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Summary. The problem of deducing a one-dimensional theory from a three-dimensional theory for a soft

ferromagnetic elastic isotropic body is investigated. Based on the linear magnetoelasticity, the refined

theory of magnetoelastic beams is presented by using the general solution for the soft ferromagnetic elastic

solids and the Lur’e method. Based on the refined theory of magnetoelastic beams, the exact equations and

solutions for the homogeneous beams are derived and the equations can be decomposed into three

governing differential equations: the fourth-order equation, the transcendental equation and the magnetic

equation. Moreover, the approximate equations and solutions for the beam under transverse loadings and

magnetic field perturbations are derived directly from the refined beam theory. By omitting higher order

terms and coupling effects, the refined beam theory can be degenerated into other well-known elastic and

magnetoelastic theoretical models.

1 Introduction

A soft ferromagnetic material is characterized by small hysteretic losses and low remanent

magnetization. The theoretical and experimental studies on the magnetoelastic interaction for

ferromagnetic bodies or structures can be dated back to the 1960s. Brown [1] summarized his

research work over the past 20 years on the interaction between magnetic and elastic processes

in a ferromagnetic material, and developed a rigorous phenomenological theory of magneto-

elasticity on the basis of the large deformation theory of elasticity and the classical theory of

ferromagnetism. Since such a general nonlinear theory is rather complicated, a linearized

version of Brown’s theory has been developed by Pao and Yeh [2]. Based on Pao and Yeh’s

linear theory of magnetoelasticity, Huang and Wang [3] obtained a general solution for the soft

ferromagnetic elastic solids.

Based on some assumptions, Moon and Pao [4] proposed a theoretical model (the magnetic

couple model), and experimentally studied the magnetoelastic buckling of a ferromagnetic

cantilevered beam-like plate in a uniform transverse magnetic field. Recently, Zhou and

Zheng [5] established a theoretical model (the magnetic force model) to describe the mag-

netoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear

deformation, and given the governing equations of magnetoelastic plates in a nonuniform

transverse magnetic field. Having found that almost every model fails in the simulation of the

experimental phenomenon of Takagi et al. [6], Zhou and Zheng [7] derived a new theoretical

model (the variational principle model) for a ferromagnetic body by a general variational

principle.
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Cheng [8] gave a refined plate theory from the Boussinesq-Galerkin elasticity solution and

the Lur’e method [9] without ad hoc assumptions. The refined plate theory consists of three

parts: the biharmonic equation, the shear equation and the transcendental equation. Zhao and

Wang [10] also obtained Cheng’s refined theory from a Papkovich-Neuber solution and strictly

proved that it consists of the preceding three parts. A parallel development of Cheng’s theory

by Barrett and Ellis [11] has been obtained for the isotropic plates under transverse surface

loadings (only homogeneous cases are considered in the previous works). Another parallel

development of Cheng’s plate theory has been obtained by Wang [12], [13] for the transversely

isotropic plate problem and plane problem.

Wang and Shi [14] developed Cheng’s theory by using a Papkovich-Neuber solution, and

derived shear theory of plates from the refined plate theory. Yin and Wang [15] extended it for

the transversely isotropic plates using an Elliott-Lodge solution. Recently, Gao and Wang [16],

[17] extended [14] for the narrow rectangular isotropic elastic beams and thermoelastic beams,

and derived the refined theory of beams. The exact equations for the beam without transverse

surface loadings and the approximate equations for the beam under transverse loadings are

derived from the refined beam theory, respectively.

In light of the character of large hysteretic losses and high remanent magnetization in a hard

ferromagnetic material, Maugin [18] established a nonlinear continua theory for the mag-

netoelastic interactions to show the effect due to magnetization gradient and hysterisis. How-

ever, the general theory is rather complicated and it is difficult to apply it to the refined

magnetoelastic beam theory. Based on the linear theory of Pao and Yeh [2], this paper presents

the theory for a soft ferromagnetic elastic beam by using the method developed in [16]. In the

next section, a general solution of the magnetoelastic equation is given in light of the work of [3].

In Sect. 3, the refined theory of a magnetoelastic beam is derived by using the general solution

for the soft ferromagnetic elastic solids and the Lur’e method [9], then the displacements and

stresses of the beam can be represented by the mid-plane displacements and the magnetic

function. In Sect. 4, the exact equations for the homogeneous beam can be decomposed into

three governing differential equations: the fourth-order equation, the transcendental equation

and the magnetic equation. Finally, the approximate equations for the beam under transverse

loadings and magnetic field perturbations are derived from the refined beam theory in Sect. 5.

2 The general solution of magnetoelastic equation

According to the linearized theory developed by Pao and Yeh [2], the magnetic quantities can

be decomposed into two parts as

Bi ¼ �Bi þ bi; Mi ¼ �Mi þmi; Hi ¼ �Hi þ hi; ð2:1Þ
where Bi; Mi and Hi are magnetic induction, magnetization and magnetic intensity, respec-

tively. The barred quantities are the magnetic fields in the rigid-body state with no mechanical

singularities; the quantities in lower case represent singularities and are assumed as much

smaller than in the undisturbed state.

In the absence of body force, the equilibrium equations of isotropic magnetoelasticity are

expressed as

tij;i þ v1l0ð �Mi
�Hj;i þ �Mihj;i þmi

�Hj;iÞ ¼ 0; ð2:2:1Þ

tij ¼
v2l0

v
�Mi

�Mj þ v2l0ð�Hjmi þ �HimjÞ þ rij; ð2:2:2Þ
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rij ¼ kuk;kdij þ l ui;j þ uj;i

� �
; ð2:2:3Þ

where tij; rij and ui are the components of magnetomechanical stress, elastic stress and dis-

placement, respectively, k and l are Lame constants, l0 and v are the magnetic permeability

and the magnetic susceptibility, respectively, v1 and v2 are the parameters determined by some

theoretical models for magnetoelastic interaction. dij is the Kronecker delta symbol, the sub-

scripts ‘‘,’’ denote the partial derivative with respect to the spatial variables, and repeated

indices imply summation.

According to magnetoelasticity, the basic equations of magnetic fields are of the form

�Bi ¼ l0 1þ vð Þ�Hi; �Mi ¼ v�Hi; bi ¼ l0 1þ vð Þhi; mi ¼ vhi;

eijk
�Hk;j ¼ 0; �Bi;i ¼ 0; eijkhk;j ¼ 0; bi;i ¼ 0;

ð2:3Þ

where eijk is the Levi-Civita permutation symbol.

We consider a soft ferromagnetic elastic straight beam of narrow rectangular cross-section as

a plane stress problem. In a fixed rectangular coordinate system, z is the coordinate normal to

the neutral surface (xy-plane) of the beam. We assume the beam length in x-direction is l, the

beam width in y-direction is assumed 1, the beam height in z-direction is h, and l >> h >> 1.

In a transverse uniform magnetic field �Hþ and in the absence of body force, the equilibrium

equations of the plane stress problem are expressed as

r2ux þ
1þ m
1� m

@e

@x
þ 2 1þ mð Þ l0v v1 þ v2ð Þ�Hþ

E

@hx

@z
¼ 0;

r2uz þ
1þ m
1� m

@e

@z
þ 2 1þ mð Þ l0v v1 þ v2ð Þ�Hþ

E

@hz

@z
¼ 0;

ð2:4Þ

where r2 ¼ @2=@x2 þ @2=@z2 is the two-dimensional Laplacian operator, e ¼ @ux=@x þ
@uz=@z; m and E are Poisson’s ratio and Young’s modulus, respectively.

Huang and Wang [3] obtained a general solution of the equations in the linearized theory of

magnetoelasticity, so the solution of the governing equations (2.4) takes the same form

ux ¼ P1 �
1þ m

4

@

@x
P0 þ xP1 þ zP3ð Þ; uz ¼ uþ P3 �

1þ m
4

@

@z
P0 þ xP1 þ zP3ð Þ;

Qhx ¼
@u
@x

; Qhz ¼
@u
@z

;

ð2:5Þ

where

r2P0 ¼ 0; r2Pi ¼ 0; r2u ¼ 0; Q ¼ �2 1� mð Þ l0v v1 þ v2ð Þ�Hþ
E

i ¼ 1; 3ð Þ: ð2:6Þ
Moreover, they pointed out that the general solution is complete. The general solution looks

like the famous Papkovich-Neuber solution for the magnetic term u, so the refined theory of

elastic beams [16] can be extended to magnetoelastic beams in this paper.

3 The refined theory of magnetoelastic beams

The problem of a magnetoelastic beam may be decomposed into two fundamental problems:

the extension of a beam and the bending of a beam. In the case of the bending of a beam, the

beam is subjected only to anti-symmetrical loadings, the perturbation of magnetic intensity and

edge conditions, thus only odd functions of z are required for ux and even functions of z for uz.

Magnetoelastic rectangular beams 149



For the Lur’e method [9], satisfying these requirements and treating Eqs. (2.6) as an ordinary

differential equation in z with constant coefficients, one obtains the following symbolic solution

of Eqs. (2.6):

P0 ¼
sin z@xð Þ
@x

g0 xð Þ; P1 ¼
sin z@xð Þ
@x

g1 xð Þ;

P3 ¼ cos z@xð Þg3 xð Þ; u ¼ cos z@xð Þg4 xð Þ;
ð3:1Þ

where

sin z@xð Þ
@x

¼ z 1� 1

3!
z 2@ 2

x þ
1

5!
z4@4

x � . . .

� �
; cos z@xð Þ ¼ 1� 1

2!
z 2@ 2

x þ
1

4!
z4@ 4

x � . . . : ð3:2Þ

In Appendix A, it is proved that the harmonic function P0 always can satisfy the following

expression without loss in generality:

P0 þ xP1 þ zP3 ¼ �z cos z@xð Þ f xð Þ; ð3:3Þ

where

f ¼
Z x

0

g1 tð Þdt� g3: ð3:4Þ

Substituting Eqs. (3.1) and (3.3) into Eqs. (2.5), one obtains

ux ¼
sin z@xð Þ
@x

g1 þ
1þ m

4
z cos z@xð Þ f 0;

uz ¼ cos z@xð Þ g3 þ g4ð Þ þ 1þ m
4

cos z@xð Þ � z@x sin z@xð Þ½ � f ;
ð3:5Þ

where the differential symbol ‘‘0’’ denotes differentiation with respect to x. The angle of rotation

and the deflection of the neutral surface can be found to be

w ¼ �@ux

@z

����
z¼0

¼ � g1 þ
1þ m

4
f 0

� �
; w ¼ uzjz¼0¼ g3 þ g4 þ

1þ m
4

f : ð3:6Þ

From Eqs. (3.5) and (3.6), the final expressions for the displacements and the perturbations of

the magnetic intensity are

ux ¼ �
sin z@xð Þ
@x

wþ 1þ m
4

z cos z@xð Þ � sin z@xð Þ
@x

� �
f 0; ð3:7:1Þ

uz ¼ cos z@xð Þw� 1þ m
4

z@x sin z@xð Þf ; ð3:7:2Þ

Qhx ¼ @x cos z@xð Þg4; ð3:7:3Þ

Qhz ¼ �@x sin z@xð Þg4; ð3:7:4Þ

with the expression

f ¼ �
Z x

0

w tð Þdt�wþ g4: ð3:8Þ

Using Hooke’s law, from Eqs. (3.7.1) and (3.7.2) the stress components rx; sxz and rz can be

written as

rx ¼ �
E

4

1� m
1þ m

sin z@xð Þ
@x

� z cos z@xð Þ
� �

f 00 þ 4

1þ m
sin z@xð Þ
@x

w0 þ 4m
1� m2

sin z@xð Þ
@x

g004

� 	
; ð3:9:1Þ
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sxz ¼ �l cos z@xð Þ w�w0ð Þ þ 1þ m
2

z@x sin z@xð Þ f 0
� �

; ð3:9:2Þ

rz ¼ �
E

4

1� m
1þ m

sin z@xð Þ
@x

þ z cos z@xð Þ
� �

f 00 þ 4

1þ m
sin z@xð Þ
@x

w00 þ 4m
1� m2

sin z@xð Þ
@x

g004

� 	
: ð3:9:3Þ

4 Exact equations: no transverse surface loadings and magnetic field perturbations

In order to satisfy the homogeneous boundary conditions on the upper and lower surfaces of

the magnetoelastic beam, we set

sxz ¼ 0; rz ¼ 0; hz ¼ 0; at z ¼ �h=2: ð4:1Þ
Substituting Eqs. (3.9.2), (3.9.3) and (3.7.4) into the boundary conditions (4.1) of the beam, we

get the following equations:

D1 � D2@
2
x

� �
w� D1 þ D2@

2
x

� �
w0 þ D2@

2
xg04 ¼ 0; ð4:2:1Þ

D3w
0 � 4

1þ mð Þh D2 � D3

� �
w00 � 4m

1� m2ð Þh D2 þ D3

� �
g004 ¼ 0; ð4:2:2Þ

D2g004 ¼ 0: ð4:2:3Þ

The three differential operators Di i ¼ 1; 2; 3ð Þ are defined by

D1 ¼
4

1þ m
cos

h@x

2

� �
; D2 ¼

h

@x

sin
h@x

2

� �
; D3 ¼

h

2
cos

h@x

2

� �
þ 1� m

1þ m
1

@x

sin
h@x

2

� �
: ð4:3Þ

Taking the operator D2 on both sides of Eq. (4.2.2) and using Eq. (4.2.3), then ignoring the

magnetic function g4, one obtains

D1 � D2@
2
x

� �
w� D1 þ D2@

2
x

� �
w0 ¼ 0; D2D3w

0 � D2
4

1þ mð Þh D2 � D3

� �
w00 ¼ 0: ð4:4Þ

Equations (4.4) can be expressed by the following matrix equation:

L11 L12

L21 L22

" #
w

w

" #

¼
0

0

" #

: ð4:5Þ

Let L0 be the determinant of the 2� 2 matrix of the preceding equation,

L0 ¼
4h3

1þ m
1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �� 	
@4

x; ð4:6Þ

and let Lij i; j ¼ 1; 2ð Þ be the factors of the matrix. The solutions of the preceding equation are

w

w

" #

¼
L22 �L12

�L21 L11

" #
n1

n2

" #

; ð4:7Þ

and ni satisfies

L0ni ¼ 0 i ¼ 1; 2ð Þ: ð4:8Þ

In Appendix B, it is proved that the solutions of Eqs. (4.8) can be decomposed into two parts,

so there are two functions n 1ð Þ
i and n 2ð Þ

i ,

ni ¼ n 1ð Þ
i þ n 2ð Þ

i i ¼ 1; 2ð Þ; ð4:9Þ
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where the superscripts ‘‘ 1ð Þ’’ and ‘‘ 2ð Þ’’ indicate the fourth-order part and the transcendental

part, respectively, and n 1ð Þ
i and n 2ð Þ

i satisfy the following two governing differential equations of

the beam problem, respectively,

@4
xn 1ð Þ

i ¼ 0;
1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
n 2ð Þ

i ¼ 0: ð4:10Þ

Then the angle of rotation and the deflection of the beam can be decomposed into two parts,

w ¼ w 1ð Þ þ w 2ð Þ; w ¼ w 1ð Þ þw 2ð Þ: ð4:11Þ

From Eq. (4.2.3), the magnetic function g4 satisfies

@x sin
h@x

2

� �
g4 ¼ 0: ð4:12Þ

The solutions of Eqs. (4.11) and (4.12) will be investigated in the following three sections.

4.1 The fourth-order equation and the fourth-order solution

n 1ð Þ
i satisfies the fourth-order equation

@4
xn 1ð Þ

i ¼ 0; ð4:13Þ

and the solutions of w 1ð Þ;w 1ð Þ and g4 become

w 1ð Þ

w 1ð Þ

" #

¼
L22 �L12

�L21 L11

" #
n 1ð Þ

1

n 1ð Þ
2

" #

; g4 ¼ 0: ð4:14Þ

By using Eqs. (4.13), (4.14) and Taylor series of the trigonometric functions (3.2), after tedious

manipulation, the result turns out to be

w 1ð Þ ¼ 1þ 1þ m
4

h2@2
x

� �
@xw 1ð Þ; ð4:15Þ

where

@4
xw 1ð Þ ¼ 0: ð4:16Þ

From Eqs. (3.7), the total displacements can be found to be

u 1ð Þ
x ¼ �z@x 1� 1

6
z2@2

x þ
1þ m

12
3h2 � 2z2
� �

@2
x

� �
w 1ð Þ; u 1ð Þ

z ¼ 1þ m
2

z2@2
x


 �
w 1ð Þ; hz ¼ 0;

ð4:17Þ

and the normal stress and shear stress can be found to be

r 1ð Þ
x ¼ �Ez w 1ð Þ


 �00
; s 1ð Þ

xz ¼ �
E

8
h2 � 4z2
� �

w 1ð Þ

 �000

; r 1ð Þ
z ¼ 0: ð4:18Þ

Calculating moment and shear force for the present case yields

M 1ð Þ
x ¼ �D w 1ð Þ


 �00
; Q 1ð Þ

x ¼ �D w 1ð Þ

 �000

; ð4:19Þ

where D ¼ Eh3=12 is the flexural rigidity of beams.

Equations (4.17)–(4.19) constitute the first-order theory of elastic beams, which coincide with

the corresponding expressions of classical elasticity. Unlike in the customary beam theory, all

the fundamental equations of the refined beam theory are deduced directly.
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4.2 The transcendental equation and the transcendental solution

n 2ð Þ
i satisfies the transcendental equation

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
n 2ð Þ

i ¼ 0; ð4:20Þ

and the solutions of w 2ð Þ, w 2ð Þ and g4 become

w 2ð Þ

w 2ð Þ

" #

¼
L22 �L12

�L21 L11

" #
n 2ð Þ

1

n 2ð Þ
2

" #

; g4 ¼ 0: ð4:21Þ

Substituting Eqs. (4.21) into the displacement and stress expressions (3.7) and (3.9), respec-

tively, one obtains the following expressions:

u 2ð Þ
x ¼

1

E

@2m

@x2
� 1þ mð Þ @

3U
@x3

� �
; u 2ð Þ

z ¼
1

E

@2n

@x2
� 1þ mð Þ @

3U
@x2@z

� �
; hz ¼ 0; ð4:22Þ

r 2ð Þ
x ¼

@4U
@x2@z2

; s 2ð Þ
xz ¼ �

@4U
@x3@z

; r 2ð Þ
z ¼

@4U
@x4

: ð4:23Þ

Therefore, the moment and shear force are

M 2ð Þ
x ¼ 0; Q 2ð Þ

x ¼ 0; ð4:24Þ

where the function U x; zð Þ has the expression

� 1þ m
E

U ¼ h sin
h@x

2

� �
h

2
cos

h@x

2

� �
sinðz@xÞ
@x

� zsin
h@x

2

� �
cosðz@xÞ

@x

� �
1

@2
x

nð2Þ1

þ �2 cos
h@x

2

� �
sinðz@xÞ
@x

þ h sin
h@x

2

� �
sinðz@xÞ þ 2z cos

h@x

2

� �
cosðz@xÞ

� �
1

@2
x

nð2Þ2 ; ð4:25Þ

and U satisfies the following equations:

r2r2U ¼ 0; ð4:26Þ

U ¼ 0; @U=@z ¼ 0 at z ¼ �h=2: ð4:27Þ

Furthermore, the functions mðx; zÞ and nðx; zÞ are conjugate harmonic functions, and satisfy

@m

@x
¼ @n

@z
¼ r2U: ð4:28Þ

Equations (4.22)–(4.24) satisfy two edge conditions along the boundary of beams, and yet

satisfy exactly all the fundamental equations in the theory of elasticity.

Combining the fourth-order solution (4.17)–(4.19) and the transcendental solution (4.22)–

(4.24), we arrive at a second-order refined theory for bending elastic beams with the two

governing differential equations (4.16) and (4.26). It is important to note that the equilib-

rium equations (2.4) are satisfied by any solution of the refined elastic beam theory.

Therefore, omitting the magnetic terms, the governing equations of elastic beams are ob-

tained directly from the magnetoelastic equations. It is interesting to note that the degen-

erated solution is consistent with the results gained by Gao and Wang [16].
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4.3 The magnetic equation and the magnetic solution

The magnetic function g4 satisfies the magnetic equation

@x sin
h@x

2

� �
g4 ¼ 0; ð4:29Þ

and the solutions of w and w become

w ¼ 0; w ¼ 0: ð4:30Þ

From Eqs. (3.7) and (3.9), one obtains the following expressions in hz:

uM
x ¼

1þ m
4

Q

@x

hz � z
@hz

@z

� �
; uM

z ¼
1þ m

4
Qzhz; hz ¼ �

1

Q
sin z@xð Þg04; ð4:31Þ

rM
x ¼

QE

4

1þ m
1� m

hz � z
@hz

@z

� �
; sM

xz ¼
QE

4
z
@hz

@x
; rM

z ¼
QE

4

1þ m
1� m

hz þ z
@hz

@z

� �
: ð4:32Þ

The moment and shear force are found to be

MM
x ¼

3� m
2 1� mð Þ

QE

@2
x

hz � z
@hz

@z

� �

z¼h=2

; QM
x ¼

1� m
3� m

@xMM
x ; ð4:33Þ

where the superscript ‘‘M’’ indicates the magnetic part, and hz satisfies the following equations:

r2hz ¼ 0; ð4:34Þ

hz ¼ 0 at z ¼ �h=2: ð4:35Þ

Equations (4.19), (4.24) and (4.33) show that the transcendental solution does not yield moment

and shear force which are found only from the fourth-order solution and the magnetic solution.

Combining the fourth-order solution, the transcendental solution and the magnetic solution

just described, a refined theory for the bending of magnetoelastic beams can be established with

the three governing differential equations (4.16), (4.26) and (4.34). An infinite number of

boundary conditions at the edges of beams can be satisfied, and the only approximation in the

theory is introduced by the approximate specification of the boundary conditions at the edges of

the beam (i.e., the boundary conditions are specified in terms of the stress resultants or some

combination of the angle of rotation and the deflection of the neutral surface, instead of the

stress or displacement distribution over the thickness �h=2 � z � h=2). Therefore, in the cases

where Saint-Venant’s principle holds, the refined beam theory should be a very accurate one.

5 Approximate equations: transverse surface loadings

and magnetic field perturbations

5.1 The governing equation and solution

Now let us consider the case that the beam is only subject to the transverse surface loadings and

magnetic fields, i.e.,

sxz ¼ 0; rz ¼ �q=2; hz ¼ �h0 at z ¼ �h=2: ð5:1Þ

Substituting Eqs. (3.9.2), (3.9.3) and (3.7.4) into the boundary conditions (5.1) of the beam, we

get the following equations expressed by w, w and g4:
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ðD1 � D2@
2
xÞw� ðD1 þ D2@

2
xÞw0 þ D2@

2
xg04 ¼ 0; ð5:2:1Þ

D3w
0 � 4

ð1þ mÞh D2 � D3

� �
w00 � 4m

1� m2ð Þh D2 þ D3

� �
@2

xg4 ¼
2

E
q; ð5:2:2Þ

D2@
2
xg4 ¼ �Qhh0: ð5:2:3Þ

Taking the operator ðD1 � D2@
2
xÞD2 and ðD1 þ D2@

2
xÞD2 on both sides of Eq. (5.2.2), respec-

tively, and then using Eqs. (5.2.1) and (5.2.3), one obtains

D2

h
2hD1D3�

4D2

1þ m
D1�D2@

2
x

� �� �
w00 ¼ 2D2

E
D1�D2@

2
x

� �
q�Q hD1D3þ

4mD2

1� m2
D1�D2@

2
x

� �� �
h0:

ð5:3Þ

D2

h
2hD1D3�

4D2

1þ m
D1�D2@

2
x

� �� �
w0 ¼ 2D2

E
D1þD2@

2
x

� �
q�Q hD1D3þ

4D2

1� m2
mD1þD2@

2
x

� �� �
h0:

ð5:4Þ

Substitution of Eqs. (4.3) into Eqs. (5.3), (5.4) and (5.2.3) gives

Eh

2@x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
w00 ¼ 1

@x

sin
h@x

2

� �
cos

h@x

2

� �
� 1þ m

4
h@x sin

h@x

2

� �� �
q

� QE

4
hþ 1þ m

1� m
sin h@xð Þ
@x

� 1þ m
1� m

h sin2 h@x

2

� �� �
h0; ð5:5Þ

Eh

2@x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
w0 ¼ 1

@x

sin
h@x

2

� �
cos

h@x

2

� �
þ 1þ m

4
h@x sin

h@x

2

� �� �
q

� QE

4
hþ 1þ m

1� m
sin h@xð Þ
@x

þ 1þ m
1� m

h sin2 h@x

2

� �� �
h0; ð5:6Þ

1

@x

sin
h@x

2

� �
g004 ¼ �Qh0: ð5:7Þ

Equations (5.5)–(5.7) are the exact governing equations for w, w and g4 for the beam subject to

the transverse surface loadings and magnetic field perturbations. Since these equations are of

infinite order, however, it is not applicable in most cases. Using Taylor series of the trigono-

metric functions in Eqs. (3.2), and then dropping all the terms associated with h4 or higher

orders, we arrive at the following equations:

Dw0000 ¼ 1� 8þ 5m
40

h2@2
x

� �
q� EQ

1� m
1� 14þ 25m

120
h2@2

x

� �
h0; ð5:8Þ

Dw000 ¼ 1þ 2þ 5m
40

h2@2
x

� �
q� EQ

1� m
1þ 16þ 5m

120
h2@2

x

� �
h0; ð5:9Þ

Dg004 ¼ �
EQh2

6
1þ 1

24
h2@2

x

� �
h0: ð5:10Þ

Equations (5.8)–(5.10) form the basic equations for an approximate theory for the bending of

magnetoelastic beam.

From Eqs. (5.8)–(5.10), the expressions for the displacements, stresses and stress resultants

become
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ux ¼ �
z

D@3
x

1þ 2þ 5m
40

h2@2
x �

2þ m
6

z2@2
x

� �
qþ EQ

1� m
z

D@3
x

1þ 16þ 5m
120

h2@2
x �

2þ m
6

z2@2
x

� �
h0;

uz ¼
1

D@4
x

1� 8þ 5m
40

h2@2
x þ

m
2

z2@2
x

� �
q� EQ

1� m
1

D@4
x

1� 14þ 25m
120

h2@2
x þ

m
2

z2@2
x

� �
h0; ð5:11Þ

hz ¼
2z

h
1þ 1

24
h2@2

x �
1

6
z2@2

x

� �
h0;

rx ¼ �
12z

h3@2
x

1þ 1

20
h2@2

x �
1

3
z2@2

x

� �
qþ EQ

1� m
12z

h3@2
x

1þ 2

15
h2@2

x �
1

3
z2@2

x

� �
h0; ð5:12Þ

sxz ¼ �
3

2h@x

1� 4
z2

h2

� �
qþ EQ

1� m
3

2h@x

1� 4
z2

h2

� �
h0;

rz ¼
z

h

3

2
� 2

z2

h2

� �
q� EQ

1� m
z

8h
1� 4

z2

h2

� �
h0; ð5:13Þ

M00x ¼ �qþ EQ

1� m
1þ 1

12
h2@2

x

� �
h0; Q0x ¼ �qþ EQ

1� m
h0:

For the elastic beam, h0 ¼ 0, the results described above reduce to the corresponding results

by Gao and Wang [16]. Equations (5.11) and (5.12) show that the boundary conditions at the

two surfaces are satisfied completely. As in Barrett and Ellis [11], by adopting the works of

Gregory and Wan [19], [20] into the case of the magnetoelastic beam, the similar discussion

about the specification of the boundary conditions on the edges of the beam can be made.

However, the issue will be discussed further and in detail in our other articles, but will not be

addressed here.

5.2 Comparison with other theoretical models

As a special case, not taking into account the magnetic field effect, the governing differential

equations for elastic beams are obtained directly from Eqs. (5.8) and (5.9), once again reduce to

the corresponding equations by Gao and Wang [16], and are mostly the same as the governing

equations of Timoshenko elastic beam theory [21].

According to the magnetic couple model [4], the magnetic force model [5] and the variational

principle model [7], the governing equation for magnetoelastic beams is as follows:

Dw0000 ¼ qem
z ; ð5:14Þ

where the equivalent transverse magnetic force qem
z in a transverse magnetic field has the form

qem
z ðxÞ ¼

l0v 1þ vð Þ
2

Hz x;h=2ð Þ½ �2� Hz x;�h=2ð Þ½ �2
n o

: ð5:15Þ

When the applied force is absent, i.e., let q ¼ 0, namely, the beam is subject only to a uniform

transverse magnetic field, the problem degenerates to the case described by [4], [5] and [7].

Dropping all the terms associated with h2 from Eq. (5.8), we obtain the approximate governing

equations for magnetoelastic beams in a uniform transverse magnetic field:

Dw0000 ¼ 2l0v v1 þ v2ð Þ�Hþh0: ð5:16Þ
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Moon and Pao [4] assumed that the magnetic field in the ferromagnetic beam is approxi-

mately equal to the applied magnetic field when the ratio of the length to the thickness of the

beam is very large, in which two parameters v1 and v2 fulfill

v1 ¼ 0; v2 ¼ 1þ v:

Zhou and Zheng [5], [7] considered that the magnetic force system exerted on the ferro-

magnetic beams consists of a body magnetic force without the body magnetic couple, and

obtained

v1 ¼ 1þ v; v2 ¼ 0:

Hence, the three theoretical models entirely satisfy the expression

v1 þ v2 ¼ 1þ v: ð5:17Þ

Noticeably, the right term of Eq. (5.16) is identical to the equivalent transverse magnetic force

qem
z in Eq. (5.15), thus the degenerate solution in the uniform transverse magnetic field is

consistent with the results gained by three theoretical models. A numerical example for the

magnetoelastic buckling problem of a ferromagnetic beam in a uniform transverse magnetic

field has been discussed by Zhou and Zheng [5]. According to the above comparison, the results

for the magnetoelastic buckling problem obtained by the refined theory are the same as the

corresponding results by Zhou and Zheng [5].

By omitting higher order terms and the coupling effect, the new magnetoelastic beam theory

can be degenerated into other well-known elastic and magnetoelastic theories. Hence, the

results obtained here are considered reliable as a basis for more general applications.

6 Conclusion

In the above sections, by using the general solution of the magnetoelastic equation and the

Lur’e method, a refined theory for a magnetoelastic beam has been deduced systematically and

directly from linear magnetoelasticity theory. In the case of homogenous boundary conditions,

the refined beam theory is exact in the sense that a solution of the refined beam theory satisfies

all the balance equations in the magnetoelasticity theory, and consists of three parts: the

fourth-order equation, the transcendental equation and the magnetic equation. In the case of

non-homogenous boundary conditions, the approximate governing equations and solutions

are accurate up to the second-order terms with respect to beam thickness. For the above-

mentioned two cases, the governing equations and solutions of elastic beams can be obtained

directly from the corresponding magnetoelastic equations and solutions by omitting the

magnetic fields effect. When the applied force is absent, the new magnetoelastic theory for the

loading beam can still be justified by comparing its form with that of other well-known

magnetoelastic theories. Therefore, in these cases the refined magnetoelastic beam theory

should be a very accurate one.
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Appendix A

The method used in this appendix is obtained by extending previous work [14]. Next we will

prove that when P0 is defined according to Eq. (3.3), the general solution (2.5) is complete

without loss in generality.

First, from the nonuniqueness of the Papkovich-Neuber solution, P and P0 in Eqs. (2.5) can

be changed to ~P and ~P0, respectively, and

~P ¼ PþrA; ~P0 ¼ P0 þ
4

1þ m
A� r � rA; ðA:1Þ

where r ¼ i@=@xþ k@=@z; r ¼ x; zð Þ; P ¼ P1;P3ð Þ, in which P and P0 have the form of

expressions (3.1), and A x; zð Þ is also a harmonic function. Therefore, we can set

A ¼ sin z@xð Þ
@x

a xð Þ: ðA:2Þ

Now we come to prove that it is always possible to choose a function a in Eq. (A.2) so that

Eq. (3.3), i.e.,

~P0 þ r � ~P ¼ �z cos z@xð Þ~f ; ðA:3Þ
may hold, in which

~f ¼ g1 þ @xað Þ
@x

� g3 þ að Þ ¼ f : ðA:4Þ

Substituting Eqs. (A.1) and (A.4) into (A.3), we get the expression

P0 þ
4

1þ m
Aþ r � P ¼ �z cos z@xð Þf : ðA:5Þ

Then inserting Eqs. (3.1) and (3.4) into (A.5), it is found that

A ¼ � 1þ m
4

sin z@xð Þ
@x

g0 þ x
sin z@xð Þ
@x

g1 þ z
cos z@xð Þ

@x

g1

� �
: ðA:6Þ

Next the expression of a in Eq. (A.2) is to be given using the identity

@2n�2
x x@2

xg1

� �
¼ x@2n

x g1 þ 2n� 2ð Þ @2n�2
x g1

� �
;x
: ðA:7Þ

After tedious manipulation by using Eq. (A.7) and Taylor series of the trigonometric functions,

the result turns out to be

sin z@xð Þ
@x

x@2
xg1 þ 3@xg1

� �
¼ @2

x x
sin z@xð Þ
@x

g1 þ z
cos z@xð Þ

@x

g1

� �
: ðA:8Þ

Substituting expression (A.8) into expression (A.6), we get

A ¼ � 1þ m
4

sin z@xð Þ
@x

g0 þ
1

@2
x

x@2
xg1 þ 3@xg1

� �� �
: ðA:9Þ

From expression (A.9) we know Eq. (A.3) holds when

a xð Þ ¼ � 1þ m
4

g0 þ
1

@2
x

x@2
xg1 þ 3@xg1

� �� �
ðA:10Þ

in Eq. (A.2).

For convenience, ~P and ~P0 will still be written as P and P0, respectively. Thus Eq. (3.3) holds.

Consequently, if P0 is taken according to Eq. (3.3), the general solutions (2.5) loose no gen-

erality.
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Appendix B

The method used in this appendix is obtained by extending previous work [10]. Next, we will

give and prove a lemma and a theorem.

B.1 The lemma

Supposing that H xð Þ satisfies

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
H ¼ 0; ðB:1Þ

then there exists function B xð Þ which satisfies the following two equations,

@4
xB ¼ H;

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
B ¼ 0: ðB:2Þ

Proof: Assuming the function C xð Þ can be found which satisfies the following equation:

@2
xC ¼ H; ðB:3Þ

we can obtain the following equation:

@2
x

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
C ¼ 1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
H ¼ 0: ðB:4Þ

Set

B1 ¼ C� 12

h2

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
C: ðB:5Þ

Using Eqs. (B.3) and (B.4), we can get

@2
xB1 ¼ @2

xC ¼ H: ðB:6Þ

After tedious manipulation by using Eqs. (B.4) and (B.5), the result turns out to be

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
B1 ¼ 0: ðB:7Þ

Because B1 xð Þ and H xð Þ satisfy the same equation, B1 xð Þ can be used instead of H xð Þ.
Repeating Eqs. (B.3)–(B.7), we can obtain B xð Þ such that

@2
xB ¼ B1;

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
B ¼ 0: ðB:8Þ

From Eqs. (B.6) and (B.8), it is not difficult to verify that B xð Þ satisfies Eqs. (B.2). So the proof

of the lemma is finished.

B.2 The theorem

Supposing that n satisfies following equation

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �� 	
@4

xn ¼ 0; ðB:9Þ

then there exist n 1ð Þ and n 2ð Þ such that
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n ¼ n 1ð Þ þ n 2ð Þ; ðB:10Þ

satisfying the following two equations:

@4
xn 1ð Þ ¼ 0;

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
n 2ð Þ ¼ 0: ðB:11Þ

Proof: Let

F ¼ @4
xn; ðB:12Þ

then

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
F ¼ 0: ðB:13Þ

According to the lemma, there exists n 2ð Þ such that

@4
xn 2ð Þ ¼ F;

1

h@3
x

sin
h@x

2

� �
1� sin h@xð Þ

h@x

� �
n 2ð Þ ¼ 0: ðB:14Þ

From Eq. (B.12) and the first equation of Eqs. (B.14), we get

@4
xn 2ð Þ ¼ F ¼ @4

xn; ðB:15Þ

namely,

@4
x n� n 2ð Þ

 �

¼ 0: ðB:16Þ

Let

n 1ð Þ ¼ n� n 2ð Þ; ðB:17Þ

then Eq. (B.16) becomes the first equation of Eqs. (B.11), so there are functions n 1ð Þ and n 2ð Þ

which satisfy Eqs. (B.11). This completes the proof of the theorem.
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