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Summary. A refined theory for transversely isotropic piezoelectric plates is derived from the general
solution of three-dimensional transversely isotropic piezoelasticity by means of Lur’e operator method. As
a special case, the governing differential equations for transversely isotropic elastic plates are obtained
directly.

1 Introduction

As we all know, piezoelectric materials exhibit a coupling behavior between mechanical and
electric fields, and are capable of converting mechanical energy into electric energy and vice
versa. Just because of their intrinsic direct and converse piezoelectric effects, they are widely
used as actuators and/or sensors in advanced intelligent structures such as civil, aeronautic and
space structures.

As piezoelectric patches used as actuator or sensor are usually considered as plates be-
cause of their plate-like geometry, many scientists paid more attention to the study of
piezoelectric plates. Two-dimensional theories for piezoelectric plates have been studied by
many investigators. Tiersten [1] and Mindlin [2], [3] initiated the study based on power
series expansions of the mechanical displacements and the electric potential along the
thickness of the plate and the variational principle, while Bugdayci and Bogy [4] and Lee
and Syngellakis et al. [5] applied trigonometric series representation to the research of
piezoelectric plates. Thereafter numerous scholars carried out the study comprehensively
following these ideas; extensive references on this topic can be found in Wang and Yang [6].
Besides, other scholars, such as Lee [7], Bisegna and Caruso [8], and Krommer [9], just to
name a few, performed similar analyses based on classical plate theories or refined plate
theories in combination with a gross linear, quadratic or biquadratic through-the-thickness
distribution of the electric potential. But most of them are practically asymptotic theories
derived after adopting certain a priori assumptions. As a consequence, the interest for exact
solutions arises, for the purpose of verifying the accuracy of the results provided by
approximate theories or computations. Ray and Rao et al. [10], Bisegna and Maceri [11],
Heyliger [12], Ding and Chen [13], among others, presented contributions on this aspect
based on three-dimensional analytical methods, but these models can only be solved ana-
lytically for some limited specific boundary conditions. Further, the state space approach
[13], [14] was employed to solve laminated plates.
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As for isotropic elastic thick plates, various theories were proposed by many authors with the
help of some ad hoc assumptions. Reissner [15], [16], Hencky [17], and Kromm’s [18] sixth-order
plate theories are remarkable representatives. In addition, Chen and Archer [19] and Lo and
Christensen [20] offered twelfth- and twenty-second- order theories, respectively. On the other
side, Cheng [21] and Wang and Shi [22] published refined plate theories deduced directly from a
Boussinesq-Garlerkin solution and a Papkovich-Neuber solution in a systematic manner,
respectively. Parallel developments of Cheng’s plate theory were obtained by Wang [23], and
Yin and Wang [24] for transversely isotropic plates from the Lekhnitskii-Hu-Nowacki solution
and the Elliot-Lodge solution, respectively.

The purpose of this paper is to extend our previous works [22], [24] to transversely isotropic
piezoelectric plates. In the next section, we present the general solution of transversely isotropic
piezoelectric media. In Sect. 3, we bring forth the problem, then with the help of the generalized
Lur’e operator method we give the representations of displacement and stress components in
terms of three generalized mechanical displacements and an electric potential in the mid-plane.
In Sect. 4, the governing differential equations of the above-mentioned plates are derived by
making use of the boundary conditions on the surfaces of the plate. In Sect. 5, the governing
equations of transversely isotropic plates are obtained directly from the afore-mentioned
equations by omitting the piezoelectric terms. Finally, a brief summary and some remarks are
provided in Sect. 6.

2 General solution for transversely isotropic piezoelectric media

A Cartesian system (x,y, 2) is introduced. Let the 2 -axis be perpendicular to the isotropic plane
of the medium. The basic equations in terms of mechanical displacements u,v,w and electric
potential ¢ in the absence of body forces and free charges can be written as

1 1
Cl1U,ow + 5 (011 - Clg)u‘_w + C4qU 22 + 5 (Cll + CIZ)U,xy

2 2
+ (c13 + Caa)w 1z + (€15 +€31)9 1o = 0, (1.1)
%(011 — C12)V 2 + C11V gy + C4a¥ 2z + 5 (c11 + C12)Uay
+ (€13 + Caa)w o + (€15 +€31) . = 0, (1.2)
Caa(W g + W ) + C33W 22 + (C13 + Caa) (Uze + V) + €15(P o + B yy) +E33¢ 0 = 0, (1.3)
€15(W zp + W yy) + €330 22 + (€15 + €31) (U e + V) — €11(P 1y + b)) — €330, =0, (1.4)

where c¢;;,e;,€; are the elastic stiffness coefficients, piezoelectric and dielectric constants,
respectively. A comma followed by a variable denotes partial differentiation with respect to the
variable. Its general solution takes the form [13], [25], [26]

3
w=>y ¥, — ¥y, (2.1)

3
V= Z lPH/ + WYy, (22)
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3
i=1
3
p=> koW, (2.4)
i=1
where the potential functions W, (i = 1,2, 3, 4) satisfy the following quasi-harmonic equations:
V?\P7 = \P7T7‘ + \P7yy + lP?I,2727 = O> 1= 17 27 3a 4a (3)
in which 2; = s;2, 1/s? =4, (i =1,2,3,4), and
Ky = [ess (€15 + €31) + e3s(c13 + ca)] i — [e15(e15 + €31) + €11 (C13 + caa)]4,”
‘ €33C33 + €33 — (€11033 + 2e15033 + €33Ca4) 4 + (€11C4a + €%5) 4% @
oy = less(C13 + aa) — cas(e1s + es1)]4 + (Casesy — cizeis) i—193
i N ) - ) ) )
€35033 + €35 — (€11033 + 2€15€33 + €33Caa) 25 + (€11Caa +€,2) 27
where A4 is defined as
2
hy=
C11 — C12
and 2;(7 = 1,2, 3) are the three roots of the algebraic equation
L2 + 2+ L0+ 14 = 0. (5)

Herein we assume they are distinct, and

2
Iy = (e5 + caaenn)cut,
2 2 2
Iy = 2e.5c13 + 2e15(C13e31 — C11€33) — Caq€sy + €11(C13 + 2C13C44 — C11033) — €33C11C44,
Is = ess(cries3 + 2cuae15) — 2e33(e15 + €31)(C13 + Caq) — €33(C15 + 2C13C4q — C11C33)
3 = es3(criess 14€15 33(e15 + e31)(C13 + caa) — €33(Cy3 18C44 — C11C33
2
+ €11C33C44 + C33(€15 + €31)°,

Iy = —(e35 + €33C33)Cus.

3 Displacement and stress expressions for transversely isotropic piezoelectric plates

Let us consider a homogeneous transversely isotropic piezoelectric plate occupying the domain
h

Q={(,y,2)|(x.y) € O[] <5},

where O and 4 are the mid-plane and the thickness of the plate, respectively. Here we assume
the plate is free of body forces, only subjected to surface loads. This problem can be divided
into two categories, namely a symmetric one and an anti-symmetric one, which correspond to
stretching and bending problems, respectively. Hereafter we only discuss the latter one.

On the supposition that the plate is only subjected to anti-symmetric load g = g(x,y) , both
w and v are odd functions of 2, and w is an even function of 2 . According to Eq. (2), '¥; are all
odd functions of 2. Generalizing the Lur’e operator method [27], we have the following solution
of Eq. (3):
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~_sin(sizV)

v sl-V
where V* = 8% /02* + 8 /0y?, ¢i(i = 1,2,3,4) are unknown functions of 2 and y yet to be
determined, and

gi(xvy)v 1= 17273747 (6)

SsEV) _, _ Ls2ovi 4 Lsteivt o
Siv 3! 5
(7)

1 1
cos(s;zV) =1— 557 AV + Is;‘z‘*V“ -

Substituting Eq. (6) into Eq. (2), we obtain

" isin(sizV) ~_sin(s42V)

Gix 94,
Siv S4V v

i=1

i sin(s;2V)  sin(s42V)
2 7S¢V Giy 7S4V G4,
(8)

3
w = Z kl{/ COS(quZV)gi,
i=1

v =

3
(I) = Z kzj, COS(&%V)Q@.

i=1
Then from Eq. (8) we can get the generalized mechanical displacements v, ,, W and the
electric potential ® on the mid-plane of the plate,

lpx = _u,2|g:0 = —(gl + 92 "FQS)J + 94y,

Y, = —Velg = — (91 + 92 +93)7y — 94z,

9)
W =wl|,_o = kugi + k1292 + k1393,
® = ¢|,_o = ka191 + kazg2 + kasgs.
From Eq. (9) it follows that
1
01=1% (k12 — k13)®@ + (Kag — Koz)W + (K12kes — K13koz) Vi (Ve + )15
1 1
92 = (K13 — k1)@ + (k21 — ko)W + (K1skar — kn]fzs)v— (Yoo + )],
(10)
1 1
9= (k11 — k12)®@ + (Kog — Kka1)W + (K11kaz — k12k21)v— (Yoo + )],
1

(lpxy l//g/,x)a
1

where K = k11(keg — ka2) + ki2(Ka1 — kas) + k13(Kea — k21), and the term o (e) denotes the
logarithmic potential of (e). Then inserting Eq. (10) into Eq. (8) , we have

1 in(s1z2V S92V in(sszV
UZE{[(klz—km)smililv) (k13 — k1 )% (ku—klz)smigigv)]
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+ [(kzg —kaz) smi‘jilsz) + (ko1 — ka3) Smizizsz) + (ka2 — ka1) sm:igsz)] W

+ [(klzkzs — kigkas) smsilsz) + (k1ska1 — klﬂ%)%

+ (k11kas — k12k21)m§z%?vzv) % Wty y) 0 — K%;Vzw%(l//x,y - '//y,x),y}, (11)
v = [l( { {(/ﬁz —ki3) smgsl‘ilsz) + (ki3 — k1) smiz—gvz'V) + (k11 —ki2) %} D,

+ [(kzs — kzz)SinS—lvzv) + (ko1 — ka3) smizizsz) + (koo — km)%} W,

+ [(k12k23 — kigkas) bmsilsz) + (k1ska1 — kn@s)%

sin(sseV)]| 1 sin(s42V) 1
+ (k11ko — 10121621)834v ﬁ(lﬁm +¥y.), +Ks4—vﬁ(lﬁx,y V) arr (12)

1
w = E { [kn(klg — k13) COS(Sle) + k1o (klg — kll) COS(SZZV) + K13 (kn — klg) COS(S32V)}(I)

+ [:1611(]623 — kzz) COS(812V) + klz (k21 — kzg) COS(SzZV) + klg (kzg — kzl) COS(S3ZV)}W

+ [kn(klzkgg — klgkzz) COS(812V) + klz (k13k21 — knkgg) COS(Sg.ZV)

1
+ kis(kikss — kizkar) cos(s32V)] o2 (Yo + %,y)} (13)

1
¢ = [? { [kzl(km - le) COS(S]ZV) + kaa (]C13 - kll) COS(SZZV) + ]ng(kn - klz) COS(ngV)](I)

+ [kzl (kgg — /{22) COS(Sl.ZV) + Koo (k21 — kgg) COS(SzZV) + Kos (kgz — ]Cgl) COS(SSZV)]W

+ [k21 (lﬁlgkg_g — ]flgkgz) COS(812V) + Koo (klgkgl — ]{11]{23) COS(ngV)

+ Koz (k11k22 — K12k21) cos(s32V)] % W + %‘y)}' (14)
Besides, by virtue of the constitutive equations
Tpr = Caa(Up +Wy) + €159 4
Tye = Caa(Ve +Wwy) + €150, 15
0. = C13(Uy +0,) + Cssw o + €336 ., "
D, =e31(uy+vy) +e3w, — e3¢,

we can obtain part of stress and electric displacement components as follows:

Ktpe = D@0, 4+ Daf2)We 4 Dy(&) ey (s 1) = Dil) g Wiy )y (16)

Kty = Di(2)0, + Da(@)Wy + Ds@) ey s + ), + Da) ey Wy — ) (17)
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1

KD, = Dg(Z)‘D +D9(Z)W +D10(Z) % (l//x"( + lwby,y)v (19)

where D;(2)(7 = 1,...,10) are given in Appendix A.

4 Governing differential equations of transversely isotropic piezoelectric plates

The boundary conditions on the upper and lower surfaces of the plate read
h
Tm—jﬁ—D?—OUv—ig,%Z:ig. (20)
Substituting Eqgs. (16)—(19) into Eq. (20), we get the following equations in terms of
Wy Yy, Wand @

1
D, ® X +D2W +D3 (l//xr + lpyj) D4_2(w7y - lpyr),y =0,
qu)7/+D2W +D‘3v2 ([pxx+l//Jg)y +D4 (w¢J lpy,x),gz‘zov
Ds® +D6W+D7 ('#Jmc"i_l//yy) =

Dsq) +D9W+D10 (l//x9f+l//y7/) 7

where D; :Dz(2)|2:h/2 (i=1,...,10).
As we can see, the generalized displacements ¥, , may be expressed in terms of two
functions F' and f as

Vo =Fu+Sy, ‘//y =Fy—fa (22)
With this in mind, we may rewrite Eq. (21) as
(D1® + D3 W + DsF) , — (Daf), =0, (23.1)
(D1® + DoW + DsF) , + (Daf) , = 0, (23.2)
K
D&+%W+MF:§, (23.3)
Dg® + DgW + D1oF = 0. (234)
Since Eqgs. (23.1) and (23.2) are Cauchy-Riemann equations, it can be assumed that

D1® + DsW + D3F = O((QC, y),

(24)

Daf = B,y),
where a(x,y) and f(x,y) are to each other conjugate harmonic functions. In the light of the
definitions of D3 and D4, we know Eq. (24) possesses the following particular solution:
. o
o (Kizkas — kiskaz) + loz (Kiska1 — kiikas) + los (k11kaz — Kigkar)’

(25)
f*:_y (D*:O? W*:
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Because of lo1(ki2kas — k13kaa) + loz(k13ka1 — k11kas) + log(k11kae — k12k21) = —loa = —Kcua,
the particular solution Eq. (25) affects neither y,, Y, W nor @, and therefore may be omitted.
Thus Eq. (24) becomes

Dy® + Do W + DsF =0, (26.1)
Duf = 0. (26.2)
From Egs. (23.1), (23.4) and (26.1), we can get
1
w2 [D3(D5Dg — DgDs) + D2 (D7Dg — D5D1o) + D1(DeD1g — D7Dg)|W
K1
=5 (D1D1o — D3Ds)q, (27.1)
(D1D19 — D3Dg)® = (D3Dg — DaD1o)W, (27.2)
1 1
o2 (D1D1p — D3Dg)F = o (DoDg — D1Dg)W . (27.3)

Substituting 2 = 2 /2 into Appendix A, and then the results into Eq. (27.1), we have

iy sth e sth ‘33hV " sth ‘Szhv " 53hV
sin( 5 ) sin( 5 ) cos( 5 ) sin( 5 ) cos( 5 ) sin( 3 )

L] +L2

$159 V2 s153V2
h h sh
cos(slzv) sin(sgzv) sin(532v) ,
L VW
ths S983V2
(28)
. S1hV SohV s1thV. . s9hV sithV. . sshV
sin( ) cos( ) cos( ) sin( ) cos( ) sin( )
= |k 2 — Ry 2 +R3
51V ng ng
h h h h h
sinCY) cosPY) iV osY) cos(EY) iV
—Ry4 2 + Rs 2 — R 2 a
51V 52V SSV 27

where the parameters L;(¢ = 1,2,3) and R;(2 = 1,...,6) can be found in Appendix B. There
are the following relationships among them:

Li+Ls+Ls=0, Riy —Re +R3 — Ry + Rs — Rs = —K(C44611 +61§). (29)
Substituting Eq. (7) into Eq. (28) yields
1 1 1
D|1 ——=&h*V? AV VAW = |1 — =g RV — ohV
20"V T gtV |V 535V T qggg etV |0
. . (30)
where &;, ¢;(¢ = 1,2) can be found in Appendix C, and
o h3 L3812 +L2822 +L1832 (31)

T 12K C44€11 —1—6‘152
is the bending rigidity of the plate. Taking the operator 1 + f;—lohzvz + %h“v‘* on both
sides of Eq. (30) and then omitting the higher-order terms, we obtain the governing equation of

deflection,
DV*W = (1 — A1h>V? — Ash*Vh)g, (32)



22 S. P. Xu and W. Wang

where
_ g — ¢ _ 15& + 105¢, + 70816, — 14¢/°
A=y A= 201600 ' (33)
Moreover, based on Eq. (27.2) and Eq. (27.3), ® and F' can be expressed in terms of W as
V20 = — [Bih*V2 + Boh* VA VAW, (34)
F = [14Cih*V?* + Coh* VW, (35)
where
1, 10,61 + 3¢,
By =8¢, Bo=—F - 36
Pt R 5760 (36)
1 _ 1 : _ _
Cl = 2—(@1 + Ql), CQ = % (10@12 + 3@2 + 3@2 + 10@1@1). (37)

Here ¢;,5; and G,,Gy are identical with ¢;, ¢y, respectively, only the corresponding
R;,Ri(i=1,...,6) differ slightly from R;(i =1,...,6), detailed forms are available in
Appendix D.

In addition, analogous to the method used by Wang and Shi [22], we can express f as

S=n++..., (38)

where f; satisfies

s2h?
1-—=— V?f;=0,i=12,.... (39)

(20 — 1)°n?

If terms with ¢ > 2 are omitted, then we have

f:f17 (40)
27,2

5377 o
f f?Vf =0. (41)

Thus, Egs. (32), (34), (35) and (38) together constitute the governing differential equations of
transversely isotropic piezoelectric plates.

5 Governing differential equations of transversely isotropic elastic plates

In the above sections, transversely isotropic piezoelectric plates were studied, here we will
discuss a special case, i.e., transversely isotropic elastic plates. In this case, e;5 = e3; = e33 =0,
the cubic equation of 4, Eq. (5), can be reformulated as

(1104427 + (% + 2013Caa — C11C33) A + C33¢aa] (A&11 — €53) = 0. (42)
Let A1, A2 be the roots of the first multiplier of Eq. (42), i.e.

1104477 4 (625 4 2013C44 — C11033) 4 + C33C44 = 0, (43)
and let A3 be the root of the second part of Eq. (42), then it can be seen that 4; and /g are only

related to elastic constants, while A3 is only as related to dielectric coefficients. Hence from Eq.
(4), it turns out that

c c 1
k= ———2 4 H =, =12,
C13 +Ca4  C13 +Cu4S; (44)
ko1 = koo =0,

while k13, kog correlate with As.
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Besides, when e5 = e31 = e33 = 0, Egs. (1.1-3) are the equations of mechanical displacements
u, v and w, and Eq. (1.4) is the equation that the electric potential ¢ must satisfy in dielectric
problems, so from Eq. (2.3) we can reach ki3 = 0. Substitution of Eq. (2.4) into Eq. (1.4) yields

ks # 0. (45)

From the following calculation we can see the results having nothing to do with k5 and ks
except the requirement ko3 # 0.
It can be proved that the following identities based on Egs. (43), (44) exist:

€33 2 2
kukiz =1, ki —kig = ————(s5 —s7), (46.1)
C13 + C4q
2.2 _ Cu 2, 2 33 4 2C13C4s — C11C33
S1Sg =——, ST +S3=— - (46.2)
C33 C33C44

Substituting Eq. (44) into the equations given in Appendices B and D, and taking into
account Eq. (46.1), we obtain

Li=R =Ry =Ry=R5=0, Ly = —Ly = cien1 (L + k11)(1 + k12)kas,

(47)
R3 = cyse11(1 + K12)kos, Re = caagr1(1 + K11)kos,
R;=0(i=1,...,6), By =Ry =R4 =R5 =0,
_ _ (48)
R3 = caae11(1 4+ k11)kas, Re = caagr1(1 + ki2)kas,
and
K = (k11 — k12)kas. (49)
Substitution of Egs. (47) and (49) into Eq. (31) results in
n? 52— g2
D=—cyu(l+ki)(1+kp)—2—1 50
1g Cull HE) (L +Fiz) (50)

Similarly, substituting Eqs. (47) and (49) into the equations in Appendix C and then the results
into Eq. (33), we get

(1 +k11)8% —(1 +k12)8% _S% +S§

A =
! 8(k1 — kiz) 40

2
Ay = [(1+ki1)ss — (14 kaz)sT] (sT +s3)  27(sT +s3)"—20sis3 (51)
320(k11 — k12) 67200
_ (1 +}C11)S§ -1+ klg)s?
384(k11 — k12) '
In the same way, inserting Eqgs. (48) and (49) into Eq. (36) one finds that

By =B, = 0. (52)

In view of Egs. (48) and (49), after cumbersome calculations, Eq. (37) can be rewritten as

(2 + K11 +kiz)(s3 — s9)

8(k11 —k12)
L ([0 +ku)ss = (14 kiz)’s3| (55 = 1) + @ +hous + )3 — )P} (59)
(k11 —ki2)

15
+/€11 — k12

Cy =

(2 + k11 +1€12)(8411 — Sg)
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Hereupon we get the governing differential equations of transversely isotropic elastic plates,
DV*W = (1 — A|h?V? — Ash*VYg,
VA = 0,

(54)
F=[1+C*V*+ Coh'V W,

Sf=hn+fo+...,

in which fj(i = 1,2,...) satisfy Eq. (39). Noticeably Eq. (54) is consistent with the results
deduced by Yin and Wang [24], which were from the Elliott [28]-Lodge [29] general solution.

Furthermore, using Eq. (46) the bending rigidity D and the coefficients 4; and C;(¢ = 1,2)
can be represented by elastic constants as follows:

hS
D= TC?? [6‘11()33 — 0%3], (55)

4c11033 — C13(3644 + 4C13)
Ar= 56
! 40c33C44 ’ (56)

1 c11¢33 — C13(C13 +2C44) 2 C13
Ay = - 35— 33 — C1: 2 195 ‘ 57
2 672000§3{ { ™ + o [c11633 —C13(C13+2C44)] +195c11033 p  (B7)
Cy = C11C33 — C%g (58)
8c3sCas
Cy — (cr1¢33 — €33)[Be11Cs3 — C13(BC13 + 4Cas)] . (59)

384c2,c%,

6 Conclusion

By introducing three generalized mechanical displacements and an electric potential on the
mid-plane, the complete set of governing differential equations for transversely isotropic
piezoelectric plates is constructed in a very straightforward way based on the general
solution for transversely isotropic piezoelectric media along with the upper and lower surface
conditions via the Lur’e operator method. It is found that the structure of the refined theory
is quite similar to that of Reissner plate theory for purely elastic plates except for an
additional electric term, namely Eq. (34). Not taking into account the piezoelectric effect, the
governing differential equations for transversely isotropic elastic plates are obtained directly
from the above-mentioned equations. It is interesting to note that the degenerated solution is
consistent with the results gained by Yin and Wang from E-L general solution. Hence, the
results obtained here are considered reliable as a basis for more general applications. For
example, the bending of an infinitely large piezoelectric plate with a circular hole can be
investigated, which will be presented in the near future.
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Appendix A

Dl(z) = lo] (/612 — ]Clg) COS(512V) + l()g (k13 — kll) COS(822V) + log (ku — klz) COS(Sg%V)7
Dg(Z) = o1 (kzg — kzg) COS(SIZV) + lo2 (kgl — kzg) COS(SgZV) ~+ lo3 (kgz — kgl) COS(ngV),
Dg(z) = lm(klzkzg — k13k22) COS(812V) + log (k13k21 — knkzg) COS(SZZV)

+ log (knkzg — klgkgl) COS(SSZV),

D4 (2) = lpa cos(s42V),

D5(2) = los(k12 — k13)Vsin(s12V) + log (k13 — k11)V sin(s92 V) + Loz (k11 — k12)V sin(s32 V),
De(2) = los(kag — ka2)Vsin(s12V) + los (k21 — ka3)V sin(s22V) + lor(kaa — ka1)V sin(sse V),
Dr(2) = los(k12kas — k13kao )V sin(s12V) + los (k13kar — k11ke3)V sin(sa2 V) + o7 (k11ka2

— k12ka1)V sin(sse V),
Dg(2) = log(k12 — k13)Vsin(s12V) + log (k13 — k11)V sin(s22V) + l1o(k11 — k12)V sin(s32 V),
Dy(2) = log(kas — ko) V sin(s12V) + Log (ka1 — ko3)V sin(s92 V) + l1g (kg — ka1)V sin(s32 V),
D1o(2) = los(k12kas — k13ko2) V sin(s12V) + log(k13k21
— k11ko3)V sin(so2V) + Lo (k11kog — K19ke1)V sin(sszV),

where

lor = caa(1 + k1) +ewskar, log = caa(1 + k1) + e1skaz, los = caa(1 + k1s) + e15kaz, loa = Kcua,
los = (C13 — Cagk11S5 — €aska15%)/s1,los = (C13 — Cask1255 — €askazs3)/sz,
lor = (c13 — Cask1355 — €33k2385) /53, log = (€31 — e33k115T + €33karst)/s1,

2 2 2 2
log = (es1 — essk12S5 + €33K9255) /82, lio = (€31 — es3k1355 + €33K2355) /3.

Appendix B

Ly = [cas(1 + Kig) + exskas) (casers + €35 ) (kizkar — knikas + kot — ko),
Ly = [cas(1 + K12) + eiskan] (casers + €35 ) (kirkas — Kiskar + kas — kay),
L3 = [cas(1 + k1) + erskar] (casers + €55 ) (kiskas — Krokas + kag — kas),
Ry = Kislcas(1 + k12) + erskaz][e11kar — €15
Ry = ki3[caa(1 4 k11) + e1skair][e11kze — €15
R3 = Kiz[cas(1 + k11) + erskar][e11kas — €15

) Il (
) Il (
) Il (
) Il (
R5 = Kui[cas(1 + k13) + erskas][e11kaz — e15(1 + Kiz)],
) Il (

( )
( 3)
Ry = Kiz[cas(1 + k13) + erskas][e11kar — e15(1 + K1)
( )
( ).

Re = ki1[caa(1 + k12) + e1skan][e11k2s — e15(1 + ki3
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Appendix C

~ 3(Lssi + Lasy + Lis3) — 5(LisTsy + Las3si + Lasis?)

°1 Lgs? + Los% + Lys3 ’
6, — 3(L3SS + LasS + L15S) + 7[(2Ls + Ls)sisy + (Lg + 2L3)s1s3 + (2Ly + La)s3s3]
2 L3s3 + Loss + LS5
N T[(L1 + 2L2)s3s5 + (2Ls + L1)s3st + (Ls + 2Ly )s3s7]
Lgs? + Loss + Lys3 ’

. _ [=R1+ 3Ry — 8Rs + RyJsi + [-3R1 + Ry — R + 3Rs]s3 + [R5 + 3Ry — 3R5 + Re|s]
»1 K(C44811 + 6%5) '
L [Rl — bRy + bR3 7R4]$411 + [5R1 —Rs +Rs — 5R6]S§ + [Rg — bR4 + BR5 7R6]S§
52 —

K (casen +¢f;)

N 10[(R1 — R)sis5 + (Rs — Rg)s3s3 + (Rs — Ry)s3st |
K (casen + ef5) '

Appendix D

Ry =kos[cas(1+k1) +e1skon][er1kar —e1s(1+K11)],
Ry =kas[cas(1+k11) +erskar][ennkas —e1s(1+k12))],
Rs=kas[cas(1+k11) +eiskar][er1kas —e1s(1+ki3)],
Ry=kos[caa(1+k13) +erskas)[ennkar —e1s(1+k11)),
Rs=ka1[cas(1+k13) +er5kas)[e11K22 —e15(1+K12)),
Rs=ka1[cas(1+k12) +e15kan] [er1kas —ers(1+k13)],
Ry =[cas(1+k12) +erskan][E11k21 —€15(1+k11)], Re = [cas(1+K11) +e15ka][e11kas —e15(1+K12)],
Ry=l[cas(1+k11)+eiskar][enkas —e1s(1+k13)], By = [cas(1+K13) +e15kas] [e11ka1 —e15(1+Kn1)],
Rs=[caa(1+Fk13) +e1skas][e11kon —e15(1 +k12)], Re = [caa (1 +k12) +€15k2s][e11Kkas —e15(1 +K13)].
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