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Summary. This paper deals with some steady unidirectional flows of an Oldroyd 8-constant magneto-

hydrodynamic (MHD) fluid in bounded domains. The fluid is electrically conducting in the presence of a

uniform magnetic field. Three nonlinear flows are produced by the motion of a boundary or by sudden

application of a constant pressure gradient or by the motion of a boundary and pressure gradient. The

governing nonlinear differential equations are solved analytically using homotopy analysis method

(HAM). Expressions for the velocity distribution are given. It is noted that for steady flow the solutions are

strongly dependent on the non–Newtonian and magnetic parameters. The MHD solutions for a Newto-

nian fluid, as well as those corresponding to the Oldroyd 3 and 6-constant fluids, a Maxwell fluid and a

second grade one, appear as limiting cases of our solutions. Finally, a physical interpretation of the results

is given with the help of several graphs.

1 Introduction

In recent years, there has been a great deal of interest in understanding the behavior of non-

Newtonian fluids as they are used in many engineering processes. Also, non–Newtonian fluids

are intensively studied by mathematicians, essentially from the point of view of differential

equations theory. On the other hand, in applied sciences such as rheology or physics of the

atmosphere, the approach to fluid mechanics is in an experimental setup leading to the mea-

surement of material coefficients. Moreover, in theoretically studying how to predict the

weather, ordinary differential equations represent the main tool. Further, since the failures in

the predictions are strictly related to a chaotic behavior, one may find it unessential to ask

whether the fluids are really Newtonian.

Rheological properties of fluids are specified in general by their so-called constitutive

equations. Amongst the many models which have been used to describe the non–Newtonian

behavior exhibited by these fluids, the fluids of differential type [1] and those of rate type [2]

have received special status. More recently, Baris et al. [3] considered an Oldroyd 8-constant

model to discuss the steady flow in a convergent channel. In [3] a series method is used for the

solutions involving linear ordinary differential equations. However, the solution in the more

general context of the nonlinear equation for magnetohydrodynamic flow of an Oldroyd

8-constant fluid is not given.

To the authors’ knowledge, no previous investigation has been reported to develope the

governing equations for steady magneto-hydrodynamic (MHD) flow of an Oldroyd 8-constant

fluid. In this work it is intended to construct the equations for an MHD flow of an Oldroyd
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8-constant fluid. The motion of power law fluids in the presence of a magnetic field has been

studied earlier by several authors [4]–[7]. Hayat et al. [8] examined some periodic MHD flows of

an Oldroyd 3-constant fluid. Examples of non–Newtonian fluids which might be conductors of

electricity were given by Sarpkaya [7], e.g., flow of nuclear slurries and of mercury amalgams,

and lubrication with heavy oils and greases. The objective of the present study is therefore to

discuss three fundamental flows (Couette, Poiseuille and generalized Couette) of an MHD

Oldroyd 8-constant fluid. The governing equations are the conservation of mass and the

conservation of linear momentum. The stress tensor from the constitutive equation is substi-

tuted in the momentum equation. The resulting nonlinear, ordinary differential equations are

solved analytically using HAM [9]–[15].

2 Governing equations

Here, we consider the flow of an electrically conducting fluid. The steady motion of the con-

ducting fluid in the Cartesian coordinate system is governed by the conservation laws of

momentum and of mass which are

qðV � $ÞV ¼ $ � Tþ J� B; ð1Þ

divV ¼ 0; ð2Þ

in which V ¼ ðu; v;wÞ is the velocity vector, q the density, J the current density, B the total

magnetic field so that B ¼ B0 þ b; b is the induced magnetic field.

Neglecting the displacement currents, the Maxwell equations and the generalized Ohm’s law

are

$ � B ¼ 0; $� B ¼ lmJ; $� E ¼ 0; ð3Þ

J ¼ rðEþ V � BÞ; ð4Þ

where lm is the magnetic permeability, E is the electric field and r is the electric conductivity.

We make the following assumptions:

– The quantities q; lm and r are all constant throughout the flow field.

– The magnetic field B is perpendicular to the velocity field V and the induced magnetic field is

negligible compared with the imposed magnetic field so that the magnetic Reynolds number

is small [16].

– The electric field is assumed to be zero.

In view of the above assumptions, the electromagnetic body force involved in Eq. (1) takes the

following form:

J� Bð Þ ¼ r B0ðV � B0Þ � VðB0�B0Þ½ � ¼ �rB2
0V: ð5Þ

For an Oldroyd 8-constant fluid, the Cauchy stress tensor T [17], [18]

T ¼ �p1Iþ S; ð6Þ

in which p1 is the pressure, I the identity tensor, and the extra stress S satisfies
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Sþ k1
DS

Dt
þ k3

2
SA1 þ A1Sð Þ þ k5

2
ðtrSÞA1 þ

k6

2
½tr ðSA1Þ�I

¼ l A1 þ k2
DA1

Dt
þ k4A

2
1 þ

k7

2
trðA2

1Þ
� �

I

� �
; ð7Þ

A1 ¼ Lþ LT ; L ¼ gradV; ð8Þ

where A1 is the first Rivlin-Ericksen tensor, l; k1; k2; k3; k4; k5; k6 and k7 are the material

constants, and the contravariant convected derivative D=Dt for steady flow is as follows:

DS

Dt
¼ ðV � $ÞS� LS� SL

T : ð9Þ

We indicate the stress tensor and the velocity as

SðyÞ ¼

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

0

BBB@

1

CCCA
; VðyÞ ¼

u

0

0

0

BBB@

1

CCCA
: ð10Þ

Using Eq. (10), Eq. (2) is satisfied identically and Eqs. (1), (5) and (6) to (10) yield the following

scalar equations:

@p1

@x
¼ d

dy
Sxy � rB2

0u; ð11Þ

@p1

@y
¼ d

dy
Syy; ð12Þ

@p1

@z
¼ d

dy
Szy; ð13Þ

Sxx þ ðk3 þ k6 � 2k1ÞSxy

du

dy
¼ lðk4 þ k7 � 2k2Þ

du

dy

� �2

; ð14Þ

Sxy � k1Syy

du

dy
þ k3 þ k5

2

� �
ðSxx þ SyyÞ

du

dy
þ k5

2
Szz

du

dy
¼ l

du

dy
; ð15Þ

Szx þ
k3 � 2k1

2

� �
Szy

du

dy
¼ 0; ð16Þ

Syy þ ðk3 þ k6ÞSxy

du

dy
¼ lðk4 þ k7Þ

du

dy

� �2

; ð17Þ

Szy þ
k3

2
Szx

du

dy
¼ 0; ð18Þ

Szz þ k6Sxy

du

dy
¼ lk7

du

dy

� �2

; ð19Þ

Sxx þ Syy ¼ 2lðk4 þ k7 � k2Þ
du

dy

� �2

�2ðk3 þ k6 � k1ÞSxy

du

dy
: ð20Þ
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Making use of Eqs. (16) and (18) we have

Szx ¼ Szy ¼ 0: ð21Þ

From Eqs. (13), (15), (19) and (21), we get

@p1

@z
¼ 0; ð22Þ

Sxy � k1Syy

du

dy
þ k3 þ k5

2

� �
ðSxx þ SyyÞ

du

dy
� k5k6

2
Sxy

du

dy

� �2

þlk5k7

2

du

dy

� �3

¼ l
du

dy
: ð23Þ

Taking

p̂ ¼ p1 � Syy ð24Þ

we can write from Eqs. (11), (12) and (22):

@p̂

@x
¼ d

dy
Sxy � rB2

0u; ð25Þ

@p̂

@y
¼ @p̂
@z
¼ 0: ð26Þ

We note from Eq. (26) that p̂ is independent of y and z and is a function of x only. Thus

Eq. (25) becomes

dp̂

dx
¼ d

dy
Sxy � rB2

0u: ð27Þ

Using Eqs. (14) to (17), (20) and (23) we get:

Sxx ¼
1

M

l½ðk4 þ k7Þ � ðk3 þ k6Þ þ 2ðk1 � k2Þ� du
dy

� �2

þl½ðk4 þ k7Þa2 � a1ðk3 þ k6Þ þ 2ða1k1 � a2k2Þ� du
dy

� �4

8
><

>:

9
>=

>;
; ð28Þ

Sxy ¼
1

M
l

du

dy
þ la1

du

dy

� �3
( )

; ð29Þ

Syy ¼
1

M

l½ðk4 þ k7Þ � ðk3 þ k6Þ� du
dy

� �2

þl½ðk4 þ k7Þa2 � a1ðk3 þ k6Þ�ðdu
dy
Þ4

8
><

>:

9
>=

>;
: ð30Þ

In the above equations

a1 ¼ k1ðk4 þ k7Þ � ðk3 þ k5Þðk4 þ k7 � k2Þ �
k5k7

2
; ð31Þ

a2 ¼ k1ðk3 þ k6Þ � ðk3 þ k5Þðk3 þ k6 � k1Þ �
k5k6

2
; ð32Þ

M ¼ 1þ a2
du

dy

� �2

: ð33Þ

Making use of Eq. (29) in Eq. (27) we get the following nonlinear differential equation:

d2u

dy2
þ ð3a1 � a2Þ þ a1a2

du

dy

� �2
" #

du

dy

� �2
d2u

dy2
� 1

l
rB2

0uþ dp̂

dx

� �
1þ a2

du

dy

� �2
" #2

¼ 0: ð34Þ
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3 Plane Couette flow

Let us consider the steady flow of an incompressible Oldroyd 8-constant fluid between two

parallel plates of infinite length at y ¼ 0 and y ¼ d. When the pressure p̂ is constant (or there is

zero pressure gradient in the x-direction) the velocity is zero everywhere for the given flow field.

To maintain a velocity field, it is necessary to set one of the plates in motion. In this case, it is

assumed that the top plate is moving at velocity U; the bottom plate is at rest. In the absence of

a pressure gradient the governing equation (34) becomes

d2u

dy2
þ ð3a1 � a2Þ þ a1a2

du

dy

� �2
" #

du

dy

� �2
d2u

dy2
� rB2

0

l
u 1þ a2

du

dy

� �2
" #2

¼ 0 ð35Þ

with the boundary conditions

u ¼ 0 for y ¼ 0;

u ¼ U for y ¼ d: ð36Þ

Introducing the following dimensionless parameters:

u� ¼ u

U
; y� ¼ y

d
; a�1 ¼

a1

ðd=UÞ2
; a�2 ¼

a2

ðd=UÞ2
; m�

2 ¼ rB2
0

l=d2
ð37Þ

the above governing boundary value problem after dropping ‘‘�’’ becomes

d2u

dy2
þ ð3a1 � a2Þ þ a1a2

du

dy

� �2
" #

du

dy

� �2
d2u

dy2
�m2u 1þ a2

du

dy

� �2
" #2

¼ 0; ð38Þ

u ¼ 0 for y ¼ 0;

u ¼ 1 for y ¼ 1: ð39Þ

We apply the homotopy analysis method to give an explicit, uniformly valid and totally ana-

lytic solution to the given problem. Using

L½�uðy; pÞ� ¼ @
2 �uðy; pÞ
@y2

�m2 �uðy; pÞ ð40Þ

as an auxiliary linear operator, where p 2 ½0; 1� is an embedding parameter, let us construct the

zeroth-order deformation equation as

ð1� pÞL �uðy; pÞ � u0ðyÞ½ � ¼ p�h
@2 �uðy; pÞ
@y2

þ ð3a1 � a2Þ þ a1a2
@ �uðy; pÞ
@y

� �2
( )"

� @ �uðy; pÞ
@y

� �2@2 �uðy; pÞ
@y2

�m2 �uðy; pÞ 1þ a2
@ �uðy; pÞ
@y

� �2
( )2

3

5 ð41Þ

with the boundary conditions

�uð0; pÞ ¼ 0; �uð1; pÞ ¼ 1; ð42Þ

in which

u0ðyÞ ¼ b1 sinh my ð43Þ

as the initial approximation of uðyÞ, where
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b1 ¼
1

sinh m

and �h is a nonzero auxiliary parameter.

When p ¼ 0, it is straightforward that the solution of Eqs. (41) and (42) is

�uðy; 0Þ ¼ u0ðyÞ: ð44Þ

When p ¼ 1, Eqs. (41) and (42) are the same as Eqs. (38) and (39), provided

�uðy; 1Þ ¼ uðyÞ: ð45Þ

Therefore, according to Eqs. (44) and (45), the variation of p from 0 to 1 is just the continuous

variation of �uðy; pÞ from the initial approximation u0ðyÞ to the unknown solution uðyÞ of
Eqs. (38) and (39).

Assume that the deformation �uðy; pÞ governed by Eqs. (41) and (42) is smooth enough so

that

u
½k�
0 ðyÞ ¼

@k �uðy; pÞ
@pk

					
p¼0

ðk � 1Þ ð46Þ

namely the kth-order deformation derivative exists.

Using Eq. (44), it is straightforward to expand �uðy; pÞ in power series of the embedding

parameter p as follows:

�uðy; pÞ ¼ u0ðyÞ þ
Xþ1

k¼1

ukðyÞpk; ð47Þ

where

ukðyÞ ¼
1

k!

@k �uðy; pÞ
@pk

					
p¼0

ðk � 1Þ: ð48Þ

Note that the zeroth-order deformation equation (41) contains a nonzero auxiliary

parameter �h. Thus, �uðy; pÞ and ukðyÞ are dependent upon the auxiliary parameter �h.

Obviously, �h also affects the convergence rate and region of the series (47). Assume that �h

is so properly chosen that series (47) is convergent at p ¼ 1. Then, due to Eqs. (45) and

(47), we have the relationship

uðyÞ ¼ u0ðyÞ þ
Xþ1

k¼1

ukðyÞ: ð49Þ

Differentiating k-times the zeroth-order deformation equations (41) and (42) with respect to p

and then dividing them by k! and finally setting p ¼ 0, we have, due to definition (48), the kth-

order deformation problem

L ukðyÞ � vkuk�1ðyÞ½ � ¼ �h u00k�1 þ
Xk�1

n¼0

u00k�n�1

Xn

i¼0

u0n�i

ð3a1 � a2Þu0i

þa1a2

Pi

j¼0

u0i�j

Pj

r¼0

u0j�ru
0
r

0

BB@

1

CCA

2

664

�m2 uk�1 þ a2

Xk�1

n¼0

uk�n�1

Xn

i¼0

u0n�i 2u0i þ a2

Xi

j¼0

u0i�j

Xj

r¼0

u0j�ru
0
r

 !( )
3

775; ð50Þ
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ukð0Þ ¼ ukð1Þ ¼ 0; ð51Þ

where

vk ¼
0; k � 1;
1; k � 2




and prime denotes the derivative with respect to y.

Now solving Eq. (50) subject to the boundary conditions (51) up to second-order of

approximation, we obtain the three terms solution of the given problem (38) and (39) as

follows:

uðyÞ ¼ u0ðyÞ þ u1ðyÞ þ u2ðyÞ; ð52Þ

where

u1ðyÞ ¼ �h f1 sinh 5myþ f2 sinh 3myþ f3my cosh myþ f4 sinh my½ �; ð53Þ

u2ðyÞ ¼
�h2

2!

f5 sinh 9myþ f6 sinh 7myþ f7 sinh 5myþ f8 sinh 3myþ ðf13 þ f9m2y2Þ
� sinh myþmyðf10 cosh 5myþ f11 cosh 3myþ f12 cosh myÞ

" #

ð54Þ

and the involving constants are given in the Appendix.

4 Plane Poiseuille flow

Here the fluid is again bounded between two parallel plates of infinite length at y ¼ 0 and y ¼ d,

which are at rest, but now a constant pressure gradient is applied in the x-direction to generate

motion. For this flow our governing equation is (34) and the boundary conditions are given by

u ¼ 0 for y ¼ 0;

u ¼ 0 for y ¼ d: ð55Þ

The dimensionless boundary value problem is of the following form:

d2u

dy2
þ ð3a1 � a2Þ þ a1a2

du

dy

� �2
" #

du

dy

� �2
d2u

dy2
� m2uþ dp̂

dx

� �
1þ a2

du

dy

� �2
" #2

¼ 0; ð56Þ

u ¼ 0 for y ¼ 0;

u ¼ 0 for y ¼ 1; ð57Þ

where

u� ¼ u

U
; x� ¼ x

d
; y� ¼ y

d
; a�1 ¼

a1

ðd=UÞ2
;

a�2 ¼
a2

ðd=UÞ2
; p̂� ¼ p̂

lU=d
; m�

2 ¼ rB2
0

l=d2
: ð58Þ

From Eq. (56) and boundary conditions (57), we choose

u0ðyÞ ¼
C

m2
cosh myþ b2 sinh my� 1½ � ð59Þ

as the initial approximation of uðyÞ, where
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b2 ¼
1� cosh m

sinh m
; C ¼ dp̂

dx
:

Let us construct the zeroth-order deformation equation

ð1� pÞL½�uðy; pÞ � u0ðyÞ� ¼ p�h
@2 �uðy; pÞ
@y2

þ ð3a1 � a2Þ þ a1a2
@ �uðy; pÞ
@y

� �2
( )"

� @ �uðy; pÞ
@y

� �2@2 �uðy; pÞ
@y2

� ðm2 �uðy; pÞ þ CÞ 1þ a2
@ �uðy; pÞ
@y

� �2
( )2

3

5 ð60Þ

with the boundary conditions

�uð0; pÞ ¼ 0 ¼ �uð1; pÞ: ð61Þ
Differentiating k-times the zeroth-order deformation equations (60) and (61) with respect to p

and then dividing them by k! and finally setting p ¼ 0, we have, due to definition (48), the

following kth-order deformation problem:

L ukðyÞ � vkuk�1ðyÞ½ � ¼ �h u00k�1 þ
Xk�1

n¼0

u00k�n�1

Xn

i¼0

u0n�i

ð3a1 � a2Þu0i

þ a1a2

Pi

j¼0

u0i�j

Pj

r¼0

u0j�ru
0
r

0

BB@

1

CCA

2

664

�m2 uk�1 þ a2

Xk�1

n¼0

uk�n�1

Xn

i¼0

u0n�i 2u0i þ a2

Xi

j¼0

u0i�j

Xj

r¼0

u0j�ru
0
r

 !( )

�a2C
Xk�1

n¼0

u0k�n�1 2u0n þ a2

Xn

i¼0

u0n�i

Xi

j¼0

u0i�ju
0
j

 !
3

775; ð62Þ

ukð0Þ ¼ ukð1Þ ¼ 0: ð63Þ
Now solving Eq. (62) subject to boundary conditions (63) up to second-order approximations,

we obtain the three terms solution of the given problem (56) and (57) which is given by Eq. (52)

in which

u1ðyÞ ¼ �h
ðl1 þ l9 þ l2myÞ cosh myþ l3 cosh 3myþ l4 cosh 5my

þðl6 þ l10 þ l5myÞ sinh myþ l7 sinh 3myþ l8 sinh 5my

" #

; ð64Þ

u2ðyÞ ¼
�h2

2!

ðl11 þ l27 þ l12myþ l13m2y2Þ cosh myþ ðl14 þ l15myÞ cosh 3my

þðl16 þ l17myÞ cosh 5myþ l18 cosh 7myþ l19 cosh 9my

� 1
2
l12 � l28 þ 2l11my� l20m2y2

� �
sinh myþ ðl21 þ l22myÞ sinh 3my

þðl23 þ l24myÞ sinh 5myþ l25 sinh 7myþ l26 sinh 9my

2

66664

3

77775
ð65Þ

and the different constants are given in the Appendix.

5 Generalized Couette flow

In this case the velocity distribution is dependent on both the motion of the upper plate and the

pressure gradient. For this flow the governing dimensionless problem consists of Eq. (56) and

boundary condition (39). We choose
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u0ðyÞ ¼
C

m2
cosh myþ b3 sinh my� 1½ � ð66Þ

as the initial approximation of uðyÞ, where

b3 ¼
ð1� cosh mÞ þ m2

C

sinh m
:

We observe that expressions (59) and (66) are the same except b3 replaces b2. Thus, the solutions

in case of a generalized Couette flow can be obtained by replacing b2 with b3 in Sect. 4.

6 Discussion of results

6.1 Plane Couette flow

In Fig. 1, the velocity profiles are plotted for various values of the non–Newtonian parameters

a1 and a2, respectively. From Eq. (34), we note that if a1 ¼ a2 the Oldroyd fluid gives identical

results to that of a Newtonian fluid. Therefore, the solid curves in Fig. 1 corresponding to
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a1 ¼ a2 ¼ 0:2 give the behavior of a Newtonian fluid. Furthermore, in the absence of a pressure

gradient and magnetic parameter, Eq. (34) becomes d2u=dy2 ¼ 0 for both the Newtonian and

Oldroyd fluids, and the flow velocity is linear. It is obvious in Fig. 1a that for an Oldroyd 8-

constant fluid, when the material parameter a1 increases from a1 ¼ 0:2 to 0.8 and fixed

a2 ¼ 0:2, the flow profiles tend to approach the linear distribution; thus, the shearing can
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unattenuately extend to the whole domain from the boundaries, corresponding to a shear

thickening phenomenon.

For a2 ¼ 0:2 to 0.8 and fixed a1 ¼ 0:2 Fig. 1b indicates an opposite phenomenon. This shows

the shear thinning effects of the examined non–Newtonian fluid. Also from Figs. 1 and 2, it is

observed that as �h tends to zero from below, the convergence region enlarges.

Figure 3a and b provides the effects of a magnetic parameter for Newtonian and Oldroyd

8-constant fluids, respectively. From this figure, we observe that an increase in the magnetic

parameter decreases the velocity profile.

6.2 Plane Poiseuille flow

The velocity profiles of a plane Poiseuille flow ðC 6¼ 0Þ are shown in Figs. 4 to 7 for both a

Newtonian fluid (Fig. 4a) and an Oldroyd 8-constant fluid (Fig. 4b). For both cases, symmetric

parabolic flow profiles stretched between two zero boundary values are formed. The amplitudes
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of these parabolic profiles are strongly dependent on the magnitude of the pressure gradient,

and the flow directions are against the direction of the pressure gradient. For a1 ¼ 0:2 and

a2 ¼ 0:8 (Fig. 4b) the flow velocities are obviously much larger than those of the Newtonian

fluid (Fig. 4a). However, this result cannot be generalized to an Oldroyd 8-constant fluid with

other chosen material parameters.

From Fig. 5, we observe that in case of a Poiseuille flow the velocity profiles depend on the

material parameters a1 and a2. It is found from Fig. 5a that for fixed a2 ¼ 0:2 the velocity

decreases by increasing a1 ¼ 0:2 to 0.8. From Fig. 5b, we observe that the variation of a2 from

a2 ¼ 0:2 to 0.8 gives the increase in the velocity. In case of Poiseuille flow, the variation of �h

regarding convergence can easily be seen from Figs. 5 and 6. It is clear that as �h tends to zero

from below, the convergence region enlarges. It is obvious, from Fig. 7, that the magnetic

effects in this case are identical to that of the Couette flow case.

6.3 Generalized Couette flow

Figures 8 to 11 are prepared for a generalized Couette flow. For a favorable pressure gradient

ðC < 0Þ, i.e., its direction is opposite to the velocity U of the top plate, the velocity is positive

for both the Newtonian fluid (Fig. 8a) and Oldroyd fluid (Fig. 8b) across the entire cross

section. But for an adverse pressure gradient ðC > 0Þ, i.e., its direction is the same as that of U,

the velocity may either be all positive or a combination of a positive and negative regime for

both the Newtonian fluid and Oldroyd fluid depending on the value of the adverse pressure

gradient.

Figure 9 shows the effects of the material parameters a1 and a2 for the case of generalized

Couette flow. From Fig. 9a, it is noted that the curvature of the velocity profile decreases

by increasing a1 from a1 ¼ 0:2 to 0.8 for fixed a2 ¼ 0:2 and approaches to a linear dis-

tribution. Further, the velocity profile becomes more parabolic and increases when a2 varies

from 0.2 to 0.8 and a1 ¼ 0:2. From Figs. 9 and 10, we found identical behavior of �h in the

present case as for the cases of Couette and Poiseuille flows. Also from Fig. 11, it is

revealed that the magnetic parameter has the same influence in this case as for Couette and

Poiseuille flows.
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7 Conclusions

In this paper, the modeling for MHD flow of an Oldroyd 8-constant fluid is given. Some

analytic solutions of the governing nonlinear equations are discussed. These are the Couette

flow, flow between two parallel plates one of which is suddenly moved, Poiseuille flow and

generalized Couette flow which is a superposition of the Couette flow and the Poiseuille flow.

The solutions of these flows are obtained using HAM.

The major findings of the present study can be summarized as follows:

(i) The Oldroyd 8-constant fluid is the general case of the Newtonian, Maxwell, second grade,

Oldroyd 3 and 6-constant fluid. When ki ¼ 0 ði ¼ 1 to 7Þ, it reduces to a Newtonian fluid.

For k1 6¼ 0, kj ¼ 0 ðj ¼ 2 to 7Þ, it corresponds to a Maxwell fluid. When k1 ¼ 0, lk2 ¼ ea1,
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kk ¼ 0 ðk ¼ 3 to 7Þ it reduces to a second grade fluid. For k1 6¼ 0 6¼ k2,

kk ¼ 0 ðk ¼ 3 to 7Þ, it becomes an Oldroyd 3-constant fluid and for k6 ¼ k7 ¼ 0 it reduces

to an Oldroyd 6-constant fluid.

(ii) The solutions (52) obtained for Couette, Poiseuille and generalized Couette flows are valid

for all values of the non–Newtonian parameters a1 and a2 (involving l; k1 to k7) which is

different from the case of an Oldroyd 3-constant fluid. It is further remarked here that

solutions (52) for unidirectional steady flow of an Oldroyd 3-constant fluid (which involve

l; k1 and k2 only) are identical to that of the Newtonian fluid. It is also clear that Eq. (34)

for Oldroyd 3-constants (i.e., l; k1 and k2) corresponds to Newtonian fluid when k3 to k7

are zero in case of an Oldroyd 8-constant fluid. Further, the results obtained in the present

analysis can easily be compared to the results of Nield [19] which are valid for Newtonian

fluid by the appropriate choice of the involved parameters.

(iii) The increase of a1 ða2Þ decreases (increases) the velocity profile for the Poiseuille and

generalized Couette flows.

(iv) The velocity in case of an Oldroyd 8-constant fluid is larger (smaller) than that of a

Newtonian fluid case for a1 < a2 ða1 > a2Þ.
(v) The convergence region of the obtained results is strongly dependent upon the choice of �h.

Further, the convergence region is found to enlarge as �h tends to zero from below.

(vi) The increase in the magnetic parameter decreases the velocity.

Appendix

Here, we provide the values of different constants appearing in Sects. 3 and 4:

f1 ¼ b1b2; f2 ¼ 3b1ð1þ 3b2Þ; f3 ¼ 12b1ð1þ 2b2Þ;

f4 ¼
�1

sinh m
ðf1 sinh 5mþ f2 sinh 3mþ f3m cosh mÞ;
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2Þ

 �

þ l2 6m2ð�3þ b2
2Þ þ C2a2ð5� 6b2

2 þ b4
2Þ

 �

2

664

3

775;

l21 ¼
C2

256m4
8l7

64ð1þ 1
�hÞm4

C2 þ 4m2ð27a1 � 11a2Þð�1þ b2
2Þ

þ 3C2ð9a1 � a2Þa2ð�1þ b2
2Þ

2

8
>><

>>:

9
>>=

>>;

2

664

þ 12l10ða1 � a2Þ 12m2ð1þ b2
2Þ þ C2a2ð�3þ 6b2

2 þ 5b4
2Þ

 �

þ 48l8 ð15a1 þ a2Þm2 � C2a2ð5a1 þ 3a2Þ
� �

þ 48l8m2ð15a1 þ a2Þb2
2
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þ l2 4m2ð21a1 � 5a2Þð1þ b2
2Þ � C2a2

11a1 þ 29a2 þ 6ð�17a1 þ 25a2Þb2
2

þ 3ð�15a1 þ 7a2Þb4
2

2

64

3

75

8
><

>:

9
>=

>;

þ 4b2

6ð12l1 � 60l4 þ 7l5 þ 12l9Þm2a1 þ C2ð36l1 þ 72l4 þ 23l5 þ 36l9Þa2
2

� 2ð36l1 þ 12l4 þ 5l5 þ 36l9Þm2 þ C2ð36l1 � 120l4 þ 31l5 þ 36l9Þa1

� �
a2

8
><

>:

9
>=

>;

� 12C2a2 ð�4l1 þ 40l4 þ l5 � 4l9Þa1 þ ð4l1 þ 24l4 � 9l5 þ 4l9Þa2f gb3
2

þ 48C2l8a2ð5a1 þ 3a2Þb4
2 þ 12l6ða1 � a2Þ

12m2ð1þ b2
2Þ

þ C2a2ð�3þ 6b2
2 þ 5b4

2Þ

8
><

>:

9
>=

>;

3

75;

l22 ¼
3ða1 � a2ÞC2

16m4

4l2b2 6m2 þ C2a2ð�3þ b2
2Þ

 �

þ l5 12m2ð1þ b2
2Þ þ C2a2ð�3þ 6b2

2 þ 5b4
2Þ

 �

" #

;

l23 ¼
C2

2304m4
72l8

64ð1þ 1
�hÞm4

C2 þ 4m2ð25a1 � 9a2Þð�1þ b2
2Þ

þ C2ð25a1 � a2Þa2ð�1þ b2
2Þ

2

8
><

>:

9
>=

>;

2

64

þ 96l3m2ð45a1 � 29a2Þb2 þ 48l7ð1þ b2
2Þ

m2ð45a1 � 29a2Þ

þC2a2ð15a1 � 7a2Þð�1þ b2
2Þ

8
<

:

9
=

;

þ C2a2 60ða1 � a2Þðl6 þ l10Þ þ l2ð47a1 � 23a2Þf gð1þ 6b2 þ b4
2Þ

þ 4a2b2C2 ð60l1 � 360l3 þ 47l5 þ 60l9ÞÞa1 � ð60l1 � 168l3 þ 23l5 þ 60l9Þa2f g

þ 4a2b
3
2C2 ð60l1 þ 360l3 þ 47l5 þ 60l9ÞÞa1 � ð60l1 þ 168l3 þ 23l5 þ 60l9Þa2f g

#

;

l24 ¼
5ða1 � a2Þa2C4

192m4
4l2b2ð1þ b2

2Þ þ l5ð1þ 6b2
2 þ b4

2Þ
� �

;

l25 ¼
C2

384m4
24l4m2ð35a1 � 19a2Þb2 þ 4l8ð1þ b2

2Þ
3m2ð35a1 � 19a2Þ

þ C2ð35a1 � 11a2Þa2ð�1þ b2
2Þ

8
<

:

9
=

;

2

4

þC2a2 l7ð21a1 � 13a2Þð1þ 6b2
2 þ b4

2Þ þ 4b2

2l4ð35a1 � 11a2Þð�1þ b2
2Þ

þ l3ð21a1 � 13a2Þð1þ b2
2Þ

0

@

1

A

8
<

:

9
=

;

3

5;

l26 ¼
3ð15a1 � 7a2Þa2C4

640m4
4l4b2ð1þ b2

2Þ þ l8ð1þ 6b2
2 þ b4

2Þ
� �

;

l27 ¼ �ðl11 þ l14 þ l16 þ l18 þ l19Þ;
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l28 ¼
�1

sinh m

ðl11 þ l27 þ l12mþ l13m2Þ cosh mþ ðl14 þ l15mÞ cosh 3m

þðl16 þ l17mÞ cosh 5mþ l18 cosh 7mþ l19 cosh 9m

�ð1
2
l12 þ 2l11m� l20m2Þ sinh mþ ðl21 þ l22mÞ sinh 3m

þðl23 þ l24mÞ sinh 5mþ l25 sinh 7mþ l26 sinh 9m

2

66664

3

77775
:
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