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Summary. The propagation of Love waves on a piezoelectric half space of polarized ceramics carrying
an elastic layer is studied from the three-dimensional equations of linear piezoelectromagnetism with full
electromagnetic coupling. Two cases when the elastic layer is a perfect conductor or a dielectric are
analyzed.

1 Introduction

The theory of linear piezoelectricity is under the quasi-static approximation [1]. In this the-
ory, although the mechanical equations are dynamic, the electromagnetic equations are static
and the electric field and the magnetic field are not coupled. Therefore it does not describe
the wave behavior of electromagnetic fields. Electromagnetic waves generated by mechanical
fields [2] need to be studied in the calculation of radiated electromagnetic power from a
vibrating piezoelectric device [3]-[6] and are also relevant in acoustic delay lines [7] and
wireless acoustic wave sensors [8] where acoustic waves produce electromagnetic waves or
vice versa. When electromagnetic waves are involved, the complete set of Maxwell’s equations
needs to be used, coupled to the mechanical equations of motion. Such a fully dynamic
theory has been called piezoelectromagnetism by some researchers [9], [10]. Forced thickness
vibration analysis of AT-cut and doubly rotated quartz plates and calculations of radiated
electromagnetic power were performed in [3]-[5]. Variational formulations of the theory of
piezoelectromagnetism were given in [9], [10]. The propagation of plane waves in a piezo-
electromagnetic medium was studied in [11]-{13]. Vibrations of a piezoelectromagnetic body
were studied in [14], [15]. Time-harmonic surface waves in a lithium niobate half space were
calculated numerically in [16]. Transient surface waves in a ceramic half space under a surface
load were analyzed in [17]. A fully dynamic piezoelectromagnetic surface wave solution
representing a generalization of the well-known Bleustein-Gulyaev quasistatic piezoelectric
surface waves [18], [19] was obtained in [20]. In this paper, we analyze the propagation of
piezoelectromagnetic Love waves over a half space of polarized ceramics carrying an elastic
layer of finite thickness. The equations of linear piezoelectromagnetism are summarized in
Sect. 2. The case when the elastic layer is an ideal conductor is studied in Sect. 3, and the
case of a dielectric layer in Sect. 4.
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2 Equations of piezoelectromagnetism

For a piezoelectric but nonmagnetizable dielectric body the three-dimensional equations of
linear piezoelectromagnetism [9], [10] consist of the equations of motion and Maxwell’s
equations

Tii,j + pfi = pl, (1)
By = —Bi, epHej=Di, Bi; =0, Di;=0,

as well as the following constitutive relations:

Ty = cijmSu — exijl,  Di = eyeSie + &, Bi = poli, @)
where
Syj = (wij +uji) /2. 3)

In Egs. (1)—(3), u; is the mechanical displacement vector, Tj; the stress tensor, Sj; the strain
tensor, F; the electric field, D; the electric displacement vector, B; the magnetic induction, and
H; the magnetic field. The coefficients ¢y, ex;; and ¢;; are the elastic, piezoelectric and dielectric
constants, y, the magnetic permeability of free space, ¢, the permutation tensor, p the mass
density and f; the body force. The summation convention for repeated tensor indices and the
convention that a comma followed by an index denotes partial differentiation with respect to
the coordinate associated with the index are used. The indices 7, j, k, [ assume 1, 2, 3. A
superimposed dot represents differentiation with respect to the time ¢.

3 Ceramic half space with an elastic metal layer

Consider a piezoelectromagnetic half space of polarized ceramics carrying an elastic layer
(Fig. 1). The surface at x2 = —h is traction free. In this section, we consider the case that the
elastic layer is a perfect conductor.

For ceramics poled in the x3-direction the material tensors in Eq. (2) are represented by the
following matrices under the compact notation [1]:

Free space
Elastic
h
plate
X
>
. . >
Piezoelectric Propagation
half space direction
X2

Fig. 1. A piezoelectric half space of polarized ceramics with an elastic layer



Love waves in piezoelectromagnetic materials 113

Ci1 Ci12 Ci13 0 0 0 0 0 €31
c c c 0 0 0 0 e
12 11 13 . . . . . 31 ey 0 0
Ci3 C13 C: e:
13 13 33 : 33 ’ 0 - 0 ’ (4)
0 0 0 C44 0 0 0 €15 0
0 0 &g
0 0 0 0 C44 0 €15 0 0
o 0 0 O 0 ce6 0 0 0

where cgs = (c11 — ¢12)/2. We consider planar motions with

u1=u2=0, us :u;;(xl,xz,t),
Ey = Ei(x1,22,1), Es=Ea(x1,22,t), E3=0, (5)
H1 :]‘[2207 H3 IHg(xl,xg,t).

From Eq. (3), the non-vanishing strain components are

Sy =usg, Ss5=usy, (6)

and then from Eq. (2) the non-vanishing components of T, D; and B; are

Ty = caausp —esly,  Ts = caausy — eskn, (7.1,2)
Dy =epsus1 +e11l1, Dy =eisuss + eiFa, (7.3,4)
Bs = poHs. (7.5)

The nontrivial ones of the equations of motion and Maxwell’s equations in Eq. (1) take the
forms:

caa(us 1 +usge) —eis(E11 + Eag) = piis, (8.1)
eis(us 11 +usge) +e1(Erg +Eqz) =0, (8.2)
Eyy —Ey13 = —poHs, (8.3)
Hss = eistizy +enk1, —Hzy = estiss + en1Fo. (8.4)
Eliminating the electric field components from Eqgs. (8.1,2) yields

Cas(Uz 11 + Uz 22) = plis, 9)

where Cuq = caq +€55/e11 is a piezoelectrically stiffened elastic constant. Differentiating
Eq. (8.3) with respect to time once and substituting from Egs. (8.4,5), we have

Hs 11 + Hs 20 = 11 ptgH3. (10)

Equations (9) and (10) govern the mechanical and magnetic fields. Once us and Hjs are
determined, E; and E> can be obtained from Eqgs. (8.4,5). Consider the following waves
propagating in the x1-direction with

ug = Ue™ % cos(& 101 — wt),

(11)

Hs = He "™ cos(& 121 — wt),

where U, H, &, &, n, and o are undetermined constants. Substitution of Eq. (11) into Eq. (9)
and Eq. (10) results in
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UZ

&E=8—pa?/eu =51~ ) >0,
T
, (12)
v
1 =& = enpo’ = (1 - 3) >0,
where
2 ; C. 1
vgzw—z, 7)%«:%, = ) (13)
& p &1l

In Eq. (13), v is the surface wave speed, vy is the speed of plane shear waves in the x;-direction,
and c is the speed of light in the x-direction. The inequalities are for decaying behavior from
xs = 0. From Eq. (7.1), Eq. (8.4) and Eq. (11) we obtain:

1 P
Ty = ——— (e11CuuwéUe™ 2" 4 e15& He ") cos(&201 — wt),
&110

1 » ,
E, = P (e1swé Ue™ 22 + noHe ™ 2) sin(&121 — wt),
11

which will be needed for the interface continuity conditions.

For a metal layer of ideal conductor the electric field vanishes everywhere. We use a
superimposed hat to represent the material parameters and undetermined constants. Similar to
Egs. (11)—~(14) we have

Ug = (U cos oo + V sin &2952) cos(&1x1 — wt), (15)
59 A 94 2 5, 0
$o = po”[Cu — & =Ei(5— 1), (16)
Ut
9 Ca4
Vp = —, 17
= (17)
Ty = (—544%2(} sin &y + CaaésV cos 52952) cos(&yr1 — wt). (18)
At the interface w3 =0 and the boundary xs = —h, we have the following continuity

and boundary conditions [21] which represent four homogeneous linear algebraic equations
for U, H, U and V:

US(O+) =U = U = U,g(oi),
1 _ B o a o _
T4(0") = —5(811044(052[]4' e1séiH) = CusV = T4(07),

(19)

1 ¢
E1(0+) = m(emwﬁUJr 172H) =0,

Ty(=h") = Gaa&oU sin Exh + é4u &5V cos Egh = 0.

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which leads to
the following dispersion relation that determines the wave speed:

Cas » N .
s <52 - 552 tan fh> =k*&, (20)

or

2 2 A 2 2
1/1—”—2<,/1—U—2—Cﬁ,ﬂf—g—l tanﬁlm/%—l):kz, 1)
C ?)T C44 UT 'UT
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where k% = €3 /(¢11C44) is a dimensionless number called the electromechanical coupling factor
which is usually smaller than one. We make the following observations from Eq. (21):

(1) The waves are dispersive.
(ii)) When k = 0, i.e., the material is not piezoelectric, Eq. (21) reduces to

2 A 2
\/1U26_44\/Dl tan & h —-1=0, (22)
VU C44 UT T

which is the well known equation that determines the speed of Love waves in elasticity [22].

(iii) When the speed of light goes to infinity Eq. (21) reduces to

2
\/1———% —1 tan & By o — 1= i, (23)
Ut

which is the dispersion relation for the quasistatic piezoelectric Love waves in a ceramic half
space carrying an elastic metal layer given in [23]. The existence of roots to Eq. (23) was
discussed in [23]. As shown in the numerical examples in [20], the inclusion of full electro-
magnetic coupling modifies the elastic wave speeds by small amounts.

4 Ceramic half space with an elastic dielectric layer

We now consider the case when the elastic layer between —/ < x5 < 0 is a non-piezoelectric
dielectric and carries at x5 = —h a thin electrode of ideal conductor with negligible mass and
negligible elastic stiffness. The presence of the electrode confines the electromagnetic waves
within the elastic later and the piezoelectric half space. In addition to the mechanical fields in
Eqgs. (15)—(18) there also exist the following electromagnetic fields in the elastic layer:

= (G cosh fjyws + H sinh ijya3) cos(& 121 — t), (24)

22 g2 A 2 2 v

i =& —enpyow” = Ei(l— 6_2)’ (25)
1

2 (26)

€11Ho

1 on 1 n N . .

E, = P (—Gijy sinh fjgwg — Hijy cosh fjgx2) sin(&101 — ot ). 2m
11

At the interface 23 = 0 and the boundary w2 = —h, we have the following continuity and

boundary conditions which represent six homogeneous linear algebraic equations for U, H, U,
V, G and H:

U3(0+) =U=U= U3(O_),
o L i
T4(0") = *m(811044wC2U+ e1sé1H) = CusV = T4(07),

1 1 . B
E,(07) = m(el5w51U+’12H) = —mHﬂz =E(07),
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Ty(—h") = (344&2U sin Egh + 644&2Vcos égh =0,
(28)

1 o R
E(-h") = e (Gl sinh figh — Hijs cosh fish) = 0.

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which yields

<172 +— 112 tanh nzh) (52 — % &y tan gh) = sz%, (29)

V2 ey 2 2
(”102+§11“162 tanhflh“lfé—z
-2 _lu 7—1 tan &1 —1 =K.
UT Cy4

We make the following observations from Eq. (30):

(30)

(i) The waves are dispersive.
(i1) When k = 0, i.e., the material of the half space is not piezoelectric, Eq. (30) reduces to

2
\/ 044\/ —1 taném/ —1=0,
UT C44
/ / / 2
5 all tanhflh 1—1}—
C (“11

which determines the speed of Love waves in elasticity and the speed of guided electromagnetic
waves in the dielectric layer [24].

(31)

(ii1) When the speed of light goes to infinity Eq. (30) reduces to

<1+—tanh£h (,/1——— 1/ —1tan£h,/ —1>_k2 (32)
&1 UT Ca4

which is the dispersion relation for quasistatic piezoelectric Love waves in a ceramic half space
carrying an elastic dielectric layer. This special result appears to be new.

5 Conclusion

Exact solutions are obtained from the three-dimensional equations of linear piezoelectro-
magnetism for Love waves in a ceramic half space carrying a metal or dielectric layer. The
solutions obtained reduce to a few known elastic, electromagnetic, and quasistatic piezoelectric
wave solutions in the literature as special cases.
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