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Summary. An exact solution is obtained for shear horizontal vibrations of a piezoelectric wedge of

polarized ceramics. The results are useful for understanding and accurately predicting energy trapping of

shear horizontal modes in resonant piezoelectric devices.

1 Introduction

Shear horizontal vibration modes of plates (including face-shear and thickness-twist modes) are

often used for bulk acoustic wave piezoelectric resonators and other devices [1]. An important

behavior of these modes is the energy trapping phenomenon [2] by which shear vibrations of a

plate can be confined to be near the center of the plate. Near the edge of the plate there is

essentially no vibration so that wiring and mounting near the edge do not affect the vibration.

Energy trapping may be due to the mass effect of electrodes [2]. Contoured plates with varying

thickness have been used to achieve stronger energy trapping [3]. Due to the wide use of

contoured plate resonators, the study of energy trapping in these resonators has been of

continuing research interest, e.g., [3]–[10]. Quartz is the most widely used material for piezo-

electric resonators. Since piezoelectric coupling is very weak in quartz, in the analyses of energy

trapping in quartz usually the small piezoelectric coupling is neglected and an elastic analysis is

performed [2]–[5], [7]. Recently, new piezoelectric crystals of the langasite family have been

developed for resonator applications [11]. These new crystals have relatively strong piezo-

electric coupling which should be included in the analysis. Polarized ceramics also have strong

piezoelectric coupling and are often used for piezoelectric devices operating with shear modes

with energy trapping [12]. Since contoured resonators lead to differential equations with var-

iable coefficients when two-dimensional structural equations for plates are used, all the mod-

eling work known to the author involves approximations due to the use of two-dimensional

plate equations. Sometimes additional approximations are introduced because of the use of

methods like perturbation etc.

In this paper, we show that exact solutions can be obtained for a piezoelectric ceramic wedge

in shear horizontal vibrations. Since a wedge is often used in contoured resonators for energy

trapping, the results obtained are of fundamental importance to the understanding and design

of contoured piezoelectric resonators.
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2 Governing equations

Consider a semi-infinite wedge of ceramics poled in the x3-direction as shown in Fig. 1. The

wedge is unbounded in the x3-direction. For device applications we consider the case that the

wedge surfaces are traction-free and are unelectroded. Effects of the electric field that may exist

in the surrounding free space are known to be small and are neglected as usual [3]–[10]. We are

interested in anti-plane motion [13] with

u1 ¼ u2 ¼ 0; u3 ¼ u3ðx1;x2; tÞ; / ¼ /ðx1;x2; tÞ: ð1Þ
The non-vanishing strain and electric field components are

2S13

2S23

( )
¼ ru;

E1

E2

( )
¼ �r/; ð2Þ

where r ¼ i1@1 þ i2@2 is the two-dimensional gradient operator. The nontrivial components of

Tij and Di are

T13

T23

( )
¼ cruþ er/;

D1

D2

( )
¼ eru� er/; ð3Þ

where we have denoted c ¼ c44; e ¼ e15, and e ¼ e11. The nontrivial equation of motion and the

charge equation of electrostatics take the following form:

cr2uþ er2/ ¼ qu;tt; er2u� er2/ ¼ 0; ð4Þ

where r2 ¼ @2
1 þ @2

2 is the two-dimensional Laplacian. We introduce [13]

w ¼ /� e

e
u; ð5Þ

then

T23 ¼ �cu3;2 þ ew;2; T31 ¼ �cu3;1 þ ew;1;

D1 ¼ �ew;1; D2 ¼ �ew;2;
ð6Þ

and

v2
Tr2u ¼ u;tt; r2w ¼ 0; ð7Þ

where

v2
T ¼

�c

q
; �c ¼ cþ e2

e
¼ cð1þ k2Þ; k2 ¼ e2

ec
: ð8Þ

3 An exact solution

In polar coordinates defined by x1 ¼ r cos h and x2 ¼ r sin h, Eq. (7) takes the form
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Fig. 1. A piezoelectric wedge of polarized

ceramics and coordinate system
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Consider the possibility of the following fields which are odd in h and may be called anti-

symmetric modes:

uðr; h; tÞ ¼ uðrÞ sin mh expð�ixtÞ; wðr; h; tÞ ¼ wðrÞ sin mh expð�ixtÞ: ð10Þ

Substitution of Eq. (10) into Eq. (9) results in

@2u

@r2
þ 1

r

@u

@r
þ ðn2 � m2

r2
Þu ¼ 0;

@2w
@r2
þ 1

r

@w
@r
� m2

r2
w ¼ 0; ð11:1; 2Þ

where we have denoted

n ¼ x
vT

: ð12Þ

n may be viewed as a wave number in the r-direction. Equation (11.1) can be written as Bessel’s

equations of order m. Equation (11.2) allows a simpler power function solution. The general

solutions can be written as

u ¼ ½C1JmðnrÞ þ C2YmðnrÞ� sin mh expð�ixtÞ;

w ¼ ½C3rm þ C4r�m� sin mh expð�ixtÞ;
ð13Þ

where Jm and Ym are the m-th order Bessel functions of the first and second kind. C1–C4 are

undetermined constants. Since Ym and r�m are singular at the origin, terms associated with C2

and C4 have to be dropped. From Eq. (6) the stress and electric displacement components

needed for boundary conditions can be obtained. Hence

u ¼ C1JmðnrÞ sin mh expð�ixtÞ;

w ¼ C3rm sin mh expð�ixtÞ;

Thz ¼ ½�c
m
r

C1JmðnrÞ þ e
m
r

C3rm� cos mh expð�ixtÞ;

Dh ¼ �e
m
r

C3rm cos mh expð�ixtÞ:

ð14Þ

At h ¼ �a we need to impose the following boundary conditions for a free wedge:

Thz ¼ ½�c
m
r

C1JmðnrÞ þ e
m
r

C3rm� cos ma expð�ixtÞ ¼ 0;

Dh ¼ �e
m
r

C3rm cos ma expð�ixtÞ ¼ 0;

ð15Þ

which implies that

cos ma ¼ 0; m ¼ np
2a
;n ¼ 1; 3; 5; . . . : ð16Þ

Equation (16) determines the order of the Bessel function.

In a similar way, if the sin mh factor in Eq. (10) is replaced by cos mh, a set of symmetric modes

is obtained:

u ¼ C1JmðnrÞ cos mh expð�ixtÞ;

w ¼ C3rm cos mh expð�ixtÞ;

m ¼ np
2a
;n ¼ 0; 2; 4; 6; . . . :

ð17Þ
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4 Discussion

Note that in the modes given by Eq. (14) and Eq. (17) w is unbounded for large r. If we require

boundedness of w at lager r, C3 must vanish. Then w ¼ 0, and from Eq. (5) the electric potential

is given by

/ ¼
e
e C1JmðnrÞ sin mh expð�ixtÞ;n ¼ 1; 3; 5; . . . ;

e
e C1JmðnrÞ cos mh expð�ixtÞ;n ¼ 0; 2; 4; . . . :

(
ð18Þ

Since a wedge occupies a semi-infinite region, we have a continuous spectrum. For any given x,

a n can be determined from Eq. (12). Then anti-symmetric and symmetric modes are given by

(14) and (17), respectively.

For resonator applications, we are interested in long waves in a narrow wedge with a small a.
For a narrow wedge, from Eq. (16), m is large. We have Bessel functions with large orders. By

long waves we mean that, at a finite r, the wavelength k is much larger than the local wedge

thickness:

k ¼ 2p
n
>> 2ar; or nr <<

p
a
: ð19Þ

In this case nr has to be small or no more than being finite.

For the lowest symmetric mode with n ¼ 0 (face-shear), from Eq. (17) m ¼ 0 irrespec-

tive of what a is. Since J0ð0Þ ¼ 1, the tip of the wedge is vibrating and this mode is not

trapped.

All other modes (n ¼ 1; 2; 3; 4; . . .), symmetric or anti-symmetric, may be called thickness-

twist modes. For these modes m is positive. For small arguments, Bessel functions have the

following asymptotic expression:

JmðxÞ ffi
xm

2mCð1þ mÞ ; ð20Þ

which shows that Jmð0Þ ¼ 0 and the modes grow from the tip of the wedge. Therefore all

thickness-twist modes show energy trapping because they vanish at the wedge tip and grow

away from there. The growing rate is small for a large m, or a small a. Since Bessel functions

decay to zero for large arguments, trapped mode vanishes both at the wedge tip and at infinity

when C3 is taken to be zero.

The above observations are based on the displacement field. It is also informative to examine

the stress, strain, electric field and electric displacement fields. For a general measure of all fields

we consider the internal energy density. For example, for the anti-symmetric modes in Eq. (14),

from the real parts of the fields, we obtain the internal energy density as

U ¼ 1

2
�cC2

1 n2
J 0mðnrÞ
� �2

sin2 mhþ m2

r2
J2

m ðnrÞ cos2 mh

� �
cos2 xt: ð21Þ

Equation (21) shows that although the displacement vanishes at the wedge tip for any

m > 0, the internal energy density vanishes at the wedge tip only when m > 1. This is

not surprising in view of the fact that the energy density depends on the displacement

gradient.

Bessel functions are well tabulated and plotted. Readers who are interested in further details

may find them in many references, e.g., [14] and the references therein. The purpose of this

paper is to show that a set of exact shear horizontal modes in a ceramic wedge can be obtained

in terms of these functions.
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5 Conclusions

A set of exact piezoelectric shear horizontal modes is obtained for a ceramic wedge. Face shear

modes in a wedge are not trapped, but all thickness-twist modes are. The solution is useful for

the understanding and accurate prediction of energy trapping in piezoelectric devices. They can

also be used as a benchmark for the continuing study on energy trapping in piezoelectric

devices by approximate or numerical methods.
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