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Summary. In this paper, we lay the groundwork for the development of micropolar (Cosserat) constitutive

relations for granular media within the framework of the theory of thermomechanics. Expressions for the

free energy and the dissipation function have been derived using a micromechanical analysis of a cluster

consisting of a particle and its immediate neighbors (i.e., ‘‘the first ring’’). Fluctuations in particle dis-

placements and rotations within this mesoscale assembly as well as fluctuations in strain and curvature are

represented by internal variables. Using thermomechanical techniques previously employed for classical

materials, a non-local micropolar model is constructed and then subsequently applied to a granular

material undergoing simple shear. The effects of the boundaries through particle rotations are discussed.

1 Introduction

Non-invasive experimental studies in conjunction with advanced discrete element simulations

have given remarkable insight into the evolution of microstructural properties of a deforming

granular material. In particular, studies on quasi-static deformations which have provided

benchmarks critical to the future development of micromechanical constitutive models include

those by Oda and co-workers [1]–[3], Bardet and Proubet [4], Rothenburg and Bathurst [5],

Howell et al. [6], and Calvetti et al. [7]. In recent years, our group has been engaged in the

development of micropolar models in which key experimental and numerical results on contact

and force anisotropy, void evolution and interparticle rolling resistance are addressed in an

effort to capture shear bands (Tordesillas and Walsh [8], Tordesillas et al. [9]). Our model relies

on a homogenization procedure which is based on the consideration of a mesodomain con-

sisting of a particle and its first ring of neighbors. The underlying assumption is that gradients

in the properties of two adjacent particles (e.g., gradients as expressed through differences in

rotations and in displacements) can be represented by their mean gradients. This assumption

has been adopted in previous micromechanical models (see, for example, Chang and Ma [10]).

However, there is mounting evidence which suggests that local fluctuations in both particle

displacements and particle rotations have a significant influence on the bulk behaviour of

granular media – even at low to moderate strains (Calvetti et al. [7], Kuhn [11], Kuhn and Bagi

[12], Radjai and Roux [13], Didwania et al. [14]). Another challenge confronting the devel-

opment of effective homogenization methods relates to the question of how friction-controlled

interparticle slip, as well as particle rearrangements (non-affine motions), are to be accounted
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for (Valanis [15], Peters [16]). These factors govern energy dissipation, and their proper char-

acterisation is critical to the development of robust constitutive models.

The objective of this study is to explore the efficacy of thermomechanics theory as a

framework for developing micropolar models of granular media. To achieve this, we apply

thermomechanical techniques which are based upon the use of internal variables: in this case,

we use internal variables to represent the aforementioned kinematic fluctuations. While the

underlying ideas date back to the pioneering work of Ziegler [17], and Collins and Houlsby [18],

the procedure we adopt here follows that of Valanis [19]. Other important contributions are due

to Houlsby and Puzrin [20], and Collins and co-workers [21], [22] for the use of thermome-

chanics principles to establish a hierarchy of classical plasticity models for geomaterials. We

refer the reader to the recent review by Collins and Hilder [22] and the references cited therein

for a comprehensive background on the developments in this field.

In this paper, the theory of thermomechanics is applied to a micropolar continuum to

capture the effects of particle rotations within a granular assembly. The dominant influence of

particle rotations on the bulk behavior of granular media is now well established. Our earlier

paper Tordesillas and Walsh [8] presents a summary of the effects of rotations as established

from experiments and discrete element simulations.

So how does the so-called ‘‘thermomechanics approach’’ differ from conventional constit-

utive developments? The standard practice in mechanics is to develop material models by

initially proposing constitutive relations, and then imposing the laws of thermodynamics to

these relations. The thermomechanics approach, however, guarantees the fulfillment of these

laws at the outset by proceeding in the reverse manner: that is, by constructing constitutive

models directly from the Laws of Thermodynamics. To characterize the material, internal

variables are used in addition to the normal state variables. For example, the internal variables

may take the form of plastic strain or generalized stress variables (Houlsby and Puzrin [20]). In

Valanis [19], the internal variables are linked to the non-affine motions of the particle assembly,

expressed through local fluctuations in the particle displacements.

In this paper, the internal variables represent fluctuations in particle displacements and rota-

tions, as well as fluctuations in strain and curvature. The rearrangements of the constituent

particles during the material’s deformation are reflected in the changes in the internal variables.

The evolution of the internal variables, in turn, reflects the dissipation of energy in thematerial. In

a similar fashion to the method proposed by Valanis [19], the constitutive relations in the current

formulation depend on both the internal variables and their gradients. This is because gradient

theories can predict the appearance of localized deformation under uniform boundary conditions

– a well-known characteristic of geomaterials. Finally, we note that although our current for-

mulation focuses on the aforementioned kinematic fluctuations, there is scope to build on the

proposed approach to account for other important state variables in future model refinements.

The following section discusses the physical interpretation of the proposed internal variables.

In Sect. 3, generalized constitutive relations are developed for a micropolar continuum using

thermomechanical principles. It is shown that the constitutive relations obey the laws of con-

servation of linear and angular momentum for micropolar continua. A range of micropolar

constitutive models may be derived from the general constitutive laws by specifying relations

for the free energy and the dissipation function. In Sect. 4, we derive specific expressions for the

free energy and the dissipation function from a micromechanical analysis of a mesodomain

comprising of a particle and its immediate neighbors. To keep the analysis simple, we neglect

the evolution of contact anisotropy. Results for a granular assembly undergoing a simple shear

deformation are presented in Sect. 5, with the effects of the boundaries explored by examining

the particle rotations.

146 S. D. C. Walsh and A. Tordesillas



2 Internal variables from local variations

Continuum mechanics is based on the premise that the physical nature of real objects can be

represented mathematically by constitutive laws acting on material bodies. A set of constitutive

laws defines a particular material’s response to a given input process, typically the stress or

strain history of the material. The material’s response is described through constitutive vari-

ables that are assigned to each point in the body.

Ideally, the values of the constitutive variables given to each point should describe the exact

state of the object to be modelled. In reality, however, these constitutive variables may fluctuate

on small scales in a way that is either difficult to deal with mathematically or impossible to

observe experimentally. It is only possible, therefore, to determine the values of these con-

stitutive variables on a macroscopic scale and, using that information, assign a statistical

average to each point in the body. In this case, the constitutive variables should not be thought

of as referring to a particular point in the body. Instead, they should be considered indicative of

the state of a small region of the object, i.e., a ‘‘mesodomain’’ associated with that point.

In the event that the constitutive variables undergo large variations within the mesodomain,

the average constitutive response of the domain may not be indicative of the actual behavior of

the object. In this case additional variables, which are so-called internal variables, may be

required to properly describe the state of the body. To define these internal variables, first

consider a field A0 which represents the actual values of a constitutive variable within a cubic

mesodomain DðXiÞ centred around a point Xi. A0 is a function of two variables: the location of

the mesodomain Xi and the position xi relative to the centre of the mesodomain D. These co-

ordinate systems are illustrated in Fig. 1. The field A0 can be expressed as

A0ðXi;xiÞ ¼ AðXi;xiÞ þ BðXi;xiÞ; ð1Þ

where AðXi;xiÞ is a linearly varying field made up of the average/macroscopic value of A0 and

its material gradient,

X1

x1

x3

x3

X2

X3

(Xi)

Fig. 1. The Xi-coordinates are used
to indicate a location within the body

B. The xi-coordinates for a mesodo-
main DðXiÞ indicate a location rela-

tive to the centre of the mesodomain
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AðXi;xiÞ ¼ �AðXiÞ þ �A;iðXiÞxi; ð2Þ

and BðXi;xiÞ represents the remaining microscale variation in the field A0ðXi;xiÞ. A two-

dimensional example is given in Fig. 2. Since

�A ¼ 1

VD

Z

VD

A0dV ;

¼ 1

VD

Z

VD

�AðXiÞ þ �A;iðXiÞxi þ BðXi;xiÞ
� �

dV ;

¼ 1

VD

Z

VD

�AðXiÞdV þ 1

VD

Z

VD

BðXi;xiÞdV ;

ð3Þ

it follows thatZ

VD

BðXi;xiÞdV ¼ 0; ð4Þ

where VD is the volume of mesodomain DðXiÞ, and the integrals
R

VD

dV are made relative to the

local coordinate system xi such that dV ¼ dx1dx2dx3:

The internal variation B is a function of both the location of the mesodomain Xi and the

position within that domain xi. To obtain an expression for the internal variation in terms of Xi

alone, a weighting function /ðxiÞ is introduced, such thatZ

VD

/ðxiÞdV ¼ 1

VD
: ð5Þ

Using the weighting function, a variable B̂ is defined as

B̂ðXiÞ ¼
Z

VD

BðXi;xiÞ/ðxiÞdV : ð6Þ

In this way, A0 is represented at each point Xi by the macroscopic component of the field �A, and

a variable representing the internal variation of that field within the associated mesodomain, B̂.

In this paper, two sets of internal variables are introduced to describe the local particle

motions. One describes the internal fluctuations in the displacement field, while the other

describes the internal fluctuations in the rotation field. Concentrating on the displacement for
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Fig. 2. The field A’ can be divided into two components: AðXi; xiÞ the linearly varying field made up of
the average/macroscopic value of A’ and its material gradient, and BðXi;xiÞ representing the remaining

microscale variation
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the time being, an internal variable field qi is defined as the difference between the actual

displacement field u0i and the field ui:

qi ¼ u0i � ui; ð7Þ

where ui is composed of the average displacement for the domain �ui ¼ ð1=VDÞ
R

VD

u0idv, and its

material gradient, namely

ui ¼ �ui þ �ui;jxj: ð8Þ

As mentioned earlier, particles in a micropolar material can rotate independently of their

neighborhood. Consequently, a rotation field x0i is needed, in addition to the displacement field

u0i, to describe the particle motion. The field x0i gives the rotation of the particle about its own

centre of mass. It can be related to the displacement field via

x0i ¼ �
1

2
eijku0j;k þ w0i; ð9Þ

where w0i is the particle spin.

In order to develop a thermomechanical approach for micropolar materials, a field mi is

introduced that describes the internal variation of the rotation field in the mesodomain. Similar

to the internal displacement field, the internal rotation field can be defined in terms of the actual

rotation x0i and the field xi:

mi ¼ x0i � xi: ð10Þ

Like the field ui defined in Eq. (8), the field xi is composed of the average rotation for the

microdomain �xi and its gradient �wi;j,

xi ¼ �xi þ �xi;jxj; ð11Þ

where �xi ¼ ð1=VDÞ
R

VD
x0idv. The constitutive relations derived in the next section depend on

the macroscopic and local rotation fields, as well as their gradients. Gradient theories, like this

one, can describe the appearance of localized deformation under uniform boundary conditions.

Such localized deformation is common in geotechnical materials: examples include the for-

mation of shear bands in granular materials (Oda and Kazama [2]) and the appearance of

bands of localized cracking in rocks and concrete (Read and Hegemeier [23]).

For a micropolar material, the state of deformation is expressed in terms of a microstrain

tensor e0ij and a curvature tensor j0ij as follows:

e0ij ¼ u0i;j þ eijkx
0
k; ð11Þ

j0ij ¼ x0i;j: ð12Þ

The average microstrain and curvature tensors are given by

�eij ¼
1

VD

Z

VD

e0ijdV ; ð13Þ

�jij ¼
1

VD

Z

VD

j0ijdV : ð14Þ

Two additional tensors gij and fij are defined as

gij ¼ e0ij � �eij; ð15Þ

nij ¼ j0ij � �jij: ð16Þ
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Interparticle motions, which are governed by friction and rolling resistance, are accompanied

by energy dissipation in a granular material. These motions consist of interparticle slip and

interparticle rolling which can be expressed in terms of the microstrain and curvature (Torde-

sillas and Walsh [8]). Discrete element simulations reveal a strong correlation between energy

dissipation and regions of nonuniform deformation (e.g., Kuhn [11]), which suggest that fluc-

tuations in microstrain and/or curvature may have a stronger influence on energy dissipation

than the average values, �eij and �jij. Accordingly, in this analysis, the energy dissipation is linked

to gij and fij. Additional dissipative effects that occur in response to changes in �eij and/or �jij can

also be readily incorporated in the present analysis but this is beyond the scope of this paper.

3 Constitutive relations from thermodynamics

Constitutive relations incorporating the previously defined internal variables can be found from

the laws of thermodynamics. First consider the internal energy inside the mesodomain. The

total internal energy of a mesodomain UDðXiÞ can be expressed as

UDðXiÞ ¼
Z

VD

UðXi;xiÞdV ; ð17Þ

where UðXi;xiÞ is the local internal energy density.

From the First Law of Thermodynamics, a variation in the internal energy for a mesodomain

is equal to the variation in the work done on the mesodomain dWD and the heat flow into that

domain dQD. Thus

dUD ¼ dWD þ dQD: ð18Þ

The heat flow into the domain can be written as

dQD ¼ �
Z

SD

hinidS; ð19Þ

where hi is the heat flux and ni represents the components of a unit vector normal to the

surface of the mesodomain SD. The work done on the domain may be expressed as follows:

dWD ¼
Z

sD

T0idu0i þ X0idx0i
� �

dSþ
Z

VD

fid �ui þ gid �xif gdV ; ð20Þ

where du0i is a variation in the actual displacement field on the surface of the mesodomain, dx0i
is a variation in the actual rotation field on the surface of the mesodomain, T0i represents the

applied traction, X0i represents the applied couples, d �ui is a variation in the average displace-

ment field, d �xi is a variation in the average rotation field, fi is the body force field and gi is the

body moment field. The fields fi and gi are assumed to be constant within the mesodomain.

As noted earlier, energy dissipation is linked to the changes in the fields gij and fij. This

relationship may be introduced through the Second Law of Thermodynamics, expressed by the

Clausius-Duhem inequality. The Clausius-Duhem inequality ensures that the external entropy

supply for any domain is less than or equal to the entropy production inside the domain.

Ignoring the effects of body heating, the inequality may be written asZ

v

ds dV � �
Z

s

hi

h
ni dS; ð21Þ
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where s is the entropy and h is the temperature (Lubliner [25]). Rearranging the inequality and

using Gauss’ theorem, it can be shown that

Z

v

dsþ hi

h

� �
;i0

( )
dV � 0; ð22Þ

where the subscripted primed indices represent derivatives with respect to the local coordinate

system, i.e., @ðÞ=@xi ¼ ðÞ;i0 . As the inequality can be applied to any domain, regardless of its

size, it can be said that

hdsþ hi;i0 �
hih;i0

h
� 0: ð23Þ

Houlsby and Puzrin [20] note that, in slow processes, the dissipation function D ¼ hdsþ hi;i0

is much larger than the term �hih;i0=h. For this reason it is argued that the expression derived

from the Clausius-Duhem inequality in Eq. (23) can be replaced by

D ¼ hdsþ hi;i0 � 0: ð24Þ

Here it is assumed that the dissipation function D can be split into two components, i.e.,

D ¼ Dg þ Df; Dg describes the dissipation due to the field gij,

Dg ¼ Pijdgij; ð25Þ

while Df describes the dissipation due to the field fij,

Dn ¼ Nijdnij; ð26Þ

where Pij and Nij are the dissipative stress and couple stress fields, respectively. Moreover, it is

stipulated that

D > 0 ð27Þ

if any of the following are true:

kPijk > 0; ð28Þ

kdgijk > 0; ð29Þ

kNijk > 0; ð30Þ

or

kdnijk > 0; ð31Þ

where for a tensor Aij; kAijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AijAij

p
:

Applying Gauss’ divergence theorem to Eq. (19) and then combining this with Eqs. (18), (20)

and (24) gives the following expression:

dUD ¼
Z

sD

T0idu0i þ X0idx0i
� �

dSþ
Z

VD

fid �ui þ gid �xi þ hds� Df gdV ; ð32Þ

Next a stress field r0ij and a couple stress field l0ij are introduced such that

T0i ¼ r0jinj; X
0
i ¼ l0jinj: ð33Þ

The average stress �rij and couple stress �lij are defined as

�rij ¼
1

VD

Z

VD

r0ijdV ; �lij ¼
1

VD

Z

VD

l0ijdV : ð34Þ
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Using these fields the internal variation in the stress and couple stress can be written as

Qij ¼ r0ij þ rij; Mij ¼ l0ij � lij; ð35Þ

where the stress field rij and the couple stress field lij are defined locally as

rij ¼ �rij þ �rij;kxk; lij ¼ �lij þ �lij;kxk: ð36Þ

Equation (32) now yields:

dUD ¼
Z

SD

r0jinjdu0i þ l0jinjdx0i

n o
dSþ

Z

VD

fid �ui þ gid �xi þ hds� Df gdV

¼
Z

VD

r0jidu0i þ l0jidx0i

h i
; j 0
þ fid �ui þ gid�xi þ hds� D

� 	
dV : ð37Þ

Examining the terms inside the square brackets leads to:Z

VD

r0jidu0i þ l0jidx0i

h i
; j0

dV¼
Z

VD

ð�rji; j þ Qji; j0 Þðd �ui þ d �ui; kxk þ dqiÞ
�

þ ð�rji þ �rji;kxk þ QjiÞðd �ui;j þ dqi;j0 Þ

þ ð�lji;j þMji;j0 Þðd�xi þ d�xi;kxk þ dmiÞ

þð�lji þ �lji;kxk þMjiÞðd �xi;j þ dmi; j0 Þ
�

dV

¼
Z

VD

ð�rji;j þ Qji;j0 Þd �ui þ Qji;j0 ðd �ui;kxk þ dqiÞ
�

þ rjid �ui;j þ ð�rji þ �rji;kxk þ QjiÞdqi;j0

þ ð�lji;j þMji;j0 Þd �xi þMji;j0 ðd �xi;kxk þ dmiÞ

þ �ljid �xi;j þ ð�lji þ �lji;kxk þMjiÞdmi;j0
�

dV ; ð38Þ

where use has been made of the following:Z

VD

qidV ¼
Z

VD

midV ¼ 0 ð39Þ

andZ

VD

QijdV ¼
Z

VD

MijdV ¼ 0: ð40Þ

The ‘‘local’’ derivative of the internal displacement field, qi;j0 , can be related to derivatives of the

global coordinate system Xi by considering the actual displacement field u0i. Note that for the

actual displacement the following is true:

@u0i
@Xj

¼ @u0i
@xj

ð41Þ

or

@ �ui

@Xj

þ @qi

@Xj

þ @
�ui;k

@Xj

xk ¼
@qi

@xj

þ �ui;k
@xk

@xj

; ð42Þ

where the �ui term has vanished on the right-hand side of Eq. (41) as �ui is constant in xi.

Therefore

152 S. D. C. Walsh and A. Tordesillas



�ui;j þ qi;j þ �ui;jkxk ¼ qi;j0 þ �ui;j; ð42Þ

or

qi; j0 ¼ qi; j þ �ui; jkxk: ð43Þ

In a similar fashion, it can also be shown that

mi; j0 ¼ mi;j þ �xi; jkxk; ð44Þ

Qij; k0 ¼ Qij; k þ �rij; klxl; ð45Þ

and

Mij; k0 ¼ Mij; k þ �lij; klxl: ð46Þ

Currently the equation for the internal energy is a function of the internal fields qi, mi, Qij

and Mij. The equations that follow can be greatly simplified however by introducing the

variables q�i ,m�i , Q�ij and M�ij where

q�i ¼ qi þ �ui;kxk; ð47Þ

m�i ¼ mi þ �xi;kxk; ð48Þ

Q�ij ¼ Qij þ �rij;kxk; ð49Þ

and

M�ij ¼ Mij þ �lij;kxk; ð50Þ

Note that q�i;j ¼ qi;j0 , m�i;j ¼ mi;j0 , Q�ij;k ¼ Qij;k0 and M�ij;k ¼ Mij;k0 . Also, the two variables gij and

fij may be written as

gi; j ¼ q�i; j þ eijkm�k; ð51Þ

ni; j ¼ m�i; j: ð52Þ

With the identities in Eqs. (47)–(50), the variation in the internal energy can be expressed as

dU ¼ ð�rji;j þ fiÞd �ui þ Q�ji;jdq�i þ �rjid �ui;j þ Q�jidq�i;j þ ð�lji;j þ giÞd �xi þM�ji;jdm�i

þ �ljid �xi;j þM�jidm�i;j þ hds� D: ð53Þ

The local internal energy density is a function of the displacement and displacement gradient,

the rotation and the rotation gradient, the newly defined q�i and m�i and their gradients, and of

the entropy, i.e.,

U ¼ Uð �ui; �ui;j; q�i ; q�i;j; �xi; �xi;j; m�i ; m�i;j; sÞ: ð54Þ

As it stands, the expression for the internal energy in Eq. (54) violates the principle of objec-

tivity. Due to the dependence on the displacement, the model predicts that the internal energy

will vary with a change in the reference frame. One way to correct this is to remove the

dependence on the displacement. However, the same result can be obtained, along with other

insights into the material behavior, by stipulating that for all infinitesimal rigid body motions

the internal energy remains constant, i.e.,

dU ¼ 0: ð55Þ
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From Eq. (54), the variation of the local internal energy density can also be expressed as

dU ¼ @U

@ �ui

d �ui þ
@U

@ �ui;j
d �ui;j þ

@U

@q�i
dq�i þ

@U

@q�i;j
dq�i;j þ

@U

@ �xi

d�xi þ
@U

@ �xi;j
d�xi;j

þ @U

@m�i
dm�i þ

@U

@m�i;j
dm�i;j þ

@U

@s
ds: ð56Þ

Under pure heating conditions, the internal variables, the displacements and the rotations

remain constant. Comparing Eq. (53) and Eq. (56) leads to

@U

@s
¼ h: ð57Þ

Granular materials typically undergo isothermal deformation. Under these conditions, the

free energy is a more useful energy function to use in place of the internal energy, as the free

energy is expressed in terms of the temperature of the system rather than the entropy.

Like the internal energy, the total free energy of a mesodomain wD can be expressed as

wDðXiÞ ¼
Z

VD

wðXi;xiÞdV ; ð58Þ

where wðXi;xiÞ is the free energy density.

As noted in Collins and Houlsby [17], the free energy can be expressed in terms of the internal

energy using a Legendre transform. The two functions are related by

w ¼ U� hs: ð59Þ

Under isothermal conditions

dw ¼ dU� hds; ð60Þ

and consequently

dw ¼ ð�rji;j þ fiÞd �ui þ Q�ji;jdq�i þ �rjid �ui;j þ Q�jidq�i;j þ ð�lji;j þ giÞd �xi þM�ji;jdm�i

þ �ljid �xi;j þM�jidm�i;j � D:
ð61Þ

The local free energy is a function of the state and internal variables, which now include h:

w ¼ wð �ui; �ui;j; q�i ; q�i;j; �xi; �xi;j; m�i ; m�i;j; hÞ: ð62Þ

At constant temperatures, the variation of the free energy can be written as

dw ¼ @w
@ �ui

d �ui þ
@w
@ �ui;j

d �ui;j þ
@w
@q�i

dq�i þ
@w
@q�i;j

dq�i;j

þ @w
@ �xi

d �xi þ
@w
@ �xi;j

d �xi;j þ
@w
@m�i

dm�i þ
@w
@m�i;j

dm�i;j: ð63Þ

By combining the two expressions for the variation of the free energy density, Eq. (61) and

Eq. (63), and enforcing the condition that the dissipation be greater than zero if kdgijk > 0 or

kdnijk > 0, then

�rji;j þ fi �
@w
@ �ui


 �
d �ui þ �rji �

@w
@ �ui;j


 �
d �ui;j þ Q�ji;j �

@w
@q�i


 �
dq�i þ Q�ji �

@w
@q�i;j

" #
dq�i;j

þ �lji;j þ gi �
@w
@ �xi


 �
d �xi þ �lji �

@w
@ �xi;j


 �
d �xi;j þ M�ji;j �

@w
@m�i


 �
dm�i þ M�ji �

@w
@m�i;j

" #
dm�i;j > 0:

ð64Þ
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Increments in the state and internal variables can be chosen that will violate this inequality

unless the following equations hold:

�rji �
@w
@ �ui;j

¼ 0; ð65Þ

�rji;j þ fi �
@w
@ �ui

¼ 0; ð66Þ

Q�ji;j �
@w
@q�i
¼ 0; ð67Þ

�lji �
@w
@ �xi;j

¼ 0; ð68Þ

and

�lji;j þ gi �
@w
@ �xi

¼ 0: ð69Þ

It may also be shown that

Q�ji �
@w
@q�i;j

 !
dq�i;j þ M�ji;j �

@w
@m�i

� �
dm�i þ M�ji �

@w
@m�i;j

 !
dm�i;j > 0; ð70Þ

if dgij

�� �� > 0 or dfij

�� �� > 0.

Comparing Eq. (61) and Eq. (63) and enforcing the results in Eqs. (65)–(69) yields:

Q�ji �
@w
@q�i;j

� Pij

 !
dq�i;j þ M�ji;j �

@w
@m�i

þ eijkPkj

� �
dm�i þ M�ji �

@w
@m�i;j

� Nij

 !
dm�i;j ¼ 0: ð71Þ

Equation (71) must hold true for all arbitrary variations dq�i;j, dm�i and dm�i;j satisfying the

dissipation condition in Eq. (27). In addition, for all variations of q�i;j and m�i where dm�i;j ¼ 0

and

dgi;j ¼ dq�i;j þ eijkdm�k ¼ 0; ð72Þ

the following is true: Pij ¼ 0 and

M�ji;j �
@w
@m�i

� eijk Q�kj �
@w
@q�j;k

 ! !
dm�i ¼ 0: ð73Þ

As any number of dq�i;j and dm�i can be chosen to satisfy Eq. (72), Eq. (73) can only be true if

M�ji;j �
@w
@m�i

¼ eijk Q�kj �
@w
@q�j;k

 !
; ð74Þ

in which case Eq. (71) becomes

Q�ji �
@w
@q�i;j

� Pij

 !
dgij þ M�ji �

@w
@m�i;j

� Nij

 !
dfij ¼ 0: ð75Þ

Equation (75) may be rewritten as

ðQ� PÞ � dq ¼ 0; ð76Þ
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where Q, P and q are 18-vectors defined as

Q ¼ Q�1i �
@w
@m�i;1

; . . . ;Q�3i �
@w
@m�i;3

;M�1i �
@w
@m�i;1

; . . . ;M�3i �
@w
@m�i;3

" #T

; ð77Þ

P ¼ Pi1; . . . ;Pi3;Ni1; . . . ;Ni3½ �T ð78Þ

and

q ¼ gi1; . . . ; gi3; fi1; . . . ; fi3½ �T : ð79Þ

Equation (76) is a statement that ðQ� PÞ is orthogonal to the variation in q. However, it would

be more useful to show that Q ¼ P. This result is often introduced by invoking Ziegler’s

orthogonality postulate (see, for example, Collins and Houlsby [18], Houlsby and Puzrin [20]

and the discussion in Ziegler [17]). Here the use of virtual displacements makes it possible to

show this result without referring to Ziegler’s postulate. This was originally shown by Valanis

[15], [19] for the classical continuum case. An alternative proof, applicable to both classical and

micropolar continua, is given in Appendix A. Consequently, Eq. (75) can only be satisfied for

all admissible dgij and dfij if all of the following relations are satisfied:

Q�ji �
@w
@q�i;j

� Pij ¼ 0; ð80Þ

M�ji �
@w
@m�i;j

� Nij ¼ 0; ð81Þ

M�ji;j �
@w
@m�i

þ eijkPkj ¼ 0: ð82Þ

Up until this point no use has been made of the constraint in Eq. (55). When expressed in

terms of the free energy it is equivalent to

dw ¼ 0 ð83Þ

for all rigid body motions. Using this constraint Valanis [18] rederived the conservation laws

for linear and angular momentum for a classical continuum. In Appendix B, the conservation

laws for a micropolar material are rederived from the expression for the free energy in Eq. (61).

By considering an infinitesimal rigid body displacement, the conservation of linear momentum

is obtained, i.e.,

�rji;j þ fi ¼ 0; ð84Þ

while considering a rigid body rotation leads to the expression for conservation of angular

momentum, i.e.,

�lji;j þ gi ¼ eijk�rkj: ð85Þ

Note that, as a result, the stress tensor is in general asymmetric.

Both Eq. (84) and Eq. (85) place important constraints on the form of the free energy.

Comparing Eq. (66) and Eq. (84), it is clear that

@w
@ �ui

¼ 0: ð86Þ

Hence, the free energy has no dependence on the displacement, answering the objections noted

earlier.
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Equations (65), (80) and (85) lead to the following:

@w
@ �xi

¼ eijk

@w
@ �uj;k

: ð87Þ

Thus, in order to satisfy conservation of linear momentum the free energy must be a function of

the average microstrain:

wð �ui;j; �xiÞ ¼ wð�eijÞ: ð88Þ

This result has also been found to be true in micropolar elasticity (Eringen [24]).

At this point, the equations that describe the material behavior apply only on a local level. To

proceed, these expressions are transformed into those that describe the material behavior in

terms of global quantities, i.e., functions of the mesodomain’s location Xi. This is achieved by

introducing a weighting function / in the manner described in Sect. 2. The notation ½^� is
introduced to represent the weighted volume integral for a quantity [ ]:

½^� ¼
Z

VD

½ �/dV : ð89Þ

Accordingly Eqs. (66) – (70) and Eqs. (81) – (83) become:

�rji ¼
^
@w
@ �ui;j

; ð90Þ

�rji;j þ fi ¼ 0; ð91Þ

Q̂�ji;j ¼
^
@w
@q�i

; ð92Þ

�lji ¼
^
@w
@ �xi;j

; ð93Þ

�lji;j þ gi ¼
^
@w
@ �xi

; ð94Þ

Q̂�ji � P̂ij ¼
^
@w
@q�i;j

; ð95Þ

M̂�ji � N̂ij ¼
^
@w
@m�i;j

; ð96Þ

and

M̂�ji;j þ eijkP̂kj ¼
^
@w
@m�i

: ð97Þ

Material models can be derived from the generalised constitutive relations by specifying the

forms of two functions – the free energy w and the dissipation function D. In Sect. 4, these

equations are used to develop a simple model of a two-dimensional granular material. An

elastic micropolar theory, equivalent to that of Eringen [24] can be obtained by setting the

internal variables qi , mi , Qij and Mij to zero.
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4 Thermomechanical model for a granular material

A simple model of a two-dimensional granular assembly (Schneebeli system) of equally sized

circular particles is developed in this section. An expression is found for the free energy via a

micromechanical analysis of a cluster consisting of a particle and its first ring of neighbors

(Tordesillas and Walsh [8]). Stress-strain relations are then derived from the free energy using

the generalized constitutive relations in Eqs. (90)–(97). These relations are then used to model a

granular material undergoing a simple shear deformation.

The free energy inside a granular assembly is stored at the particle contacts. The free energy

associated with a reference particle wp is given by

wp ¼ 1

2

X
c

wc; ð98Þ

where wc is the free energy of the particle contact and the sum is over all contacts around the

particle. The factor of one-half is introduced as the energy at each contact is assumed to be

distributed evenly between the two contacting particles.

Each particle is then assigned a void ratio by performing a Voronoi tessellation of the

discrete assembly (see Fig. 3). As the assembly consists of equally sized disks of radius R, the

free energy density w can be related to the free energy of each particle wp via

w ¼ 1� m
pR2

wp; ð99Þ

where m is the void ratio.

At this point a contact density distribution function U, equivalent to that used by Tordesillas

and Walsh [8], is introduced. The contact density distribution function U ¼ UðnÞ is defined

such that, given a unit vector n pointing out from the centre of the particle, Udn represents the

probability of a particle contact occurring on the particle surface within a solid angle dn

containing n. With the introduction of the contact density distribution, Eq. (98) can be ex-

pressed as

wp ¼ 1

2

Z
wcUðnÞdn: ð100Þ

If the particle contacts undergo elastic deformation, the free energy of each contact wc is given

by

wc ¼ 1

2
knðDu0ci niÞ2 þ

1

2
ktðDu0ci tiÞ2 þ

1

2
krðDx0cÞ2; ð101Þ

where Du0ci is the contact displacement, Dx0c is the contact rotation, ni denotes the components

of a unit vector normal to the contact surface, ti denotes the components of a vector tangential

Voronoi tesselation 
of the discrete assembly

Voronoi cell

Fig. 3. A Voronoi tesselation of the

discrete assembly assigns a Voronoi
cell to each particle from which a void

ratio can be determined
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to the contact surface such that eij3tinj ¼ 1, kn is the normal stiffness constant, kt is the

tangential stiffness constant and kr is the rotational stiffness constant.

In a granular material, stored energy is lost by tangential slipping and rolling resistance at the

contacts. In order to capture this behavior in a linear model the free energy is rewritten as

wc ¼ 1

2
knðDu0ci niÞ2 þ

1

2
kaðDuc

i tiÞ
2 þ 2kbDuc

i tiDqc
j tj þ kcðDqc

i tiÞ
2

h i

þ 1

2
kdðDxÞ2 þ 2keDxDmþ kf ðDmÞ2
h i

; ð102Þ

where ka-kf are material constants, with ka-kc being similar to the tangential stiffness constant

kt, while kd-kf are similar to the rotational stiffness constant kr; Duc
i and Dxc are the average

contact displacement and contact rotation defined by

Duc
i ¼

1

VD

Z

VD

Du0ci dV ; ð104Þ

Dxc ¼ 1

VD

Z

VD

Dx0cdV ; ð105Þ

and Dqc
i ¼ Du0ci � Duc

i ; Dmc ¼ Dx0c � Dxc.

Thus

w ¼ 1� m
4pR2

Z n
knðDu0ci niÞ2 þ kaðDuc

i tiÞ
2 þ 2kbDuc

i tiDqc
j tj þ kcðDqc

i tiÞ
2

þ kdðDxÞ2 þ 2keDxDmþ kf ðDmÞ2
o
UðnÞdn:

ð106Þ

To proceed the contact displacement and contact rotation must be linked with the kinematics

of the micropolar media, which are described by the displacements and rotations of the centers

of a reference particle and its contacting neighbors (see Fig. 4). The variables Du0ci , Dx0c may be

expressed in terms of the displacements u0ai , u
0bc

i and rotations x0a, x0bc of the reference particle

‘‘a’’ and its contacting neighbor ‘‘bc’’ as follows:

Du0ci ¼ ui � u0ai þ eij3njR x0bc þ x0a

 �

; ð107Þ

X
1

X
2

O

Particle ‘a’

Particle ‘b’

u
a

u
b

n
t

wa

wb

Fig. 4. The displacement and rotations of a reference

particle ‘‘a’’ and one of its contacting neighbors ‘‘b’’
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and

Dx0c ¼ x0bc � x0a: ð108Þ

As in Chang and Ma [10], it is assumed that the discrete quantities Du0ci and Dx0c may be

transformed into equivalent continuum expressions by introducing Taylor series expansions of

the displacement and rotation of particle bc in terms of the displacement and rotation of a

contacting particle a, namely

u
bc

i ¼ ua
i þ 2Rua

i;jnj þ � � � þ higher-order terms; ð109Þ

xbc ¼ xa þ 2Rxa
;inj þ � � � þ higher-order terms; ð110Þ

Thus the contact displacement and contact rotation can be expressed as

Du0ci ¼ 2R u0i;jnj þ eij3njðx0 þ Rx0;knkÞ
� �

; ð111Þ

and

Dx0c ¼ 2Rx0;ini; ð112Þ

respectively. Likewise

D �uc
i ¼ 2R �ui;jnj þ eij3njð�xþ R�x;knkÞ


 �
; ð113Þ

Dqc
i ¼ 2R qi;jnj þ eij3njðm� þ Rm�;knkÞ

� �
; ð114Þ

and

D�xc ¼ 2R�x;ini; ð115Þ

Dmc ¼ 2Rm�;ini: ð116Þ

With these relations, (106) becomes

w ¼ 1� m
p

kne0ije
0
kl

Z
ninjnknlUdnþ ðka�eij�ekl þ 2kb�eijgkl þ kcgijgklÞ

�

�
Z

tinjtknlUdnþ 2Rðka�eij �x;k þ kbð�eijm
�
;k þ gij �x;kÞ þ kcgijm

�
;kÞ

�
Z

tinjnkUdnþ ððR2ka þ kdÞ�x;i �x;j þ ðR2kb þ keÞ�x;im
�
;j þ ðR2ka þ kdÞm�;im�;jÞ

�
Z

ninjUdn

	
; ð117Þ

where e0ij ¼ u0i;j þ eijkx0k, �eij ¼ �ui;j þ eijk �xk and gij ¼ q�i;j þ eij3m�. Note that this expression for

the free energy is a function of the microstrain �eij ¼ �ui;j in accordance with Eq. (89).

For simplicity it is assumed that the void ratio and the contact density distribution function

are constant throughout the deformation. An anisotropic contact density distribution function

is assumed to be of the form:

U ¼ N

2p
ð1þ a cosð2hÞÞ; ð118Þ

where N is the number of particle contacts, a is a measure of the magnitude of the contact

anisotropy (0 � a � 1), and h is defined as the angle between n and the principle direction of
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contact anisotropy r (i.e., cosðhÞ ¼ rini). This contact density distribution function is illus-

trated in Fig. 5.

In this case, Eqs. (90)–(97) give the following relations:

�rji ¼ ðknGijkl þ kaHijklÞ�ekl þ ðknGijkl þ kbHijklÞĝkl; ð119Þ

Q̂�ji � Pij ¼ ðknGijkl þ kbHijklÞ�ekl þ ðknGijkl þ kcHijklÞĝkl; ð120Þ

�rji;j ¼ 0; ð121Þ

Q̂�ji;j ¼ 0; ð122Þ

�li ¼ ðR2ka þ kdÞIij �x;j þ ðR2kb þ keÞIijm̂
�
;j; ð123Þ

M̂�i � N̂i ¼ ðR2kb þ keÞIij �x;j þ ðR2kc þ kf ÞIijm̂
�
;j; ð124Þ

�li;i ¼ kaJij�eij þ kbJijĝij; ð125Þ

and

M̂�ji;j � eij3P̂ij ¼ kbJij�eij þ kcJijĝij; ð126Þ

where

Gijkl ¼
Nð1� mÞ

p
1

4
ðdijdkl þ dikdjl þ dildjkÞ þ

a
2
ðrirjrkrl � sisjskslÞ

� 	
; ð127Þ

Hijkl ¼
Nð1� mÞ

p
3

4
dikdjl �

1

4
dijdkl �

1

4
dildjk þ

a
2
ðdikðrjrl þ sjslÞ � rirjrkrl þ sisjskslÞ

� 	
;

ð128Þ

Iij ¼
Nð1� mÞ

p
dij þ

a
2
ðrirj � sisjÞ

n o
; ð129Þ

Jij ¼
Nð1� mÞ

p
sirj � risj þ

a
2
ðrisj � sirjÞ

n o
; ð130Þ

dij is the Kronecker delta symbol and si is a unit vector tangential to ri such that eij3sirj ¼ 1.

We note that a more sophisticated set of constitutive relations can be developed by adopting a

contact density distribution function which evolves with strain. One example which allows both

r

s

Fig. 5. The contact density distribution function

Uðn; r; a;NÞ ¼ ðN=2pÞð1þ a cosð2hÞÞ with the two
vectors r and s representing the directions of maxi-

mum and minimum anisotropy, respectively
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the degree and direction of the contact anisotropy to change with strain has been proposed

recently by Gardiner and Tordesillas [27].

4.1 A simple shear example

We now consider a special case of a material body of infinite width and fixed height L

undergoing a simple shear deformation (Fig. 6). Our intent here is not to provide the most

comprehensive model of this system, but simply to demonstrate the application of the con-

stitutive relations derived in the previous section. Toward this goal, we have adopted several

assumptions to simplify the analysis. We allow no variation in the horizontal X1-direction and

assume that u01;2 is constant in space. The material response is therefore a function of the

vertical position y within the body. The normal stress on the boundaries r022 is held constant,

and there are no body forces or moments.

The progress of the deformation is assumed to be solely a function of the macroscopic shear

strain experienced by the sample. For this reason an intrinsic time t is introduced such that

dt2 ¼ du2
1;2 ; ð131Þ

or, for this calculation where the shear strain is assumed to be strictly increasing from zero,

t ¼ u1;2: ð132Þ

The preferred direction of contact anisotropy ri is assumed to lie along the X2 axis. This is

consistent with observations of contact distributions reported at the start of simple shear tests

by Matsuoka [28] and Oda and Konishi [29]. In these experiments the distribution of contacts

was observed to evolve as the shear test progressed. Recall that from Eq. (118) this evolution

has not been accounted for in the present model. Therefore, only small strains are considered

here.

It is assumed that the rolling resistance at the particle contacts is negligible. Consequently,

the material parameters related to the rolling stiffnesses kd, ke and kf , and the dissipative couple

stress Ni are set to zero. This implies that the total dissipation function D is equal to Dg (Eq.

(25)), which is due to the internal fluctuations in the microstrain gij. The dissipation inequality,

Eq. (27), is satisfied by choosing Pij ¼ b@gij=@t or

P̂ij ¼ b
@ĝij

@t
; ð133Þ

where b is a positive constant.

s22

s22

X1

X2

m 2

m 2

u1
L

r

s

Fig. 6. An assembly undergoing a simple shear deformation
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With these assumptions, Eqs. (119) to (126) can be rewritten as

�r22 ¼ ðknG2222 þ kaH2222Þ�e22 þ ðknG2222 þ kbH2222Þq̂�2;2; ð134Þ

Q̂�22 � b
@q̂�2;2
@t
¼ ðknG2222 þ kbH2222Þ�e22 þ ðknG2222 þ kcH2222Þq̂�2;2; ð135Þ

�r22;2 ¼ 0; ð136Þ

Q̂�22;2 ¼ 0; ð137Þ

�l2 ¼ ðka �x;2 þ kbm̂�;2ÞR2I22; ð138Þ

M̂�2 ¼ ðkb �x;2 þ kcm̂
�
;2ÞR2I22; ð139Þ

�l2;2 ¼ kaJ12 �u1;2 þ kaðJ12 � J21Þ�xþ kbðJ12 � J21Þm̂�; ð140Þ

M̂�2;2 � 2b
@m̂�

@t
¼ kbJ12 �u1;2 þ kbðJ12 � J21Þ�xþ kcðJ12 � J21Þm̂�; ð141Þ

The initial and boundary conditions for this set of equations are as follows:

(i) At t ¼ 0 it is assumed that

q̂�2 ¼ m̂� ¼ 0; ð142Þ

(ii) At y ¼ 0 and y ¼ L, the internal variation in the stress and moments are assumed to be

zero,

Q̂
�
22 ¼ M̂�2 ¼ 0; ð143Þ

(iii) The stress normal to the boundary �r22ð0Þ ¼ �r22ðLÞ ¼ 0 is held constant throughout the

deformation;

(iv) Once the deformation begins a couple stress is imposed on the material, which impedes the

rotation at the boundaries: �l2ð0Þ ¼ ��l2ðLÞ ¼ l. The couple stress is assumed to increase

linearly as the deformation progresses,

l ¼ �jt; ð144Þ

where j is a positive constant.

Note that the equations describing the strain and the internal displacement Eqs. (134)–(137)

are decoupled from those describing the rotations in Eqs. (138)–(141). This result is possible

because of the particular form of the contact density distribution function (Eq. 118). The

predicted material response is especially sensitive to the assumed form of the contact anisotropy

and other micromechanical properties of the material. For example, the constant stress con-

ditions at the boundaries and the absence of any evolution in the contact density distribution

function lead to the following uniform distribution for the strain:

�e22 ¼
�r22

knG2222 þ kaH2222
: ð145Þ

However, if the assumed form for U evolves with strain (as proposed in Gardiner and Tord-

esillas [27]), the predicted strain may vary both in space and time.
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The equations describing the rotations, Eqs. (138)–(141), lead to the following differential

equations:

ðka �x;22 þ kbm̂�;22ÞR2I22 ¼ kaJ12 �u1;2 þ kaðJ12 � J21Þ�xþ kbðJ12 � J21Þm̂�; ð146Þ

ðkb �x;22 þ kcm̂
�
;22ÞR2I22 ¼ kbJ12 �u1;2 þ kbðJ12 � J21Þ�xþ kcðJ12 � J21Þm̂� þ 2b

@m̂�

@t
: ð147Þ

A solution for the macroscopic rotations �x can be obtained from Eq. (146) and Eq. (147)

using a finite Fourier cosine transform:

�x ¼ � J12

J12 � J21
� 2

L

X
n

ðð�1Þn þ 1Þj cosðnpy=LÞ
kaðJ12 � J21 þ I22n2p2R2=L2Þ

�

� t� k2
b

kakc � k2
b

t� 2b
1� e�ðkc�k2

b
=kaÞðJ12�J21þI22n2p2R2=L2Þt=2b

ðkc � k2
b=kaÞðJ12 � J21 þ I22n2p2R2=L2Þ

 !" #)
: ð148Þ

The evolution of the macroscopic particle rotation within the assembly is shown in Fig. 7.

The model predicts the appearance of a region of decreased rotation next to the boundaries. As

shown in Fig. 8, the distribution of rotations close to the boundaries becomes independent of

the height of the assembly as the ratio R=L decreases.

The amount of rotation at the boundary is dependent upon the couple stress, the number of

particle contacts N and the void ratio m. As would be expected, increasing the couple stress

causes an overall decrease in the rotation, particularly at the boundaries (Fig. 9). Increasing the

packing density has the opposite effect, resulting in less of a discrepancy between the rotations

8 16 24 32
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–0.02
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w
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Fig. 7. Graphs of particle rotation at different times
t : N ¼ 3:4; m ¼ 0:2; a ¼ 0:2; L ¼ 40R; j ¼ 0:05Rka;
b ¼ 100ka; kb ¼ 0:8ka; kc ¼ 0:8ka
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Fig. 8. Distribution of particle rotations near the

boundary for different heights L : t ¼ 0:07;
N ¼ 3:4; m ¼ 0:2; a ¼ 0:2; j ¼ 0:05Rka; b ¼ 100ka;
kb ¼ 0:8ka; kc ¼ 0:8ka
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Fig. 9. The effects of j on particle rotation:

t ¼ 0:07; N ¼ 3:4; m ¼ 0:2; a ¼ 0:2; L ¼ 40 R; b ¼
100ka; kb ¼ 0:8ka; kc ¼ 0:8ka
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at the boundaries and those at the centre (Fig. 10). As mentioned earlier, the form of the

contact density distribution function has a particularly strong effect on the behaviour of the

model. Varying the degree of contact anisotropy changes the rotations across the assembly. As

demonstrated in Fig. 11, increasing the contact anisotropy resulted in a linear increase in the

amount of rotation experienced by the material.

5 Conclusions

Using a thermomechanical approach, constitutive relations have been derived for a micropolar

continuum undergoing isothermal deformation. The constitutive relations developed are ex-

pressed in terms of two sets of internal variables qi and mi and their material gradients. These

variables are introduced to capture internal variations in the displacement and rotation fields,

respectively. Specific material models can be derived from these generalised constitutive rela-

tions by specifying the form of the free energy and the dissipation function. The thermome-

chanical approach presented here guarantees that the resulting micropolar models are

consistent with the laws of thermodynamics.

Two important constraints were introduced in the derivation of the generalised constitutive

laws: (a) that the free energy is invariant under rigid body motions, and (b) that changes due to

the microstrain and curvature on the local scale result in the dissipation of energy. Imposing the

first constraint leads to the conservation of momentum laws for a micropolar continuum. This

result in turn imposed a restriction on the form of the free energy, specifically that it must be a

function of the microstrain. The second constraint was used in the variational approach to

obtain the final set of constitutive laws without the use of Ziegler’s orthogonality postulate.

Particular stress-strain relations for a granular assembly were developed from the generalised

constitutive relations. These stress-strain relations were then used to model a special case of a

granular assembly undergoing a simple shear deformation. For assemblies obeying the

assumptions delineated in Sect. 4.1, the model predicts the appearance of two regions of
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reduced rotation next to the boundaries. The packing density is seen to have a noticeable

influence on the thickness of these regions. The nonuniform distribution of rotations close to

the boundaries becomes independent of the height of the assembly as L becomes much larger

than R. Future model refinements that account for the evolution of anisotropy (both force and

contact), interparticle rolling resistance and more detailed dissipative effects are underway.

Appendix A

Equivalence of P and Q

In the main body of the text it was shown that if dqk k > 0

ðQ� PÞ � dq ¼ 0 ð149Þ

holds for all arbitrary variations in the internal strain field and the internal curvature field

satisfying the conditions that

Q � dq ¼ 0; ð150Þ

P � dq ¼ 0: ð151Þ

The aim of this Appendix is to show that under these conditions

Q ¼ P: ð152Þ

To prove this result, a vector n is introduced such that

n ¼ aQ̂þ ð1� aÞP̂; ð153Þ

where Q̂ ¼ Q= Qk k; P̂ ¼ P= Pk k and a is an as yet undetermined scalar. An arbitrary variation

of q in the direction of n is denoted by dn, i.e.,

dn ¼ bn; ð154Þ

where b > 0.

If Q and P are not co-linear then dn satisfies both the conditions in Eq. (150) and Eq. (151) if

1

1� c
> a >

�c
1� c

; ð155Þ

where

1 > c ¼ P̂ � Q̂ > �1: ð156Þ

In this case, Eq. (149) only holds if

ðQ� PÞ � ðaQ̂þ ð1� aÞP̂Þ ¼ 0 ð157Þ

or

a ¼ kPk � kQkc
ðkPk þ kQkÞð1� cÞ : ð158Þ

However, any number of a’s can be chosen that violate this equation and yet satisfy the

conditions in Eq. (155). Thus Q and P must be co-linear.

If Q and P are co-linear then the conditions in Eq. (150) and Eq. (151) cannot both be

satisfied unless

Q̂ ¼ P̂; ð159Þ
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in which case dn ¼ bQ̂ satisfies both inequalities, and Eq. (149) may be written

kQk � kPk ¼ 0: ð160Þ

This is only possible if Q ¼ P.

Appendix B

Conservation of linear and angular momentum

By stipulating that the internal variables and the internal energy remain constant during rigid

body rotations, Valanis [18] was able to rederive the conservation laws for linear and angular

momentum for a classical continuum. Here the conservation laws for a Cosserat material are

rederived from the expression for the free energy in Eq. (61).

In the case of a rigid body translation (du0i ¼ d �ui , dx0i ¼ 0), Eq. (61) becomes

ð�rji;j þ fiÞd �ui ¼ 0 ð161Þ

or

�rji;j þ fi ¼ 0; ð162Þ

which can be recognised as the law of conservation of linear momentum.

For a rigid body rotation du0i ¼ eijkdCjxk and dx0i ¼ dCi. In this case, Eq. (61) becomes

ð�lji;j þ giÞdCi þ �rjieijkdCk ¼ 0: ð163Þ

After rearranging Eq. (163) and factorising out dCi, the following result is obtained:

�lji;j þ gi þ eijk�rjk ¼ 0: ð164Þ

It can be shown that this expression is equivalent to the conservation of angular momentum

within the mesodomain. If angular momentum is conserved then the moments applied to the

surface of the mesodomain (from either surface couples or an uneven distribution of the

tractions) must be balanced by the body moments, i.e.,Z

SD

eijkT0kxj þ X0i
� �

dSþ
Z

VD

gidV ¼ 0: ð165Þ

Note thatZ

SD

eijkT0kxj þ X0i
� �

dSþ
Z

VD

gidV¼
Z

SD

eijkr
0
lkxj þ l0li

� �
nidSþ

Z

VD

gidV

¼
Z

VD

eijkr
0
lkxj þ l0li

� �
;l0
þgi

n o
dV

¼
Z

VD

eijk�rjk þ �lji;j þ gi

� �
dV :

ð166Þ

As �lji;j, �rjk and gi are all constant within the mesodomain, Eq. (165) is only true if

�lji;j þ eijk�rjk þ gi ¼ 0; ð167Þ

which is equivalent to Eq. (164).

Micropolar constitutive models of a granular media 167



Acknowledgement

We thank Dr J. Peters (US Army ERDC) for many useful discussions and Dr D. Horner (US Army

ERDC) for travel support to SDCW. The support of the US Army Research Office through a grant to
AT (Grant No. DAAD19-02-1-0216) and the Melbourne Research and Development Grant scheme is

gratefully acknowledged.

References

[1] Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of
granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982).

[2] Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of
dilatancy and failure of dense granular soils. Geotech. 48, 465–481 (1998).

[3] Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media
based on numerical simulation analyses. Int. J. Engng. Sci. 38, 1713–1740 (2000).

[4] Bardet, J. P., Proubet, J.: A numerical investigation of the structure of persistent shear bands in
granular materials. Geotech. 41, 159–182 (1991).

[5] Rothenburg, L., Bathurst, R. J.: Influence of particle eccentricity on micromechanical behavior of
granular materials. Mech. Mater. 16, 141–152 (1993).

[6] Howell, D. W., Behringer, R. P., Veje, C. T.: Fluctuations in granular media. Chaos 9, 559–572
(1999).

[7] Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of a 2D granular
material: relation between structure evolution and loading path. Mech. Cohesive Fric. Matter. 2,

121–163 (1997).
[8] Tordesillas, A., Walsh, S. D. C.: Incorporating rolling resistance and contact anisotropy in

micromechanical models of granular media. Powder Technol. 124, 106–111 (2002).
[9] Tordesillas, A., Peters, J. F., Gradiner, B.: Shear band evolution and accumulated microstructural

development in Cosserat media. Geotech. (submitted).
[10] Chang, C. S., Ma, L.: A micromechanically-based micropolar theory for deformation of granular

solids. Int. J. Solids Struct. 28, 67–86 (1991).
[11] Kuhn, M. R.: Structured deformation in granular materials. Mech. Matter. 31, 407–429 (1999).

[12] Kuhn, M. R., Bagi, K.: Particle rotations in granular materials. In: (CD-ROM) 15th ASCE Engng
Mech. Conf. (Smyth, A., ed.), New York: Columbia University, 2002.

[13] Radjai, F., Roux, S.: Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev.
Lett. 89, Art. No. 064302 (2002).

[14] Didwania, A. K.: Kinematic diffusion in Quasi-static granular deformation. Quart. J. Mech. Appl.
Math. 54, 413–429 (2001).

[15] Valanis, K. C.: A gradient theory of finite viscoelasticity. Arch. Mech. 49, 589–609 (1997).
[16] Peters, J. F., Horner, D. A.: Development of a continuum representation of a discrete granular

medium. In: (CD-ROM) 15th ASCE Engng Mech. Conf. (Smyth, A., ed.), New York: Columbia
University, 2002.

[17] Ziegler, H.: An introdiction to thermomechanics, 2nd ed. Amsterdam: North Holland, 1983.
[18] Collins, I. F., Houlsby, G. T.: Applications of thermomechanical principles to the modeling of

geotechnical materials. Proc. R. Soc. London, Ser. A 453, 1975–2001 (1997).
[19] Valanis, K. C.: A gradient theory of internal variables. Acta Mech. 116, 1–14 (1996).

[20] Houlsby, G. T., Puzrin, A. M.: A thermomechanical framework for constitutive models for rate-
independent dissipative materials. Int. J. Plasticity 16, 1017–1047 (2000).

[21] Collins, I. F., Kelly, P. A.: A thermomechanical analysis of a family of soil models. Geotech. 52,
507–518 (2002).

[22] Collins, I. F., Hilder, T.: A theoretical framework for constructing elastic/plastic constitutive
models of triaxial tests. Int. J. Numer. Anal. Meth. Geomech. 26, 1313–1347 (2002).

[23] Read, H. E., Hegemeier, G. A.: Strain softening of rock, soil and concrete; a review article. Mech.
Mater. 3, 271–294 (1984).

[24] Wolf, D. E., Radjai, F., Dippel, S.: Dissipation in granular materials. Phil. Mag. Ser. B, 77, 1413–
1425 (1998).

168 S. D. C. Walsh and A. Tordesillas



[25] Lubliner, J.: Plasticity theory, p. 43. New York: Macmillan 1990.

[26] Eringen, A. C.: Theory of micropolar elasticity. In: Fracture – an advanced treatise, vol. II
(Liebowitz, H., ed.), pp. 621–693. New York: Academic Press, 1968.

[27] Gardiner, B. S., Tordesillas, A.: Micromechanical constitutive modelling of granular material: a
focus on the evolution and loss of contacts in particle clusters. J. Engng Math. (submitted).

[28] Matsuoka, H.: A microscopic study on shear mechanism of granular materials. Soils and
Foundations 14, 29–43 (1974).

[29] Oda, M., Konishi, J.: Microscopic deformation mechanism of granular material in simple shear.
Soils and Foundations 14, 25–38 (1974).

Authors’ addresses: A. Tordesillas (E-mail: atordesi@ms.unimelb.edu.au) and S. Walsh (E-mail:

swalsh@ms.unimelb.edu.au), Department of Mathematics and Statistics, University of Melbourne,
Parkville, Victoria 3010, Australia

Micropolar constitutive models of a granular media 169


