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Summary. This paper deals with some steady unidirectional flows of an Oldroyd 8-constant magneto-
hydrodynamic (MHD) fluid in bounded domains. The fluid is electrically conducting in the presence of a
uniform magnetic field. Three nonlinear flows are produced by the motion of a boundary or by sudden
application of a constant pressure gradient or by the motion of a boundary and pressure gradient. The
governing nonlinear differential equations are solved analytically using homotopy analysis method
(HAM). Expressions for the velocity distribution are given. It is noted that for steady flow the solutions are
strongly dependent on the non—Newtonian and magnetic parameters. The MHD solutions for a Newto-
nian fluid, as well as those corresponding to the Oldroyd 3 and 6-constant fluids, a Maxwell fluid and a
second grade one, appear as limiting cases of our solutions. Finally, a physical interpretation of the results
is given with the help of several graphs.

1 Introduction

In recent years, there has been a great deal of interest in understanding the behavior of non-
Newtonian fluids as they are used in many engineering processes. Also, non—Newtonian fluids
are intensively studied by mathematicians, essentially from the point of view of differential
equations theory. On the other hand, in applied sciences such as rheology or physics of the
atmosphere, the approach to fluid mechanics is in an experimental setup leading to the mea-
surement of material coefficients. Moreover, in theoretically studying how to predict the
weather, ordinary differential equations represent the main tool. Further, since the failures in
the predictions are strictly related to a chaotic behavior, one may find it unessential to ask
whether the fluids are really Newtonian.

Rheological properties of fluids are specified in general by their so-called constitutive
equations. Amongst the many models which have been used to describe the non—Newtonian
behavior exhibited by these fluids, the fluids of differential type [1] and those of rate type [2]
have received special status. More recently, Baris et al. [3] considered an Oldroyd 8-constant
model to discuss the steady flow in a convergent channel. In [3] a series method is used for the
solutions involving linear ordinary differential equations. However, the solution in the more
general context of the nonlinear equation for magnetohydrodynamic flow of an Oldroyd
8-constant fluid is not given.

To the authors’ knowledge, no previous investigation has been reported to develope the
governing equations for steady magneto-hydrodynamic (MHD) flow of an Oldroyd 8-constant
fluid. In this work it is intended to construct the equations for an MHD flow of an Oldroyd
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8-constant fluid. The motion of power law fluids in the presence of a magnetic field has been
studied earlier by several authors [4]-[7]. Hayat et al. [8] examined some periodic MHD flows of
an Oldroyd 3-constant fluid. Examples of non—Newtonian fluids which might be conductors of
electricity were given by Sarpkaya [7], e.g., flow of nuclear slurries and of mercury amalgams,
and lubrication with heavy oils and greases. The objective of the present study is therefore to
discuss three fundamental flows (Couette, Poiseuille and generalized Couette) of an MHD
Oldroyd 8-constant fluid. The governing equations are the conservation of mass and the
conservation of linear momentum. The stress tensor from the constitutive equation is substi-
tuted in the momentum equation. The resulting nonlinear, ordinary differential equations are
solved analytically using HAM [9]-{15].

2 Governing equations

Here, we consider the flow of an electrically conducting fluid. The steady motion of the con-
ducting fluid in the Cartesian coordinate system is governed by the conservation laws of
momentum and of mass which are

p(V-V)V=V.T+J xB, (1)

divV = 0, 2)

in which V = (u,v,w) is the velocity vector, p the density, J the current density, B the total
magnetic field so that B = By + b, b is the induced magnetic field.

Neglecting the displacement currents, the Maxwell equations and the generalized Ohm’s law
are

V.B=0, VxB=yu,J, VxE=0, (3)

J=0(E+VxB), (4)

where p,, is the magnetic permeability, E is the electric field and ¢ is the electric conductivity.
We make the following assumptions:

— The quantities p, p,, and ¢ are all constant throughout the flow field.

— The magnetic field B is perpendicular to the velocity field V and the induced magnetic field is
negligible compared with the imposed magnetic field so that the magnetic Reynolds number
is small [16].

— The electric field is assumed to be zero.

In view of the above assumptions, the electromagnetic body force involved in Eq. (1) takes the
following form:

(J x B) = a[By(V - By) — V(By-Bo)] = —aB3V. (5)
For an Oldroyd 8-constant fluid, the Cauchy stress tensor T [17], [18]
T=-p1+8, (6)

in which p; is the pressure, I the identity tensor, and the extra stress S satisfies
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where A; is the first Rivlin-Ericksen tensor, u, A1, As, 23, A4,/5,4¢ and A; are the material
constants, and the contravariant convected derivative D/Dt for steady flow is as follows:

DS

— =(V-V)S—LS - SL”. 9

o= (VoY) ©)

We indicate the stress tensor and the velocity as
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Using Eq. (10), Eq. (2) is satisfied identically and Eqgs. (1), (5) and (6) to (10) yield the following
scalar equations:
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Making use of Egs. (16) and (18) we have
From Eqgs. (13), (15), (19) and (21), we get
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(25)

(26)

We note from Eq. (26) that p is independent of ¥ and 2z and is a function of x only. Thus

Eq. (25) becomes
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Using Egs. (14) to (17), (20) and (23) we get:
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In the above equations
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Making use of Eq. (29) in Eq. (27) we get the following nonlinear differential equation:
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3 Plane Couette flow

Let us consider the steady flow of an incompressible Oldroyd 8-constant fluid between two
parallel plates of infinite length at y = 0 and y = d. When the pressure p is constant (or there is
zero pressure gradient in the x-direction) the velocity is zero everywhere for the given flow field.
To maintain a velocity field, it is necessary to set one of the plates in motion. In this case, it is
assumed that the top plate is moving at velocity U; the bottom plate is at rest. In the absence of
a pressure gradient the governing equation (34) becomes

d*u du\?| (du\?d*u B3 au\?]”
d—szr (Salfa2)+ocloc2(@) ] (@) d—yszU 1+a2<@> ] =0 (35)
with the boundary conditions
u=0 fory=0,
u=U fory=d. (36)
Introducing the following dimensionless parameters:
u . o o :  oB}
u*zE, Z/*=%, a}‘:m7 a;:ﬁ, m*:u/(;z (37)

[T L)

the above governing boundary value problem after dropping ““*”” becomes

2
d*u du\?*| (du\*d*u du)\*
8y — oo [ — — | — —mfu|l — 1| =0 38
az (3 ocz)+omcz(dy> }(dy) aE " +oc2(dy) ; (38)
u=0 fory=0,
u=1 fory=1. (39)

We apply the homotopy analysis method to give an explicit, uniformly valid and totally ana-
lytic solution to the given problem. Using

_ Puly;p)
Oy?

as an auxiliary linear operator, where p € [0, 1] is an embedding parameter, let us construct the

Zu(y;p)] —m*u(y; ) (40)

zeroth-order deformation equation as

o . 9
(1 —p)gj[ﬁ(y;p) —uo(y)} :ph M‘F {(30{1 _ 062) T oo (8u(y,p)> }

Oy? oy
ouy; p)\*Pay; p) ouyip))*
) ) 2550 1 ? 41
X( oy ) Ry MU(y,p){ +ocz< o ) } (41)
with the boundary conditions
in which
wo(y) = B sinhmy (43)

as the initial approximation of %(y), where
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1
~ sinhm

P

and 7 is a nonzero auxiliary parameter.
When p = 0, it is straightforward that the solution of Egs. (41) and (42) is

w(y; 0) = uo(y)- (44)
When p = 1, Egs. (41) and (42) are the same as Eqgs. (38) and (39), provided
u(y; 1) = u(y). (45)

Therefore, according to Egs. (44) and (45), the variation of p from 0 to 1 is just the continuous
variation of %(y;p) from the initial approximation uo(y) to the unknown solution u(y) of
Eqgs. (38) and (39).

Assume that the deformation % (y;p) governed by Egs. (41) and (42) is smooth enough so
that

Hl(y) = du(y;p)

U Bk (k>1) (46)

p=0
namely the kth-order deformation derivative exists.
Using Eq. (44), it is straightforward to expand % (y;p) in power series of the embedding
parameter p as follows:

u(y;p) = uo(y) + i w(y)p", (47)
k=1
where
) = D, gz, (a9
p=0

Note that the zeroth-order deformation equation (41) contains a nonzero auxiliary
parameter 7. Thus, @(y;p) and wuk(y) are dependent upon the auxiliary parameter 7.
Obviously, % also affects the convergence rate and region of the series (47). Assume that 7
is so properly chosen that series (47) is convergent at p = 1. Then, due to Egs. (45) and
(47), we have the relationship

u(y) = uo(y) + iuk(y)- (49)
k=1

Differentiating k-times the zeroth-order deformation equations (41) and (42) with respect to p
and then dividing them by k! and finally setting p = 0, we have, due to definition (48), the kth-
order deformation problem

k—1 n (30(1 — ocz)u;
" " !
g[uk(y) - X}cukfl(y)] =h Uy + Zukfnfl Zun% 4 J
7=0 i=0 Fonog Yo up > up
=0 Tr=0 -

k=1 n P J
_m2 {ukl + oy Z Uk—p—1 Z u'yzﬂ (2%2 + oo Z u;fj Z u;iu;> } y (50)
i=0 J=0 r=0

7n=0
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uk(O) :uk(l) :0, (51)

where

)0, k<1,
=1, k>2
and prime denotes the derivative with respect to y.
Now solving Eq. (50) subject to the boundary conditions (51) up to second-order of

approximation, we obtain the three terms solution of the given problem (38) and (39) as
follows:

u(y) = uo(y) +ur(y) +uz(y), (52)
where
w1 (y) = Rlfi sinh 5bmy + fa sinh 3my + fsmy coshmy + f4 sinh my], (63)

_I2* | f5 sinh 9my +fi sinh Trmy + fy sinh 5my + fy sinh 3my + (fis +fom*y?)

uz\y) =
@) 2! x sinh my + my(fip cosh 5bmy + f11 cosh 3my + fi2 cosh my)

and the involving constants are given in the Appendix.

4 Plane Poiseuille flow

Here the fluid is again bounded between two parallel plates of infinite length at y = O and y = d,
which are at rest, but now a constant pressure gradient is applied in the x-direction to generate
motion. For this flow our governing equation is (34) and the boundary conditions are given by

u=0 fory=0,
u=0 fory=d. (65)

The dimensionless boundary value problem is of the following form:

2

du\?| fdu\*d*u dp du\*
30 — o [ Z9) [ (E9) 28 (2 + P 1 2 =0 56
(3o a2)+a1%2(dy>}(dy) i (mu+dx) +062(dy) ) (56)

u=0 fory=0,

diu
dy?

u=0 fory=1, (57)
where
u* u x* X y* Yy * o1
= -, = -, = —, o, = y
U d d ' (a/u)?

« [02) Ay ;(5 «2 O’B%
Uy =——75, D =—F75, M = . 58

° /vy wu/d wjd? %)

From Eq. (56) and boundary conditions (57), we choose
C
wo(y) = po—ey [coshmy + Py sinhmy — 1] (59)

as the initial approximation of %(y), where
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1 — coshm C_diS
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Let us construct the zeroth-order deformation equation

2 (). 2
(1 =p)ZLuly;p) —uo(y)] = ph [%;gp)-i- {(30(1 — o) + ooy <—8u((9yy,p)) }

X<au(y;p)>282u(y;p)—(mzﬁ(y;p)—l-(]){l+0€2 <M)2}2 (60)

Ay Oy? oy

with the boundary conditions
u(0;p) =0 =u(L;p). (61)
Differentiating k-times the zeroth-order deformation equations (60) and (61) with respect to p

and then dividing them by k! and finally setting p = 0, we have, due to definition (48), the
following kth-order deformation problem:

k=1 n (8o — ag)ut]
g[uk(y) - X}cukfl(y)] =n u;é—l + E u;clfnfl E :u;zfi i J
=0 i=0 oo Yo up > up
j=0  “r=0 -

k—1 n i J
2 / / / I I
—m L Up—1 + o E Uk—n—1 E w, ;| 2w + oy E U E (I
n=0 i=0 j=0 r=0

k—1 n i
! ! ! ! !
—oC E Wy_,_1 | 20, + oo Zunﬂ- E w_us | (62)
=0 i=0 =0

e (0) = (1) = 0. (63)
Now solving Eq. (62) subject to boundary conditions (63) up to second-order approximations,

we obtain the three terms solution of the given problem (56) and (57) which is given by Eq. (52)
in which

(11 + ly + lamy) coshmy + I3 cosh 3my + 14 cosh By
ui(y) =nh ) (64)
+(lg + Lo + lsmy) sinhmy + l7 sinh 3my + lg sinh 5my
(i1 + lor + ligmy + lizm?y?) coshmy + (I14 + lismy) cosh 3my
W) h2 +(lig + Ligmy) cosh By + lig cosh Tmy + 119 cosh 9my (65)
u\Y) =5y
2! — (312 — log + 2lyymy — lsomPy?) sinhmy + (lz1 + lsgmy) sinh 3my

+(l23 + l24my) sinh 5my + los sinh Tmy + log sinh 9my

and the different constants are given in the Appendix.

5 Generalized Couette flow

In this case the velocity distribution is dependent on both the motion of the upper plate and the
pressure gradient. For this flow the governing dimensionless problem consists of Eq. (56) and
boundary condition (39). We choose
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;=02

Fig. 1. Profiles of the dimensionless velocity w(y) for plane Couette flow with various values of

non—Newtonian parameters oy and og, respectively, for fixed values of 2z = —0.1 and m = 2
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Fig. 2. Profiles of the dimensionless velocity u(y) for plane Couette flow with various values of
non—Newtonian parameters o; and og, respectively, for fixed values of 7 = —0.01 and m =2

C
uo(y) = po—es [coshmy + Pg sinhmy — 1] (66)
as the initial approximation of u(y), where

(1 — coshm) + %
sinhm '

s =

We observe that expressions (59) and (66) are the same except f35 replaces fi5. Thus, the solutions
in case of a generalized Couette flow can be obtained by replacing f, with fi5 in Sect. 4.

6 Discussion of results
6.1 Plane Couette flow

In Fig. 1, the velocity profiles are plotted for various values of the non—Newtonian parameters
o and oy, respectively. From Eq. (34), we note that if a; = oy the Oldroyd fluid gives identical
results to that of a Newtonian fluid. Therefore, the solid curves in Fig. 1 corresponding to
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Newtonian fluid (o, = 0.2, o, = 0.2) Oldroyd fluid (er; = 0.2, o, = 0.6)
1 — m=1 1 — m=1
--m=2 --m=2
08 | . m=3 0.8 m=3
- m=4 m=4
0.6 0.6
S 4 =
0.4 0.4
0.2 0.2
Ol s Zmnnie” Oz n T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a y b y
Fig. 3. Profiles of the dimensionless velocity u(y) for plane Couette flow with various values of the
magnetic parameter m for fixed values of 2z = —0.1
Newtonian fluid (¢, = 0.2, &, = 0.2) Oldroyd fluid (¢, = 0.2, ot, = 0.8)

Fig. 4. Profiles of the dimensionless velocity u(y) for plane Poiseuille flow with various values of the
pressure gradient C for fixed values of # = —0.1 and m =2

o, =0.2
— =00 LT
050 | 2 &Z0a) o o= 2~
- O!zfgg T ~ ~
0.4 L=

o
R 7
s

0.3
0.2
0.1

Fig. 5. Profiles of the dimensionless velocity u(y) for plane Poiseuille flow with various values of the
non—Newtonian material parameters «; and oy, respectively, for fixed values of 7 = —0.1, C=-5 and
m=2

o1 = ag = 0.2 give the behavior of a Newtonian fluid. Furthermore, in the absence of a pressure
gradient and magnetic parameter, Eq. (34) becomes d?u/dy? = 0 for both the Newtonian and
Oldroyd fluids, and the flow velocity is linear. It is obvious in Fig. la that for an Oldroyd 8-
constant fluid, when the material parameter o; increases from o; = 0.2 to 0.8 and fixed
oe = 0.2, the flow profiles tend to approach the linear distribution; thus, the shearing can



Homotopy analysis of MHD flows 223

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a y b y
Fig. 6. Profiles of the dimensionless velocity w(y) for plane Poiseuille flow with various values of the
non—Newtonian material parameters «; and g, respectively, for fixed values of 7 = —0.1, C=-5 and
m=2
Newtonian fluid (¢, =0.2, o, = 0.2) Oldroyd fluid (e, = 0.2, &, = 0.8)

Fig. 7. Profiles of the dimensionless velocity wu(y) for Poiseuille flow with various values of the
magnetic parameter m for fixed values of # = —0.1 and C=—-4

unattenuately extend to the whole domain from the boundaries, corresponding to a shear
thickening phenomenon.

For ag = 0.2 t0 0.8 and fixed o; = 0.2 Fig. 1b indicates an opposite phenomenon. This shows
the shear thinning effects of the examined non—Newtonian fluid. Also from Figs. 1 and 2, it is
observed that as 7 tends to zero from below, the convergence region enlarges.

Figure 3a and b provides the effects of a magnetic parameter for Newtonian and Oldroyd
8-constant fluids, respectively. From this figure, we observe that an increase in the magnetic
parameter decreases the velocity profile.

6.2 Plane Poiseuille flow

The velocity profiles of a plane Poiseuille flow (C # 0) are shown in Figs. 4 to 7 for both a
Newtonian fluid (Fig. 4a) and an Oldroyd 8-constant fluid (Fig. 4b). For both cases, symmetric
parabolic flow profiles stretched between two zero boundary values are formed. The amplitudes
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of these parabolic profiles are strongly dependent on the magnitude of the pressure gradient,
and the flow directions are against the direction of the pressure gradient. For «; = 0.2 and
ae = 0.8 (Fig. 4b) the flow velocities are obviously much larger than those of the Newtonian
fluid (Fig. 4a). However, this result cannot be generalized to an Oldroyd 8-constant fluid with
other chosen material parameters.

From Fig. 5, we observe that in case of a Poiseuille flow the velocity profiles depend on the
material parameters «; and op. It is found from Fig. 5a that for fixed oo = 0.2 the velocity
decreases by increasing o; = 0.2 to 0.8. From Fig. 5b, we observe that the variation of ¢ from
ae = 0.2 to 0.8 gives the increase in the velocity. In case of Poiseuille flow, the variation of 7
regarding convergence can easily be seen from Figs. 5 and 6. It is clear that as 7 tends to zero
from below, the convergence region enlarges. It is obvious, from Fig. 7, that the magnetic
effects in this case are identical to that of the Couette flow case.

6.3 Generalized Couette flow

Figures 8 to 11 are prepared for a generalized Couette flow. For a favorable pressure gradient
(C < 0), i.e., its direction is opposite to the velocity U of the top plate, the velocity is positive
for both the Newtonian fluid (Fig. 8a) and Oldroyd fluid (Fig. 8b) across the entire cross
section. But for an adverse pressure gradient (C > 0), i.e., its direction is the same as that of U,
the velocity may either be all positive or a combination of a positive and negative regime for
both the Newtonian fluid and Oldroyd fluid depending on the value of the adverse pressure
gradient.

Figure 9 shows the effects of the material parameters o; and as for the case of generalized
Couette flow. From Fig. 9a, it is noted that the curvature of the velocity profile decreases
by increasing a; from oy = 0.2 to 0.8 for fixed ag = 0.2 and approaches to a linear dis-
tribution. Further, the velocity profile becomes more parabolic and increases when oy varies
from 0.2 to 0.8 and oy = 0.2. From Figs. 9 and 10, we found identical behavior of 7 in the
present case as for the cases of Couette and Poiseuille flows. Also from Fig. 11, it is
revealed that the magnetic parameter has the same influence in this case as for Couette and
Poiseuille flows.

Newtonian fluid (o, = 0.2, o, = 0.2) Oldroyd fluid (a; = 0.2, o, = 0.6)
—C=-5
_ c=52 //_\
. C=
1 .. C=5 - "/..
- e :
-~ s
0.5 ~ e
= - -7
_ -
(0] < -7
-0.5
02| e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a y b y

Fig. 8. Profiles of the dimensionless velocity u(y) for generalized Couette flow with various values of
the pressure gradient C for fixed values of 7 = —0.1 and m =1
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0,=0.2

— o;=0.2
- - 0(,1=0.4
0.8] |~ 04=0.6
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0.6
=
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a y b y
Fig. 9. Profiles of the dimensionless velocity w(y) for generalized Couette flow with various values of
the non—Newtonian material parameters «; and og, respectively, for fixed values of 7 = —0.1,C = -2
and m =1
Oh = 0.2

1{[—e=02
-0y =04
-0y =0.6
-0y =0.8

0.8

0.6
= =
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a y b y
Fig. 10. Profiles of the dimensionless velocity w(y) for generalized Couette flow with various values of
the non—Newtonian material parameters o and og, respectively, for fixed values of 7 = —0.01,C = -2
and m =1

7 Conclusions

In this paper, the modeling for MHD flow of an Oldroyd 8-constant fluid is given. Some
analytic solutions of the governing nonlinear equations are discussed. These are the Couette
flow, flow between two parallel plates one of which is suddenly moved, Poiseuille flow and
generalized Couette flow which is a superposition of the Couette flow and the Poiseuille flow.
The solutions of these flows are obtained using HAM.

The major findings of the present study can be summarized as follows:

(1) The Oldroyd 8-constant fluid is the general case of the Newtonian, Maxwell, second grade,
Oldroyd 3 and 6-constant fluid. When 4; =0 (¢ = 1 to 7), it reduces to a Newtonian fluid.
For 41 #0, 4, =0(j =2 to 7), it corresponds to a Maxwell fluid. When 1; = 0, uds = o,
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Newtonian fluid (¢; = 0.2, op = 0.2)
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Oldroyd fluid (a;; = 0.2, oy = 0.6)
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11. Profiles of the dimensionless velocity u(y) for generalized Couette flow with various values of

the magnetic parameter m for fixed values of 7 = —0.1,C = -2

(i)

(iii)
(iv)
V)
(vi)

App

J=0(k=3to7) it reduces to a second grade fluid. For 1 #0# A,
A =0(k =3 to 7), it becomes an Oldroyd 3-constant fluid and for 4 = 27 = 0 it reduces
to an Oldroyd 6-constant fluid.

The solutions (52) obtained for Couette, Poiseuille and generalized Couette flows are valid
for all values of the non—Newtonian parameters o; and oz (involving u, 4; to A7) which is
different from the case of an Oldroyd 3-constant fluid. It is further remarked here that
solutions (52) for unidirectional steady flow of an Oldroyd 3-constant fluid (which involve
u, 41 and 22 only) are identical to that of the Newtonian fluid. It is also clear that Eq. (34)
for Oldroyd 3-constants (i.e., i, 4; and 1) corresponds to Newtonian fluid when A3 to A7
are zero in case of an Oldroyd 8-constant fluid. Further, the results obtained in the present
analysis can easily be compared to the results of Nield [19] which are valid for Newtonian
fluid by the appropriate choice of the involved parameters.

The increase of o) (02) decreases (increases) the velocity profile for the Poiseuille and
generalized Couette flows.

The velocity in case of an Oldroyd 8-constant fluid is larger (smaller) than that of a
Newtonian fluid case for oy < ag (a7 > 02).

The convergence region of the obtained results is strongly dependent upon the choice of 7.
Further, the convergence region is found to enlarge as 7 tends to zero from below.

The increase in the magnetic parameter decreases the velocity.

endix

Here, we provide the values of different constants appearing in Sects. 3 and 4:

Si=
Ju

J5

biby, fo= 3b1(1 + Sbg), fa= 12b1(1 + 2b2),
-1
- (f1 sinh 5m + f5 sinh 3m + fym coshm),
sinhm

3
@flm‘*ﬁ?(wcxl — 70(2)0(2,
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1
fo = @mzﬁ% (1213501 — 190) + m2BH{(140f1 + 21f5) o1 — (44f1 + 13f3) o Joss],

4608 (1 + 1)1 + 48m? BT {(150f1 + 45f )y — (54f1 + 29f)arz }
fr = ﬁ (1800f; + 720f> + 47f5 — 60f4) oy ,

+m* %
—(72f1 + 336/ + 23f3 — 60f1) oz
3(60f1 + 72f2 + Ufs — 12f4)

512(1 + 4)fs + 4m? B

fs = ﬁ +(12f1 — 8815 — bf3 + 36f4)0(2 y

+ 3m* FH(80f1 + 726 + 156 — 20f1)on + (4811 — 8 — Ufs + 20f1 )z oz
1
Jo =35 Vs B — 2){6 + am 7],

J1o

= @ [fgm“ﬁ‘f(al - 062)062]7

v = o BB — o) {4+ 2}

32(1+3)fs + 2m2B{3(6fz + s — 6f1)on + (14fs — 13f3 + 18f1) o}

Ji2=— ,

16

+ mABH (B + 15/ + 11f3 — 10fa)ou + (19f1 + 9 — Ufs + 10fs)an bz
1 f5 sinh 9m + fi sinh 7m + f; sinh 5m + f3 sinh 3m + fym? sinh m

flS - )

sinhm

+ m(fip cosh 5m + f1; cosh 3m + fi2 coshm)

(1 — o) m? B oym? B (o — ) C?

by=——F——, b2= y by =Yoo,
32 12 384mb

Iy = —12b3(—1 + B3)[6m* + C*(—1 + B3)acz]
ly = 2403 (—1 + 5) [6m” + C*(—1 + f5)ocs]
ls = 9b3(1 + 33) [4m> + C*(—1 + f2)z)

ly = bsC2[1 + B3 (2 + B3)] oo,

ls = 24by(—1 + f2) [6m? + C*(~1 + f)as],

lg = —12b3fy(—1 + B5)[6m + C*(—1 + f3)z],



228 T. Hayat et al.
Iy = 9bs5(3 + B3) [4m® + C*(=1 + )],
lg = bgﬁzcz [5 + ﬁg(lo + ﬁ%)]o@y
lg=—(L +1l3+UL),

(I1 + lg + lam) coshm + I3 cosh 3m + 14 cosh bm

-1
lio =~ )
sinhm
+(lg + lsm) sinhm + l7 sinh 3m + Ig sinh 5m
, —32(1 + 1 4 2m? [21ay — 130 — 3(5oy + 30) B3]
o =—— |1
1 =g57 |5

—CPoy(—1 + B3)[~1loy + Taz + (7o + 1305) B3]

5(3l3 — l4 — 219)0(1
+ 36(7Z3 + lg)mzoq — 4(7l3 + 9l9)m2a2 + 02{ }O(z
+(9l3 — 1914 + 10[9)0(2

3(—2l10 —ly — 2l + 6l7)m2a1 + CZ(—ZZH) —bly — 2l + 17 + 19l8)a§
+ 4P,
+[(6l10 + 111y + 6lg + 14l7)m2 -+ Cz(2l10 + lo + 2l — 917 + 5l8)061]062

6(3[3 + lg)m2a1 + [2(7l3 - 3[9)7}’&2 —3C? (3[3 — bly + 2[9)0(1} 0o
— 263
+ 3C%(11l5 + 1914 + 21y)o3

+ 4C%a9 f3{ (—2l10 — Iy — 216 + 3l7 + blg)oy + (210 + Blz 4 26 + 2117 + 191g) oz}

— Czoczﬁg{(gl? + Bly + 2l9)0€1 + (3153 + 1914 — 2l9)0€2}
=211 (o1 — o) {6m* (=3 + fi5) + CPan(5— 685 + f2) } | »

" 32(1 + )% + CPoy(—1 + B5) [~ 7oy — 1303 + (11oy — Totp) 53]

16m?* f2

lig =
+ 2m? 31 (=5 + Th3) — 02(9 + 1363)]

+ 4l7 (9o + Tog)m® + C2{(—9l7 + 5lg)ay + (=317 + 191g) oz Yorg
3(2l1 + 6l + 15 + 2l9)m2051 + 02(2l1 — 2113 + 1914 + bls + 2l9)oc§

—4p,
- [(6l1 — 1415 + 1115 + 6l9)m2 + Cz(zll + 8lg — bly + 15 + 2l9)0€1]0€2
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— 402d2ﬂ§{(2l1 +9l3 + 5ly + 15 + 2l9)0€1 — (2l1 + I3 — 1914 + bls + 259)0(2}

+ CPa B3 {5(3l7 + I)oy + (97 + 191g)o}

+2(0 — a9) (g + l10) {6m* (—1 + 3p3) + CPon (1 — 665 +5p3)} |,

o [ 6m?(—1+3p3)

ay — og)C? 2

llS = % —4l2ﬁ2{3m2 + 02062(—1 + ﬂ%)} + l5{ ,
I + Coa(1 — 63 + 5p3)
64(1 + 1)1+ 4m? (270 — 11ap)(—1 + f3)

S P |

14 = g |00
+ 3C%(9u; — o) (—1 + )%y

(745l5 — 60l9)0€1
+ (8415 + 144lg)m>ay — (2015 4 144lg)m>ay + C? o
+(21l5 + 60l9)0€2

6(—12119 — Tly — 1216 + 60lg)m?oy + 3C%(—4l1g + 9l — 4(ls + 6lg))o3
—4p;

+ [2(3&10 + bl + 12(3l + lg))m2 - 302(—4l10 + lo — 4l + 40[8)051] oo

2m2(21a1 — 50(2)
+ 2658 —36lg(0y — o) (—2m> 4 Co) + I
+3CZOC2(717061 + 250(2)
- 4szx2ﬁ§{(—31l2 — 36lg + 12018)(}(1 — 36l10(0€1 — 062) + (23l2 + 36lg + 72lg)0€2}

+ CPo 3 {3619 (ot — otg) + I5(1 10ty + 2902) }

+4814(1 + p3){m* (1501 + o) + C2an(5ay + Bo) (=1 + 3) }

+120y (o1 — 09){12m*(1 + B3) + C2a(—5 — 65 +3B3) } |,

L — 3(oy — o) C? 41552{67”2 + CPap(—1 + 353)}
° 64m*' | 4 L {12m2 (1 + f) + CRon(—5 — 62 + 340} |
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lir =

lig

lig =

loo =
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, 64(1 + 1) % + 4m? (250 — o) (—1 + f3)

C
= 530407 | o

+ CP0p(260 — az)(1 + f2)°

m2(45cx1 — 290(2)
+ 9617m> (450; — 2905) o + 48l3(1 + f3)
+CP05(15a; — Tog)(—1 + f3)

+ C209 {60 (01 — 0t2) (11 + lg) + I5(4T0ty — 2302) }(1 + 65 + f3)

+ 40, B, C2{ (60110 + 4Tl5 + 60(lg — 6l7))ory — (60119 + 2315 + 60lg — 16817)ots }

+40£2ﬁ§02{(60l10 + 471y + 60(lg + 6l7))or — (60110 + 2312 + 60lg + 16817)os} |,

5(ot; — ot )orgC*

Toad [ HsBa(1+B3) +1a(1+ 665+ f2)],

3m?(350; — 19az)
2

c
=S80 241gm> (350 — 190) o, + 4l4(1 + f2)

+ C%(35; — 1lag)on(—1 + f3)

21g(350 — 11o)(—1 + f53)
+C%05¢ I3(210y — 1302) (1 + 65 4 f5) + 4P ,
+ I7(210y — 1302)(1 + f2)

3(150(1 — 70(2)0(204
640m*

[lsBs (1 + B2) + La(1 + 6% + B3)],

(01 — 09)C* [ 415y {3m” + CPoa(~1+ f3) }
1 — 42

16m*

+ 1 {6m? (=3 + f2) + (5 — 65 + )}

64(1 + 1) + 4m? (270 — 11op)(—1 + f3)

+ 3C2(90y — o)z (—1 + p2)*
+ 1200(on — o) {12m* (1 + B3) + C2a(—3 + 65 + 5p3) }

+ 4815 (1501 + o)m? — CPorg (5ary + Botz)| + 48lsm* (1501 + a2) 3
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1oy + 290 + 6(—170y + 2505) B2
+ 154 4m? (210 — Bo) (1 + f2) — CPay
+ 3(—150; + T ) B3

6(12l1 — 6004 + 7ls + 12[9)7%20!1 + 02(3611 + T2l4 + 2315 + 36[9)0(%

+4p,
- [2(36l1 + 1214 + bls + 36[9)%2 +C? (36[1 — 12004 + 3115 + 36[9)0(1} oo

— 12C% 0 {(—4ly + 401y + I5 — 4lg)ory + (411 + 241y — 5 + 4lg)o } o

12m%(1 + %)
+ 4802l80(2(5061 + 30(2)[33 + 12l6(061 - 062) s
+ CPoy(—3 4 6% 4 53)

l 3(0(1 —OCz)Cz 4l2[)’2{6m2+02a2(73+ﬁ§)}
22 — <, a1 3
16m* + 15 {12m2(1 + B3) + CPoz(—3 + 62 + 58%)}
) 64(1 + )™ + 4m? (2501 — 9us) (—1 + f3)
23 = 530ama | 708

+ C%(260 — o)z (—1 + p2)°

m2 (450(1 — 29062)
+ 9613m* (4501 — 290t5) By + 4817 (1 + f53)
+C205 (1501 — Tog)(—1 + B3)

+ C2a{60(cy — a2) (Ig + L1o) + Lo (4700 — 2302) }(1 4 665 + B3)

+ 40, B, C2{ (601, — 36015 + 4715 + 60lg))ory — (6011 — 16815 + 2315 + 60lg )tz }

+ 40(2ﬁ202{(60l1 + 36013 + 4715 + 60[9))0(1 - (60l1 + 168l3 + 2315 + 60[9)0(2} s

5(o; — o)t C*
b = 2OV (0 ) 11+ 6 4 ),

2

37)’22 (35(11 — 19062)
25 = Sgam

2414m? (350 — 1903) By, + 4lg(1 + f3)
+ C2(3ba; — 11ag)ag(—1 4 f3)

214(35a; — 11o)(—1 + B2)
+CP054 17(210y — 130) (1 + 682 + B2) + 4P, :
+ I3(21ay — 1309) (1 + %)

3(1501 — Tag)apC*

Iy = = [4185(1 + B3) + Is(1 + 663 + B3)],

lo7 = —(lu + g +lie + l1g + l19)7
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(li1 + o7 + liam + llgmz) coshm + (l14 + lism) cosh 3m

] -1 +(lig + Liym) cosh bm + l1g cosh Tm + 119 cosh 9m
28 —
sinhm 7(% lig + 2lyym — lgomz) sinhm + (l21 + lzzm) sinh 3m
+(l23 + 1247’7?,) sinh 5m + los sinh 7m + lsg sinh 9m
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