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Summary. The propagation behavior of Love waves in a piezoelectric layered structure with inhomo-

geneous initial stress is studied. Solutions of the mechanical displacement and electrical potential
function are obtained for the isotropic elastic layer and transversely isotropic piezoelectric substrate,

respectively, by solving the coupled electromechanical field equations. Firstly, effects of the inhomo-
geneous initial stress on the dispersion relations and phase velocity of Love wave propagation are

discussed. Then the influence of the initial stress gradient coefficient on the stress, mechanical dis-
placement and electrical potential distribution in the layer and the substrate is investigated in detail.

The results reported in this paper are not only meaningful for the design of surface acoustic wave
(SAW) devices with high performance, but also effective for evaluating the residual stress distribution in

the layered structures.

1 Introduction

Since White [1] invented the interdigital transducers utilized for transmitting and receiving

surface acoustic waves (SAWs) in 1965, SAWs have been introduced into electrics formally. In

less than forty years, nearly one hundred kinds of surface acoustic wave devices/sensors have

been presented in the world. Surface acoustic wave devices (such as filters, delay lines, oscil-

lators and amplifier etc.) are widely used in practical engineering based on the observation and

investigation on the properties of surface waves (such as Rayleigh waves, Love waves, etc.).

Love wave sensors are highly sensitive micro-acoustic devices, due to the acoustic energy

concentration within a few wavelengths near the surface. Such a kind of device is particularly

useful for the measurement of mass density, viscosity and acoustic-electric properties of liquids.

Jakoby and Vellekoop [2] presented a review on the properties of Love waves and their

applications to sensor devices.

Usually, to achieve high performance, for such a kind of device a typical layer/substrate

configuration form is adopted, which means that this kind of device is a layered structure

with a thin layer deposited on the substrate. However, due to the nonuniform material

properties, coefficients of thermal expansion and chemical/nucleation shrinkage/growth

during the processing and cool down to operating or room temperature, the presence of

initial stress is unavoidable. On the other hand, to prevent the piezoelectric material from

brittle fracture, the layered piezoelectric structure is usually pre-stressed during the manu-

facture process, where the initial stress is negative with the magnitude of 100 MPa, even up

to 1000 MPa [3]. The initial stress in the layered structures can lead to delamination,
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microcracking, debonding and degradation of the layer, it also can lead to a dramatical

change of the dispersion relation corresponding to the wave propagation in the above-

mentioned structures. The initial stress has great influence on the performance and reli-

ability of surface acoustic wave devices.

Jin and Wang [4] have studied the propagation behavior of Love waves in a piezoelectric

layered structure with a pre-stressed elastic layer and a piezoelectric substrate. The effect of the

initial stress on the phase velocity of the Love surface wave is considered and numerical

examples are given. Liu and Wang [5] have investigated the influence of the initial stress on the

propagation behavior of Love waves in a piezoelectric layered structure with a pre-stressed

piezoelectric layer and an elastic substrate, and meaningful theoretical results are obtained. Jin,

Wang and Kishimoto [6] have taken into account the propagation behavior of Bleustein-

Gulyaev (B-G) waves in a pre-stressed piezoelectric layered structure, and significant results for

the engineering application of B-G wave are obtained. However, in all of the above-mentioned

research work, the initial stresses in the layer are regarded as uniform and constantly distrib-

uted for the convenience of mathematical treatment. Actually, the residual stresses in the layer

are inhomogeneous. To the authors’ best knowledge, no work has been carried out so far to

discuss the effect of inhomogeneous initial stress on the propagation behavior of a Love wave in

a piezoelectric layered structure. However, this is significant for the design of high quality

surface acoustic wave devices.

In this contribution, we will analytically investigate the propagation behavior of Love waves

in a piezoelectric layered structure with inhomogeneous initial stress. Firstly, the effect of the

inhomogeneous initial stress on the dispersion relations is discussed. Then the influence of the

initial stress gradient coefficient on the phase velocity of Love wave propagation is discussed.

Finally, the influences of the gradient coefficient of the initial stress on the distribution of stress,

mechanical displacement and electrical potential are investigated in detail. The results obtained

in this paper will be meaningful for both theoretical research and engineering application of

Love waves.

2 Statement of the problem

The basic configuration supporting the propagation of Love waves consists of a layer which is

deposited on a substrate, as shown in Fig. 1. In the simplest case, both layer and substrate are

isotropic media. In order to enable the electric excitation of Love waves, a piezoelectric material

is chosen as substrate. Here, Love wave propagation in such a kind of layered piezoelectric

structure will be taken into account. The structure consists of a homogeneous isotropic elastic

layer with uniform thickness of h deposited perfectly on a transversely isotropic piezoelectric

substrate. The poling direction of the piezoelectric substrate is along the z-axis, perpendicular

to the xy-plane. It is assumed that there exist inhomogeneous initial stresses in the layered

structure, and the upper surface of the layer is mechanically traction free. Usually, the thickness

of the substrate is much greater than that of the layer for surface acoustic wave devices, such

that the structure can be treated as a layered piezoelectric half-space problem, and the initial

stress in the substrate is negligible.

From above description, it is clear that we treat the wave propagation in above-mentioned

layered structure to be a two-dimensional plain-strain problem. The main object of our present

research will be focused on the exploration of suitable analytical solutions of the wave prop-

agation in the layered structure with nonuniform initial stress.
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For the wave motion of small perturbation, the field equations for the elastic layer with initial

stresses and the piezoelectric substrate can be expressed respectively as follows [5], [7], [8]:

rij;j þ ðui;kr0
kjÞ;j ¼ q€ui;

Di;i þ ðui;jD
0
j Þ;i ¼ 0;

ð1:1Þ

and

rij;j ¼ q0€ui;

Di;i ¼ 0;
ð1:2Þ

where i; j; k ¼ 1; 2; 3; q and q0 are the mass density of elastic and piezoelectric media, and ui

and Di denote the mechanical and electrical displacements in the i-th direction, respectively. rij

is the stress tensor, r0
kj the initial stress tensor and D0

j the initial electrical displacement. The dot

denotes time differentiation, the comma followed by the subscript i indicates space coordinate

differentiation with respect to the corresponding coordinate xi, and the repeated subscript

index implies summation with respect to that index.

For the isotropic elastic medium and transversely isotropic piezoelectric medium (such as

crystal class of 6mm and piezoelectric ceramics) with the z-axis being the symmetric axis of

the material, the constitutive equations can be read in the following forms in terms of

components

rx ¼ ðkþ 2lÞsx þ ksy þ ksz;

ry ¼ ksx þ ðkþ 2lÞsy þ ksz;

rz ¼ ksx þ ksy þ ðkþ 2lÞsz;

syz ¼ lsyz;

szx ¼ lszx;

sxy ¼ lsxy;

Dx ¼ eEx;

Dy ¼ eEy;

Dz ¼ eEz;

ð2:1Þ

and

air

elastic layer

piezoelectric substrate
0

h

y

x

Fig. 1. Configuration of layered pie-
zoelectric structure and coordinate

system
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rx ¼ c11sx þ c12sy þ c13sz � e31Ez;

ry ¼ c12sx þ c11sy þ c13sz � e31Ez;

rz ¼ c13sx þ c13sy þ c33sz � e33Ez;

syz ¼ c44syz � e15Ey;

szx ¼ c44szx � e15Ex;

sxy ¼ 1
2
ðc11 � c12Þsxy;

Dx ¼ e15szx þ e11Ex;

Dy ¼ e15syz þ e11Ey;

Dz ¼ e31sx þ e31sy þ e33sz þ e33Ez ;

ð2:2Þ

where k and l are Lamé constants, and e is dielectric constant of the isotropic elastic medium.

c11; c12; c13 and c44 are the elastic constants, e15, e31 and e33 are the piezoelectric constants, and

e11 and e33 are the dielectric constants of the piezoelectric medium. The strain components sij

and the electrical field intensity Ek in Eqs. (2.1) and (2.2) can be calculated by the following

formulae:

sx ¼
@u

@x
; sy ¼

@t
@y
; sz ¼

@w

@z
;

syz ¼
@w

@y
þ @t
@z
; szx ¼

@u

@z
þ @w

@x
; sxy ¼

@u

@y
þ @t
@x

;

Ex ¼ �
@u
@x

;Ey ¼ �
@u
@y

;Ez ¼ �
@u
@z

:

ð3Þ

Here, it can be assumed that Love wave propagation is along the positive direction of the y-

axis without loss of generality. And there exists only one inhomogeneous initial stress com-

ponent r0
y, which is a function of the space coordinate x in the layer, such that the mechanical

displacement components and the scalar electrical potential function u are as follows:

u ¼ t ¼ 0;

w¼ wðx; y; tÞ;
u¼ uðx; y; tÞ:

ð4Þ

Substituting Eq. (4) into Eqs. (1.1), (1.2) and (3), we have

@szx

@x
þ @syz

@y
þ r0

yðxÞ
@2w

@y2
¼ q

@2w

@t2
;

@Dx

@x
þ @Dy

@y
¼ 0;

ð5:1Þ

@szx

@x
þ @syz

@y
¼ q0

@2w

@t2
;

@Dx

@x
þ @Dy

@y
¼ 0

ð5:2Þ

and
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sx ¼ sy ¼ sz ¼ 0;

syz ¼
@w

@y
; szx ¼

@w

@x
; sxy ¼ 0;

Ex ¼ �
@u
@x

;Ey ¼ �
@u
@y

;Ez ¼ 0:

ð6Þ

Substitution of Eqs. (6) into Eqs. (2.1) yields

rx ¼ ry ¼ rz ¼ 0;

syz ¼ l
@w

@y
; szx ¼ l

@w

@x
; sxy ¼ 0;

Dx ¼ �e
@u
@x

; Dy ¼ �e
@u
@y

; Dz ¼ 0:

ð7Þ

Let w1 and u1 denote the mechanical displacement and electrical potential function in the

region )h < x < 0, then from Eqs. (5.1) and (7), we have the following field equations for the

isotropic elastic layer:

l
@2w1

@x2
þ ½r0

yðxÞ þ l� @
2w1

@y2
¼ q

@2w1

@t2
;

@2u1

@x2
þ @

2u1

@y2
¼ 0:

ð8Þ

Here, we can see that for the motion described by Eq. (4), the field equation (8) contains only

one material constant, i.e., l as the particles are making transversely horizontal polarizing

movement in the isotropic elastic layer. Moreover, w1 and u1 are not coupled.

Substitution of Eqs. (6) into Eqs. (2.2) produces

rx ¼ ry ¼ rz ¼ 0;

syz ¼ c44
@w

@y
þ e15

@u
@y

; szx ¼ c44
@w

@x
þ e15

@u
@x

; sxy ¼ 0;

Dx ¼ e15
@w

@x
� e11

@u
@x

; Dy ¼ e15
@w

@y
� e11

@u
@y

; Dz ¼ 0:

ð9Þ

Let w2 and u2 denote the mechanical displacement and electrical potential function in the

region x > 0, then from Eqs. (5.2) and Eqs. (9), we have the following coupled electro-

mechanical field equations for the piezoelectric substrate:

c44ð
@2w2

@x2
þ @

2w2

@y2
Þ þ e15ð

@2u2

@x2
þ @

2u2

@y2
Þ ¼ q0

@2w2

@t2
;

e15ð
@2w2

@x2
þ @

2w2

@y2
Þ � e11ð

@2u2

@x2
þ @

2u2

@y2
Þ ¼ 0:

ð10Þ

Usually, the space above the upper surface of the layer is air, for the dielectric constant e0 of

air is much smaller than that of the elastic medium and is negligible, thus the space above the

layer can be treated as vacuum. Let u0ðx; y; tÞ denote the electrical potential function in the air

(x < �h), therefore u0 satisfies the following Laplace’s equation:

@2u0

@x2
þ @

2u0

@y2
¼ 0: ð11Þ
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When the Love wave propagates in the layered structure, as shown in Fig. 1, the

mechanical displacement components and the electrical potential function must satisfy

Eqs. (8), (10) and (11). Moreover, the related mechanical and electrical variables must

satisfy the boundary conditions and the continuity conditions along the interface, which are

described as follows:

(i) The mechanical traction-free condition at x ¼ �h

sð1Þzx ð�h; yÞ ¼ 0:

(ii) The electrical boundary conditions at x ¼ �h, for the electrically open case,

u0ð�h; yÞ ¼ u1ð�h; yÞ;

D
ð0Þ
x ð�h; yÞ ¼ D

ð1Þ
x ð�h; yÞ

and u1 �h; yð Þ ¼ 0 for the electrically shorted case.

(iii) The continuity conditions at x ¼ 0: the normal components of mechanical displacement,

stress, electrical potential function and electrical displacement are continuous,

w1ð0; yÞ ¼ w2ð0; yÞ;

sð1Þzx ð0; yÞ ¼ sð2Þzx ð0; yÞ;
u1ð0; yÞ ¼ u2ð0; yÞ;
D
ð1Þ
x ð0; yÞ ¼ D

ð2Þ
x ð0; yÞ:

(iv) For x! þ1, w2 ! 0, u2 ! 0. For x! �1, u0 ! 0:

3 Solutions of the mechanical displacements and electrical potential functions

The solutions of the mechanical displacement and electrical potential function in Eqs. (8) can

be assumed as follows:

w1ðx; y; tÞ ¼ W1ðxÞ exp½ikðy� ctÞ�;
u1ðx; y; tÞ ¼ U1ðxÞ exp½ikðx� ctÞ�;

ð12Þ

where k (= 2p/k) is the wave number with k being the wavelength, i ¼
ffiffiffiffiffiffiffi

�1
p

, c is the phase

velocity of wave propagation, and W1(x) and U1(x) are the undetermined functions, respec-

tively. Substitution of Eqs. (12) into Eqs. (8) yields

W 00
1 ðxÞ þ k2b2

1ðxÞW1ðxÞ ¼ 0; ð13:1Þ

U001 � k2U1 ¼ 0; ð13:2Þ

where b1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2�r0
yðxÞ=q

c2
sh

� 1

r

with csh ¼
ffiffiffiffiffiffiffiffi

l=q
p

being the bulk shear wave velocity in the layer.

It can be obtained directly from Eq. (13.2) that

U1ðxÞ ¼ A2e�kx þ B2ekx: ð14Þ

Usually, it is difficult to obtain the exact solution of Eq. (13.1). But for high-frequency

short waves, i.e., for the waves whose wave number possesses the character k�1, the

Wentzel-Kramers-Brillouin (WKB) asymptotic approximation technique [9] can be applied to
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obtain the asymptotic approximation of Eq. (13.1). The solution procedure can be described as

follows:

Firstly, the following transformation is introduced in our analysis:

W1ðxÞ ¼ e
R

/ðxÞdx: ð15Þ
Therefore, Eq. (13.1) can be transformed to the following form:

/2ðxÞ þ /0ðxÞ þ b2
1ðxÞk2 ¼ 0: ð16Þ

Expression (16) is a nonlinear differential equation regarding the variables /. To solve

Eq. (16), we seek an expansion of / in inverse powers of k, that is to say, we can write

/ ¼ /0kþ /1 þ
/2

k
þ /3

k2
þ . . . : ð17Þ

Substitution of Eq. (17) into Eq. (16) and expanding Eq. (16) in inverse powers of k leads to

ð/2
0 þ b2

1Þk2 þ ð2/0/1 þ /00Þkþ ð/2
1 þ /01 þ 2/0/2Þ þ ð2/0/3 þ 2/1/2 þ /02Þk�1 þ . . . ¼ 0;

where the superscript 0 denotes the derivative with respect to coordinate x.

Equating the coefficients of each power of k to zero, we get an infinite number of equations:

/2
0 þ b2

1 ¼ 0;

2/0/1 þ /00 ¼ 0;

/2
1 þ /01 þ 2/0/2 ¼ 0;

..

.

Then the solutions of /0;/1;/2; . . . can be obtained from above expressions. If we only keep

the first two solutions, i.e., solutions of /0, /1 and substitute them into Eq. (17), then the

asymptotic solution of Eq. (16) can be easily obtained. Now considering the transformation

(15), we can obtain the solution of Eq. (13.1) as follows:

W1ðxÞ ¼
A1
ffiffiffiffiffiffiffiffiffiffiffi

b1ðxÞ
p e�ikqðxÞ þ B1

ffiffiffiffiffiffiffiffiffiffiffi

b1ðxÞ
p eikqðxÞ; ð18Þ

where qðxÞ ¼
R

b1ðxÞdx.

Substitution of Eq. (14) and Eq. (18) into Eqs. (12) yields the solutions of the mechanical

displacement and electrical potential functions as follows:

w1ðx; y; tÞ ¼
A1
ffiffiffiffiffiffiffiffiffiffiffi

b1ðxÞ
p e�ikqðxÞ þ B1

ffiffiffiffiffiffiffiffiffiffiffi

b1ðxÞ
p eikqðxÞ

" #

exp½ikðy� ctÞ�;

u1ðx; y; tÞ ¼ ðA2e�kx þ B2ekxÞ exp½ikðy� ctÞ�: ð19Þ
It should be pointed out that in order to ensure the above asymptotic approximation solution

valid enough, the initial stress function r0
yðxÞ must be slowly varying in the layer, i.e., the initial

stress distribution has to satisfy the following condition (for detailed derivative procedures,

please see the Appendix):

r0
yð0Þ � r0

yð�hÞ
�

�

�

�

�

�
<< qc2

shkh:

For Eqs. (10), its solution forms can be assumed as follows:

w2ðx; y; tÞ ¼ W2ðxÞ exp½ikðy� ctÞ�;

u2ðx; y; tÞ ¼ U2ðxÞ exp½ikðx� ctÞ�:
ð20Þ
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Substituting Eqs. (20) into Eqs. (10), we may have

W 00
2 � k2 1� c2q0

ðc44e11 þ e2
15Þ
�

e11

 !

W2 ¼ 0; ð21:1Þ

U002 � k2U2 ¼
e15

e11
ðW 00

2 � k2W2Þ: ð21:2Þ

It should be noted that if we define the velocity of the bulk shear wave in the substrate as

c0sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc44e11 þ e2
15Þ
�

q0e11

q

;

then the velocity c of the Love wave should satisfy the following condition:

csh < c < c0sh:

Considering condition (iv) in Sect. 2 and Eq. (21.2) as an inhomogeneous equation with respect

to U2 (x), the solutions of mechanical displacement and electrical potential function in the

piezoelectric substrate can be obtained as follows:

w2ðx; y; tÞ ¼ A01e�kb2x exp½ikðy� ctÞ�;
u2ðx; y; tÞ ¼ ðA02e�kx þ e15

e11
A01e�kb2xÞ exp½ikðy� ctÞ�;

ð22Þ

where b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2

c02
sh

q

.

From condition (iv) in Sect. 2, the solution of the electrical potential function in the region

x < �h can be easily obtained from Eq. (11) as follows:

u0ðx; y; tÞ ¼ A0ekx exp½ikðy� ctÞ�: ð23Þ

4 Solutions of the phase velocity

4.1 Electrically open case

Substituting Eqs. (19), (22) and (23) and their corresponding stress and electrical displacement

components into boundary conditions (i) and (ii) and continuity conditions (iii), we can obtain

the following algebraic equations with respect to the unknown constants A1;B1;A2;B2;A
0
1;A

0
2

and A0:

e�ikqð�hÞA1 � eikqð�hÞB1 ¼ 0;

ekhA2 þ e�khB2 � e�khA0 ¼ 0;

ekhA2 � e�khB2 þ
e0

e
e�khA0 ¼ 0;

e�ikqð0ÞA1 þ eikqð0ÞB1 �
ffiffiffiffiffiffiffiffiffiffiffi

b1ð0Þ
p

A01 ¼ 0;

li
ffiffiffiffiffiffiffiffiffiffiffi

b1ð0Þ
p

e�ikqð0ÞA1 � li
ffiffiffiffiffiffiffiffiffiffiffi

b1ð0Þ
p

eikqð0ÞB1 �
c44e11 þ e2

15

e11
b2A01 � e15A02 ¼ 0;

A2 þ B2 � A02 �
e15

e11
A01 ¼ 0;

A2 � B2 �
e11

e
A02 ¼ 0:

ð24Þ
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The nontrivial solution of (24) exists if and only if the determinant of the coefficient matrix

equals zero, and this procedure leads to the following expression:

e11

e
þ e

e0

� �

tanh khð Þ þ e11

e0
þ 1

� �

lb1ð0Þ tan k qð0Þ � qð�hÞð Þ½ � � c44e11 þ e2
15

e11
b2

� 	

þ e2
15

e11

e
e0

tanh khð Þ þ 1

� �

¼ 0:

ð25Þ

Equation (25) is the phase velocity equation for the propagation of a Love wave in the

piezoelectric layered half-space for the electrically open case at the free surface. It can be seen

from the equation that the wave velocity c is related to the wave number k, so the Love wave in

such structures is frequency dispersive.

4.2 Electrically shorted case

For the electrically shorted case at the free surface of the layered piezoelectric half-space (the

surface is plated with a very thin metal strip), the second and the third equations in Eqs. (24)

should be replaced by the following expression which corresponds to the condition (ii) in

Sect. 2:

ekhA2 þ e�khB2 ¼ 0:

Then, a homogeneous linear algebraic equation with respect to A1;B1;A2;B2;A
0
1 and A02 can be

obtained. By the similar procedure to the electrically open case, we can obtain the corre-

sponding phase velocity equation for the electrically shorted case (here the equation will be

given directly and the analysis procedures are omitted for conciseness and brevity):

e11

e
tanh khð Þ þ 1

h i

lb1ð0Þ tan k qð0Þ � qð�hÞð Þ½ � � c44e11 þ e2
15

e11
b2

� 	

þ e2
15

e11
¼ 0: ð26Þ

As a matter of fact, the phase velocity equation for the electrically shorted case, which can be

obtained through eliminating the terms related to e0, has the same form as that for the elec-

trically open case.

Equations (25) and (26) are the phase velocity equations of Love wave propagation in the

layered piezoelectric structure for the electrically open and shorted case, respectively. It is

readily seen that the phase velocity c is related to the initial stress, wavelength, layer thickness,

elastic, dielectric and piezoelectric constants. The effect of the gradient coefficient of initial

stress and m (the ratio of layer thickness h to wavelength k) on the phase velocity will be

discussed in Sect. 6.

5 Solutions of the stress and displacement fields

For the electrically open case, we can obtain from Eqs. (24) that

B1 ¼ b1A1;A2 ¼ b2A1;B2 ¼ b3A1;

A01 ¼
e11

e15
ðb2 þ b3Þ þ

e
e15
ðb3 � b2Þ

� �

A1;A
0
2 ¼

e
e11
ðb2 � b3ÞA1;

where
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b1 ¼ �
a31 �

a34a11

a14
þ a34a13

a14
� a33

� �

a21a14 � a11a24

a23a14 � a13a24

a32 �
a34a12

a14
þ a34a13

a14
� a33

� �

a22a14 � a12a24

a23a14 � a13a24

;

b2 ¼ �
a21a14 � a11a24

a23a14 � a13a24
þ a22a14 � a12a24

a23a14 � a13a24

a31 �
a34a11

a14
þ a34a13

a14
� a33

� �

a21a14 � a11a24

a23a14 � a13a24

a32 �
a34a12

a14
þ a34a13

a14
� a33

� �

a22a14 � a12a24

a23a14 � a13a24

;

b3 ¼ �
a11

a14
þ a13

a14

a21a14 � a11a24

a23a14 � a13a24

þ a12

a14
� a13

a14

a22a14 � a12a24

a23a14 � a13a24

� �a31 �
a34a11

a14
þ a34a13

a14
� a33

� �

a21a14 � a11a24

a23a14 � a13a24

a32 �
a34a12

a14
þ a34a13

a14
� a33

� �

a22a14 � a12a24

a23a14 � a13a24

with

a11 ¼ li
ffiffiffiffiffiffiffiffiffiffiffi

b1ð0Þ
p

e�ikqð0Þ;a12 ¼ �li
ffiffiffiffiffiffiffiffiffiffiffi

b1ð0Þ
p

eikqð0Þ;a13 ¼ �
c44e11 þ e2

15

e11
b2

e11 � e
e15

� e15e
e11

;

a14 ¼ �
c44e11 þ e2

15

e11
b2

e11 þ e
e15

þ e15e
e11

;a21 ¼ 0;a22 ¼ 0;a23 ¼ 1þ e
e0

� �

ekh;a24 ¼ 1� e
e0

� �

e�kh;

a31 ¼ e�ikqð�hÞ;a32 ¼ �eikqð�hÞ;a33 ¼ 0;a34 ¼ 0:

From Eqs. (19) and (22), one can obtain

w1ðx; y; tÞ ¼ A1
ffiffiffiffiffiffiffiffi

b1ðxÞ
p ½e�ikqðxÞ þ b1eikqðxÞ� exp½ikðy� ctÞ�;

u1ðx; y; tÞ ¼ A1½b2e�kx þ b3ekx� exp½ikðy� ctÞ�
ð27Þ

and

w2ðx; y; tÞ ¼ A1½e11

e15
ðb2 þ b3Þ þ e

e15
ðb3 � b2Þ�e�kb2x exp½ikðy� ctÞ�;

u2ðx; y; tÞ ¼ A1
e

e11
ðb2 � b3Þe�kx þ ½e11

e15
ðb2 þ b3Þ þ e

e15
ðb3 � b2Þ�e�kb2x

n o

exp½ikðy� ctÞ�:
ð28Þ

Substitution of Eqs.(27) into Eqs.(7) yields the following solutions of the stress field in the layer,

i.e.,

sð1Þzx ¼ A1lik
ffiffiffiffiffiffiffiffiffiffiffi

b1ðxÞ
p

½b1eikqðxÞ � e�ikqðxÞ� exp½ikðy� ctÞ�;

sð1Þyz ¼ A1
lik
ffiffiffiffiffiffiffiffi

b1ðxÞ
p ½b1eikqðxÞ þ e�ikqðxÞ� exp½ikðy� ctÞ�:

ð29Þ

Similarly, we have the following solutions of the stress field in the substrate from Eqs. (28) and

(9), i.e.,

sð2Þzx ¼ �A1k
c44e11þe2

15

e11
b2½ e11

e15
ðb2 þ b3Þ þ e

e15
ðb3 � b2Þ�e�kb2x þ e15e

e11
ðb2 � b3Þe�kx

n o

exp½ikðy� ctÞ�;

sð2Þyz ¼ A1ik e15e
e11
ðb2 � b3Þe�kx þ c44e11þe2

15

e11
½ e11

e15
ðb2 þ b3Þ þ e

e15
ðb3 � b2Þ�e�kb2x

n o

exp½ikðy� ctÞ�:

ð30Þ
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6 Numerical simulation and discussions

Up to now, analytical solutions of the phase velocity and the stress field and mechanical

displacement field for the piezoelectric layered structure have been obtained. Obviously,

Eq. (25) and Eq. (26) are transcendental equations, which lead to the complexity of this

problem. To study the propagation behavior of Love waves in this kind of structure and to

graphically show the effect of the initial stress gradient coefficient on the dispersion relations

and phase velocity, the following material system is considered: Pb glass layer on the ZnO

substrate combination system. The material parameters used in computational analysis are

taken from [4]. All the material properties used in the computation are summarized in Table 1.

The dielectric constant of vacuum is e0¼8.85 · 10)12 F/m. As a numerical simulation of the-

oretical research, the variation pattern of initial stress can be taken as follows:

r0
yðxÞ ¼ �Að1� axÞ; ð31Þ

where A, a denote the magnitude and gradient coefficient of the inhomogeneous initial stress,

respectively. According to Refs. [4], [5], it is known that the effect of the constant initial stress

on the phase velocity is negligible on condition that |r0
y| < 100 MPa. Without loss of gener-

ality, it can be assumed that A¼1000 MPa, h¼0.005 mm in our following numerical analysis.

Then, b1ðxÞ can be expressed as

b1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ Að1� axÞ=q
c2

sh

� 1

s

;

and q(x) can be obtained by integration of b1ðxÞ as follows:

qðxÞ ¼
Z

b1ðxÞdx ¼ � 2

3

qc2
sh

Aa
b

5=2
1 ðxÞ:

6.1 Effect of inhomogeneous initial stress on dispersion relations

Firstly, the effect of initial stress on the dispersion relations of Love waves in a piezoelectric

layered structure will be taken into account. For the given material system and initial stress,

there exist only two variables, i.e., phase velocity c and wave number k in Eq. (25). The

dispersion relations for two initial stress distribution cases, constant initial stress distribution

and inhomogeneous initial stress distribution, are shown in Fig. 2 in comparison for a Pb

glass layer/ZnO substrate combination system. From the fundamental mode to the higher

third mode, the effect of the initial stress on the first four modes of the Love wave is

calculated and shown in detail.

It can be seen from Fig. 2 that the inhomogeneous initial stress has no influence on the cut-

off frequency for each mode of the Love wave. From computational results, a large difference

of the initial stress effect on the dispersion relations for every Love wave mode can be found

between the constant initial stress and inhomogeneous initial stress case. Due to the fact that

Table 1. Material properties used in computational analysis

Materials Elastic constant

c44 (10
10N/m2)

Mass density

q(103kg/m3)

Piezoelectric

constant e15 (C/m
2)

Dielectric constant

e11 (F/m)

Pb glass 2.18 3.879 0.0 5.1e0
ZnO 4.23 5.665 )0.48 7.57e0
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the initial stresses in the layered structures usually possess inhomogeneous character, the

constant distribution assumption in Refs. [4], [5] is not exact enough, which also indicates that

the analysis of the inhomogeneous initial stress effect in the paper is necessary. Actually, we

calculate several other dispersion relations for an inhomogeneous initial stress for different

gradient coefficients. However, due to their superposition together, they are not presented here.

6.2 Effect of inhomogeneous initial stress on the phase velocity

The phase velocity c can be calculated from Eq. (25) for different values of m (the ratio of layer

thickness h to wavelength k). The effect of the gradient coefficient of the initial stress on the

phase velocity c is shown in Fig. 3 for the first higher-order mode of Love wave in a Pb glass

layer/ZnO substrate combination system.

It can be seen from Fig. 3 that the effect of the gradient coefficient of the initial stress on the

phase velocity is negligible as a <104, but the phase velocity decreases with the increase of the

gradient coefficient of the initial stress as a > 104. The results in Fig. 3 mean that the more

inhomogeneous the initial stress distribution, the smaller the phase velocity value. It is readily

seen from Fig. 3 also that the values of the ratio of layer thickness to wavelength also have an

important effect on the phase velocity c.

Pb glass layer/ZnO substrate
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6.3 Effects of inhomogeneous initial stress on the stress, mechanical displacement

and electrical potential function

Here, the stress, mechanical displacement and electrical potential function distribution in the

Pb glass layer/ZnO substrate combination system will be taken into account for mode 1 of the

Love wave. Without loss of generality, it is assumed that A1¼0.0001 mm and m¼1.0. Varia-
tions of the stress components szx and syz with x/h, at y¼0 are shown in Figs. 4 and 5 for

different gradient coefficients a, respectively. Also, variation of the mechanical displacement w

and electrical potential function u with x/h, at y¼0 are shown in Figs. 6 and 7 for different

gradient coefficients a, respectively.
It is seen that the gradient coefficient of initial stress has an important influence on the stress

and mechanical displacement distribution in a piezoelectric layered structure. Each distribution

curve of the stress and mechanical displacement in Figs. 4–6 has a common node in the region

)1 < x/h < 0 corresponding to mode 1 that we take into account, which also proves that the

solutions we obtained in this paper are correct. It can be seen that the gradient coefficient

changes not only the phase of the stress and mechanical displacement distribution but also the

magnitude for the electrically open case.

For a layered structure, the small stress near the interface is expected to prevent the layered

structure from debonding or fracture, while for surface acoustic wave devices/sensors that often
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adopt piezoelectric layered structures, a large surface mechanical displacement is needed to

increase sensibility. In order to obtain high performance of surface acoustic wave devices/

sensors a small stress near the interface and large surface mechanical displacement can be

obtained simultaneously through changing the gradient coefficient of the initial stress in the

piezoelectric layer during the manufacture process of piezoelectric surface acoustic wave de-

vices/sensors.

7 Conclusions

Usually, for the design of surface acoustic wave sensors, it is difficult to obtain high perfor-

mance by using a single piezoelectric material. So, it is necessary to seek a combination of

materials to fabricate sensors with a layered structure of electromagnetic media. However, due

to the thermal mismatch of the film and the substrate materials and the intrinsic stress, there

exist unavoidable initial stresses in the layered structure during the manufacturing process. Jin

[4] and Liu [5] investigated the effect of constant initial stress on the propagation behavior of

Love waves in the piezoelectric layered structure. Moreover, the initial stresses in the piezo-

electric layered structures are often inhomogeneous according to Ref. [3]. Thus, it is significant

to analyze the effect of the inhomogeneous initial stress on the propagation behavior of Love

a=100
a=300
a=500

Pb glass layer/ZnO substrate system

layer substrate

x/h
–1 0 1 2 3 4 5

j(
v)

–500

–400

–300

–200

–100

0

100

200

Fig. 7. Variation of electrical poten-
tial u with x=h for different values of

initial stress gradient a, for the
electrically open case

Pb glass layer/ZnO substrate system

x/h

a=100
a=300
a=500

layer substrate

w
(µ

m
)

–1 0 1 2 3 4 5

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4 Fig. 6. Variation of w with x=h for
different a for the electrically open

case

54 Z. Qian et al.



surface waves in the piezoelectric layered structure. Through the theoretical research and

numerical simulation, some meaningful results are obtained in this paper:

(i) The results obtained in the analysis concerned with the effect of inhomogeneous initial

stress on the dispersion relations indicate that inhomogeneous initial stress has no influence on

the cut-off frequency for each mode of Love wave.

(ii) The effect of the gradient coefficient of the inhomogeneous initial stress on the phase

velocity is negligible as a < 104, but the phase velocity decreases with the increase of the

gradient coefficient of the initial stress as a > 104, which means that the more inhomogeneous

the initial stress, the smaller the phase velocity.

(iii) The gradient coefficient changes not only the phase of the stress and mechanical dis-

placement distribution but also the magnitude for the electrically open case. In order to obtain

high performance of surface acoustic wave devices/sensors, small stress near the interface and

large surface mechanical displacement can be obtained simultaneously by changing the gradient

coefficient of initial stress in the piezoelectric layer during the manufacture process of piezo-

electric surface acoustic wave devices/sensors.

(iv) Our research work also indicates that the WKB asymptotic approximation can provide a

good alternative for the solution of high-frequency wave propagation in the structures with

inhomogeneous initial stress. But what we should point out is that the initial stress should

possess the slowly varying distribution property in the layer for the validity of the WKB

technique to use.

On the other hand, it can be found in our analysis that for the treatment of the problem to be

a two-dimensional plane-strain state, only the effect of the initial stress component r0
y is taken

into account. Actually, a practical SAW device is of finite length in the z-direction, and the

initial stress component r0
z affects the Love wave propagation to some degree. Both the effects

of initial stress components r0
y and r0

z on the propagation of the Love wave need to be further

investigated in the future.

Appendix

The WKB solution (18) consists of the wave u1 traveling in the þx-direction and the wave u2

traveling in the direction �x, which means

u1 ¼
1

b
1=2
1

e�ikqðxÞ;u2 ¼
1

b
1=2
1

eikqðxÞ: ðA1Þ

Substituting the expression of u1 (or u2) into Eqs. (13), we can get

ð d2

dx2
þ k2b2

1Þu1 ¼ f 6¼ 0: ðA2Þ

Therefore, the range of validity of the WKB solution is as follows:

fj j << k2b2
1u1

�

�

�

�; ðA3Þ

which means

D ¼
ð d2

dx2 þ k2b2
1Þu1

k2b2
1u1

�

�

�

�

�

�

�

�

�

�

<< 1

due to the reason
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du1

dx
¼ � 1

2
b
�3=2
1 b01e�ikqðxÞ þ b

�1=2
1 ð�ikb1Þe�ikqðxÞ ¼ ð� 1

2
b
�3=2
1 b01 � ikb

1=2
1 Þe�ikqðxÞ;

d2u1

dx2
¼ 3

4
b
�5=2
1 ðb01Þ

2 � 1

2
b
�3=2
1 b001 �

1

2
ikb

�1=2
1 b01

� �

e�ikqðxÞ þ ð� 1

2
b
�3=2
1 b01 � ikb

1=2
1 Þð�ikb1ÞeikqðxÞ

¼ 3

4
b
�5=2
1 ðb01Þ

2 � 1

2
b
�3=2
1 b001 � k2b

3=2
1

� �

e�ikqðxÞ:

So

D ¼
d2

dx2 þ k2b2
1


 �

u1

k2b2
1u1

�

�

�

�

�

�

�

�

�

�

�

�

¼
3
4
b
�5=2
1 ðb0Þ2 � 1

2
b
�3=2
1 b001

k2b
3=2
1

�

�

�

�

�

�

�

�

�

�

¼ 1

k2

3

4

ðb01Þ
2

b4
1

� 1

2

b001
b3

1

�

�

�

�

�

�

�

�

�

�

<< 1:

Furthermore,

ðb01Þ
2 ¼ 1

4q2c4
sh

b�1
1 ½r00

y ðxÞ�
2;

b001 ¼ �
1

4q2c4
sh

b
�3=2
1 ½r00

y ðxÞ�
2 � 1

2qc2
sh

b
�1=2
1 r000

y ðxÞ;

therefore

D ¼ 1

k2

3

16

1

q2c4
sh

1

b5
1

r00

y ðxÞ
h i2

þ 1

8

1

q2c4
sh

1

b
9=2
1

r00

y ðxÞ
h i2

þ 1

4

1

qc2
sh

1

b
7=2
1

r000

y ðxÞ
�

�

�

�

�

�

�

�

�

�

:

In the analysis of our manuscript

b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � r0
y=q

c2
sh

� 1

s

¼ c

csh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
r0

y

qc2
� c2

sh

c2

s

¼ c

csh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðAf ðxÞ
qc2

� c2
sh

c2
Þ

s

;

in which A is the amplitude of initial stress and f(x) the distribution function of initial stress.

So we can know the fact that b1 � 1 , and r0
yðxÞ should be slowly varying in the range [0, �h].

Then, the following expression can be obtained:

D ¼ 1

k2

5

16

1

q2c4
sh

r00

y ðxÞ
h i2

<< 1: ðA4Þ

Finally, the following condition can be obtained:

r0
yð0Þ � r0

yð�hÞ
�

�

�

�

�

�
<< qc2

shkh; ðA5Þ

which is the condition that the initial stress distribution function should be satisfied.
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