strip stiffness matrices whose detailed expressions are not

listed here.
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Multiplying the potential energies of all strip elements and then applying the variational

principle, we have

1

2

XNS

j¼1

d
Z a=2

�a=2

�
WT

j;xk11jWj;x þ 2WT
j k01jWj;x þWT

j k00jWj

�
dx ¼ 0: ð11Þ

Now introducing the global nodal line displacement vector UðxÞ ¼ uT
1 kT

1 uT
2 � � � kT

NS

�
uT

NSþ1g
T , Eq. (11) can be reduced to

1

2
d
Z a=2

�a=2

�
UT
;xK11U;x þ 2UTK001U;x þUTK00U

�
dx ¼ 0; ð12Þ

where K11, K001 and K00 are global stiffness matrices. For the general super-unit, they are

assembled with k11j, k01j and k00j in the same way as in finite element analysis. But for the

delaminated super-unit, the stiffness matrices of the delamination tip strip element k become
�TT

kmk11k
�Tkm, �TT

kmk01k
�Tkm and �TT

kmk00k
�Tkm in the assembling process.

Setting the variation of Eq. (12) with respect to U, we can obtain

dUT K11U;xx �K01U;x �K00U
� �

¼ 0; ð13Þ

dUT K11U;x þK0 T
01 U

� �
jx¼�a=2 ¼ 0; ð14Þ

with K01 ¼ K001 �K0 T
01 .

If all components in dU are independent, the force equilibrium equations and the boundary

conditions can be deduced from Eqs. (13) and (14) directly. But if there are known or specified

displacements in U, dU is dependent and those dependent components in the vector dU must be

eliminated. Supposing that there are N1 unknown displacement components denoted by the

vector u 2 RN1 and N2 known displacement components denoted by the vector �u 2 RN2 ,

respectively, U can be decomposed into

U ¼ T1uþ T2 �u; ð15Þ

where Tj 2 RðN1þN2Þ�Nj ( j=1,2) is the row transfer matrix and du ¼ 0. Substituting Eq. (15)

into Eqs. (13) and (14), we can get the force equilibrium equations and the boundary conditions

as follows:

�K11u;xx � �K01u;x � �K00u ¼ �Qu; ð16Þ

duT Pu� Su
� �

jx¼�a=2 ¼ 0; ð17Þ

in which

�K11 ¼ TT
1 K11T1; �K01 ¼ TT

1 K01T1; �K00 ¼ TT
1 K00T1;

�Qu ¼ TT
1 K01

@

@x
þK00 �K11

@2

@x2

� �
T2 �u;

P ¼ TT
1 K0 T

01 T1 þ TT
1 K11T1

@

@x
;

Su ¼ �TT
1 K0 T

01 T2 �u� TT
1 K11T2 �u;x:
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3 The distributed transfer function solution to the super-unit

Defining the state variable vector

gðxÞ ¼ uTðxÞ @

@x
uTðxÞ

� �T

2 R2N1 ; ð18Þ

Eqs. (16) and (17) can be written in an equivalent state equation form as

g;x ¼ FgðxÞ þ f ; x 2 ð�a=2; a=2Þ; ð19:1Þ

Mbgð�a=2Þ þNbgða=2Þ ¼ cb; ð19:2Þ

where F, Mb and Nb, and cb are called state-space matrix, boundary matrix, and boundary

disturb vector of the super-unit, respectively.

Following [9], the solution to Eq. (19) is obtained as

gðxÞ ¼ HðxÞcb þ
Z a=2

�a=2

Gðx; nÞfðnÞdn ð20Þ

with

Gðx; nÞ ¼
HðxÞMbe�Fða=2þnÞ n � x;

�HðxÞNbeFða=2�nÞ n > x;

(

HðxÞ ¼ eFx Mbe�Fa=2 þNbeFa=2
h i�1

:

4 The buckling analysis for laminates with built-in delamination

A rectangular plate with a bulit-in delamination shown in Fig. 4 can be divided into three

super-units X1ðAEHDÞ, X2ðEFGHÞ and X3ðFBCGÞ. X2ðEFGHÞ is the one including a delami-

nation. For every rectangular super-unit, there are two types of nodes: the boundary nodes

built-in delamination

D

Xcenter

A E F B

D1

A1

C1

b0 b

h

h0

a

a0

x

y

o

B1

H G
C

Fig. 4. The plate with a built-in

delamination
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where boundary conditions are prescribed, and the inter-connecting nodes where the neigh-

boring super-units are inter-connecting.

For the general super-unit without delaminations, the length of the strip element is assumed

as ai, and then the nodal line displacements are defined in the domain �ai=2 � x � ai=2.

Assume that there are Ni
c unknown displacements at the inter-connecting nodes that are

denoted by the vector ui
c, and Ni

b boundary conditions at boundary nodes that are represented

by the vector ci
bði ¼ 1; 3Þ: The state space vector of the super-unit can be decomposed into the

following form:

giðxÞ ¼ gi
ebðxÞ þHi

uðxÞui
c ð21Þ

with

gi
ebðxÞ ¼

Z ai=2

�ai=2

G
iðx; nÞfðnÞdnþHi

bðxÞci
b Hi

bðxÞ Hi
uðxÞ

h i
¼ HiðxÞ:

For the delaminated super-unit X2, it should be noted that there are two unknown inter-

connecting nodes n1 and n2 in X2 connecting to another inter-connecting node n in X1 or X3 at

the delamination tip (A1D1 or B1C1 in Fig. 4) as shown in Fig. 5. The relationship between the

node displacements uk
n (corresponding to node nk, k ¼ 1; 2) and un (corresponding to node n)

is analogous to that between uk
mðxÞ and umðxÞ in Eq. (4) and can be expressed as

uk
n ¼ Tnkun: ð22Þ

Therefore, the unknown inter-connecting node displacements of the delaminated super-unit

could be expressed by those of the general super-unit X1 or X3

u2
c ¼ �Tnkuc; ð23Þ

where uc ¼ u1
c

� �T
u3

c

� �T
h iT

, and �Tnk is constructed with Tnk. Then the state space vector of

the super-unit X2 can be expressed in the following form:

g2ðxÞ ¼ g2
ebðxÞ þH2

uðxÞ�Tnkuc: ð24Þ

So, the responses of all super-units are expressed in terms of uc. Consequently, displacement

continuity conditions at the inter-connecting nodes are satisfied automatically.

Let Si
cði ¼ 1; 2; 3Þ be the internal force vector applied at the inter-connecting node in the

rectangular super-unit i and xc ¼ �ai=2 or ai=2 the position of the inter-connecting node in x-

direction. We then have

Si
c ¼ Pi

cgðxcÞ; ð25Þ

in which the matrix Pi
c is derived from Pj in Eq. (18) and represents the relationship between

the internal forces and displacements.

Interface of delamination

z

o x

n1

n2n

Fig. 5. Relation among displacements of the node at

the delamination tip
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For the general super-unit, according to Eqs. (21) and (25), we have

Si
c ¼ �Ki

cu
i
c þ qi

c; ð26Þ

where Ki
c ¼ �Pi

cH
i
uðxÞ is the stiffness matrix of the super-unit. qi

c ¼ Pi
cg

i
ebðxÞ represents the

inner transfer force generated by the action of external loads and the boundary disturbing force

at the inter-connecting node.

For the delaminated super-unit, there are two inter-connecting nodes n1 and n2 connecting

to another inter-connecting node n in the general super-unit at the delamination tip as shown in

Fig. 5. Therefore, the internal force at node n is equal to the sum of those at nodes n1 and n2

referring to node n. According to Eqs. (24) and (25), we have

S2
c ¼ �K2

cuc þ q2
c ; ð27Þ

where

K2
c ¼

K21
c

�Tnk

��Tn1K22
c1

�Tnk þ ��Tn2K22
c2

�Tnk

" #
;

P2
cH2

uðxÞ ¼ � K21
c

� �T
K22

c1

� �T
K22

c2

� �T
h iT

;

and ��Tn1 and ��Tn2 are internal force transfer matrices corresponding to the top and bottom

sublaminates and composed of Tn1ð ÞT and Tn2ð ÞT , respectively. K21
c , K22

c1 and K22
c2 , which

construct the stiffness matrix of the super-unit, are composed of corresponding rows of Pj in

Eq. (17) at nodes n; n1 and n2, respectively. The meaning of q2
c ¼ P2

cg
2
ebðxÞ is the same as of qi

c

in Eq. (26).

If we assume that the internal force Si
c and the external force qe are exerted at the connecting

node, and let the general displacement vector be uc, according to force balance of nodes

Si
c þ qe ¼ 0, we can get the equilibrium equations at those connecting nodes in the following

form:

Kcuc ¼ qc þ qe; ð28Þ

where the general stiffness matrix Kc and the node force vector qc are assembled with Ki
c and

qi
c, and the assembling method is similar to that of the finite element method.

For the buckling problems of the axial-compression delaminated rectangular plates, there is

qc ¼ qe ¼ 0. Then the equilibrium equations at those connecting nodes turn into the buckling

equations

Kcuc ¼ 0: ð29Þ

At the buckling point uc 6¼ 0, so the characteristic equation for the delaminated plate is

jKcj ¼ 0: ð30Þ

Solving Eq. (30), we can get the critical buckling load. Then the corresponding buckling mode

can be deduced from Eqs. (29), (21) and (24).

5 Numerical examples analysis

Here, the shape function matrix is first introduced for the strip displacement interpolation.

The displacement vector at the nodal line is given in Eq. (2). The displacement vector kjðxÞ at
the inner nodal line is defined as
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kjðxÞ ¼
(

u0j x;
bj

2

� �
wxj x;

bj

2

� �
v0j x;

bj

2

� �
wyj x;

bj

2

� �
w0j x;

bj

2

� �)T

; ð31Þ

and the corresponding shape function matrix is given as

NðyÞ ¼

ð1� 3nþ 2n2Þ � I5

ð4n� 4n2Þ � I5

�ðn� 2n2Þ � I5

2
6664

3
7775

T

; ð32Þ

where f ¼ y=bj; bj is the width of the j-th strip element.

In all numerical examples, assume that the delaminated plate is compressed only in the

x-direction. The delaminated region is divided into two parts (Fig. 4): the thinner sublaminate

(sublaminate 1) and the thicker one (sublaminate 2). If there are no additional explanations, the

delaminated plate of a=b ¼ 1 and h=a ¼ 5 is clamped at two ends in the x-direction and free at

two ends in the y-direction. The parameters a ¼ a0=a, c ¼ b0=b and b ¼ h0=h are rates of the

delamination to plate in length, width and thickness direction, respectively. �Pcr ¼ 3Pcra2ð1�m12m21Þ
p2E1h3

is the dimensionless buckling load of the delaminated plate. Here, Pcr is the buckling load of the

delaminated plate E1, m12 and m21 are engineering constants of the layer and replaced by E1 ¼ E

and m12 ¼ m21 ¼ m for the isotropic layer.

5.1 Buckling load of the plate with through-the-width delamination

Firstly, for the isotropic plate of a=h ¼ 4, a=b ¼ 4 and b ¼ 0:4, Fig. 6 gives a comparison of

the results in this paper to those from the first (FSDT) and the third (HSDT) order deformation

theory analytic solutions of a beam (Li and Zhou [8]) and the finite element software

NASTRAN. The material parameters are E ¼ 215 GPa and m ¼ 0:26. We can see from Fig. 6

that for the same delamination the buckling load of the four methods differs little. Global,

mixed and local buckling modes all appear and the changing trends of the four types are

identical. All this indicates that our method is correct. Additionally, we can also see that the
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Fig. 6. Buckling load of the plate

with through-the-width delamination
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theory of the plate is more rational than that of the beam for the one-dimensional delamination

problem.

5.2 Effects of depth, size and position of built-in rectangular delamination

For a symmetric delaminated plate of varied delamination length and c ¼ 0:5, the relationship

between buckling load and depth of the delamination is given in Fig. 7. It can be seen that, as

the depth of the delamination (0 < b � 0:5) increases, the buckling load tends to increase and

the buckling mode of the delaminated plate changes from local mode to mixed mode and then

to global mode generally. But for the delaminated plates of a ¼ 0:9, the global mode doesn’t

appear and the buckling load decreases slightly as the depth of the delamination increases when

b > 0:35 The reason is that the stiffness of the sublaminate 2 decreases as the depth of the

delamination increases and a is bigger than c, and the buckling load decreases in the mixed

buckling process.

Figure 8 gives the relationship between the buckling load and the length (Fig. 8a, c ¼ 0:5) or

the width (Fig. 8b a ¼ 0:5) of the delamination for the symmetric delaminated plate. From the

two figures, it can be seen that the buckling load decreases as the size of the delamination

increases. In this case, the buckling mode transforms from global to local mode via mixed

mode.

For the delaminated plate of b ¼ 0:4, Fig. 9 gives the variation of the buckling load as the

position of the delamination varies in x-direction. By comparing those curves, we can see that

for different sizes of the delamination the relationship between the buckling load and the

position of the delamination is different because the buckling mode is different. When

a ¼ c � 0:3, a global buckling mode appears, the buckling load of the delaminated plate de-

creases first and then increases as the delamination closes to the center of the plate. The effect of

the delamination on the plate is smallest when the delamination lies at the center of the plate.

When a ¼ c ¼ 0:4 � 0:6, a mixed buckling mode appears, the buckling load of the delaminated

plate increases as the delamination closes to the center of the plate. When a ¼ c � 0:7 � 0:8,

a local buckling mode appears, the buckling load of the delaminated plate decreases as the

delamination closes to the center of the plate.
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Fig. 7. Effect of the depth of the

delamination on the buckling load
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5.3 Effects of plying angle and boundary conditions

For the delaminated laminates, the buckling load and mode vary with the plying angle

(Fig. 10). The composite material used in Fig. 10 is Kevlar-epoxy whose material constants are:

E1 ¼ 144:8 GPa, E2 ¼ 9:65 GPa, G12 ¼ G13 ¼ 4:14 GPa, G23 ¼ 3:45 GPa, m12 ¼ 0:3. The

plying sequence of the laminate is ½h=ð90� � hÞ=h�10 and two ends of the laminate in x-direction

are clamped. The delamination a ¼ c ¼ 0:5 is symmetric in-plane. From Fig. 10, we see that the

buckling load of the delaminated laminate decreases first and then increases, but for the different

depth delamination, h corresponding to the minimum point is different. When b ¼ 0:4 or

b ¼ 0:2, the buckling mode of the delaminated laminate is global or mixed, h corresponding to

the minimum point is around 45�. When b ¼ 0:1, the buckling mode of the delaminated laminate

is local, h corresponding to the minimum value of Pcr being around 75�.

From Fig. 10, we can also find the effect of the boundary condition on the buckling load.

When b ¼ 0:4, the buckling load of the laminate with two clamped ends in y-direction (called

‘‘clamped laminate’’ in the following) is higher than that of the laminate with two free ends in

y-direction (called ‘‘free laminate’’ in the following), although the buckling modes of the two
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types of laminate are both global modes. When b ¼ 0:2, the mixed mode appears in the

clamped laminate. The buckling mode of the free laminate is global around h ¼ 45� and the

buckling load is almost the same as that of the free laminate of b ¼ 0:4. But when h is far away

from 45�, a mixed mode appears in it and its buckling load is close to that of the clamped

laminate of b ¼ 0:2. When b ¼ 0:1, since the local mode appears in both types, the effect of the

boundary condition is smaller as well as the difference between the buckling loads of the two

types.

6 Conclusions

The buckling problem of the composite laminate with a built-in delamination is analyzed using

the strip transfer function method. Results indicate that the effects of length, depth and position

of the delamination, together with the boundary conditions and the plying angle of the

material, on the buckling load and mode of the plate with built-in delamination are obvious.

There are three buckling modes (the local mode, the mixed mode and the global mode) for the

delaminated plate. For different buckling modes, the effect of each factor on the buckling load

is different. The analysis in this paper offers some basic results for researching the buckling

problem of the plate with built-in delamination.
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