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Summary. This contribution is concerned with the consideration of material incompressibility at large

strains and proposes various methods for the enforcement of the corresponding constraint into finite-

rotation shell models. The incompressibility condition can be expressed in terms of displacement as well as

strain variables and is considered by means of three different procedures in the numerical implementation.

As kinematic hypothesis a quadratic assumption with respect to the thickness coordinate is used in which

the corresponding directors are decomposed into two stretch parameters and a common inextensible unit

vector. Various constitutive laws holding for incompressible isotropic hyperelasticity are considered and

directly coupled with shell equations through a numerical thickness integration. A 4-node isoparametric

shell element is developed parameterizing the inextensible shell director in terms of rotation variables in the

framework of an up-dated rotation formulation. Finally, several examples are analysed to identify the

most effective procedure for modelling isochoric deformations in thin-walled structures.

1 Introduction

Many materials of modern technology can undergo very large strains in the elastic range (hy-

perelasticity) and are characterized by an incompressible (volume conserving) behavior.

Materials with the cited characteristics are for example biological tissues such as those involved

in the heart, veins or arteries. Accordingly the simulation of hyperelastic materials under the

consideration of incompressibility is a challenging research topic particular in the field of Bio-

mechanics. Constitutive models available for hyperelastic materials with isochoric material

behaviour can be essentially classified into two groups: incompressible and compressible models.

The first class of models requires a direct enforcement of the incompressibility condition in the

corresponding model. On the contrary in compressible models the aforementioned condition

can be fulfilled indirectly by a suitable selection of a material constant, e.g., Poisson’s ratio

m! 0:5. The direct consideration of the incompressibility condition in hyperelastic material

models requires in general lengthy algebra, while the indirect consideration of this constraint

leads to computationally very expensive procedures as will be confirmed in this contribution.

Starting from nonlinear continuum mechanics the formulation of the incompressibility condi-

tion (at large strains) in terms of displacement or strain variables is not a theoretically difficult

task. In a 3D-formulation, such a condition renders a single displacement or strain variable as a

dependent quantity. In case of a 2D-implementation, the incompressibility condition can be
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expressed in an infinite power-series with respect to the thickness coordinate, which can be

satisfied in accordance with the adopted kinematic assumption up to a certain order. In this way

a set of displacement or strain variables is transformed into dependent quantities. In the present

work emphasis is given to a 2D-realisation.

Various models have been proposed in the literature for the simulation of incompressible

materials. The most popular formulation is the Mooney-Rivlin model including as a special case

the Neo-Hookean material, where the strain energy function is expressed in terms of the right

Cauchy-Green tensor. These models have been already adopted for the bending analysis of

shells (Schiek et al. [1], Başar and Ding [2], [3]). A further possibility is the use of Ogden model,

which has been mainly employed in membrane shell models (Wriggers and Taylor [4], Grutt-

mann and Taylor [5]). An extension to the bending analysis is accomplished by Eberlein [6] for

axisymmetric deformations and by Başar and Itskov [7] for arbitrary bending deformations.

The question is: What is the most effective procedure to consider incompressible material

behaviour? Can this be achieved only on the level of displacement variables or is it necessary to

incorporate the strain quantities to achieve this purpose? Can a unified procedure work equally

efficient for all types of constitutive models? Or conversely: Does the effectivity of a procedure

depend upon the constitutive law to be considered? This contribution aims at the examination of

the above mentioned questions in context with 2D finite-element models. The main purpose is to

identify the best possible procedure for the consideration of the incompressibility constraint.

2 Notations

In this paper, index and absolute tensor notation will be employed. As usual, Latin indices

represent the numbers 1, 2, 3 and the Greek ones the numbers 1, 2. For convenience we

summarize the essential notations to be used in the present derivation:

Variable definitions

F0;F undeformed and deformed shell midsurface

V0;V undeformed and deformed shell continuum

dF0;dV0 surface and volume element

Ha;H3 convective coordinates

X
0

position vector of F0

X
1

general director of F0

N unit vector ? to F0

x
0

position vector of F

x
1
;x

2
general directors of F

k
0

; k
1

stretch parameters

d inextensible director

A; a metric tensor of F0 and F

G; g metric tensor of V0 and V

A;G determinant of A and G

Ai; ai base vectors of F0 and F

Gi; gi base vectors of V0 and V

F deformation gradient

C right Cauchy-Green tensor
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b left Cauchy-Green tensor

E Green-Lagrange strain tensor

S 2nd Piola-Kirchhoff stress tensor

r Cauchy stress tensor

Tensor operations, symbols

a;i ¼
@a

@Hi
partial derivative with respect to the convective

coordinates

a � b ¼ aib
i simple contraction of two vectors

A ¼ a� b ¼ aib
jgi � gj second-order tensor defined by dyadic product of

two vectors

D ¼ A � B ¼ AijBmnGi �Gj �Gm �Gn fourth-order tensors defined by tensor product of

E ¼ A H B ¼ AijBmnGi �Gm �Gj �Gn second-order ones

S ¼ A � b ¼ AijbmGi �Gj �Gm third-order tensor defined by tensor product of

second- and first-order ones

AS ¼ AikSk
jmGi �Gj �Gm simple contraction of two tensors

A : D ¼ AijDijmnGm �Gn double contraction of two tensors

det A ¼ jAi
:jj determinant of a tensor

dA ¼ dAijG
i �Gj variation of a material tensor

DB ¼ DBijG
i �Gj increment of a material tensor

3 Incompressibility

This section is concerned with the formulation of the incompressibility condition to be con-

sidered for modelling incompressible materials and its transformation into an incremental

formulation needed for the subsequent finite-element implementation.

In this work we postulate a curvilinear coordinate system Hi having the property

Ga3 ¼ Ga3 ¼ 0; G33 ¼ G33: ð3:1Þ

Furthermore, the coordinate system Hi is supposed to be subjected only to coordinate trans-

formations of the form:

�HHa ¼ �HHaðH1;H2Þ; �HH3 ¼ H3; ð3:2Þ

where ð �. . .. . .Þ denotes a new set of coordinates. Accordingly, the position of the index ‘‘3’’ is

irrelevant in component relations, and the base vector G3 ¼ G
3 is an invariant quantity. Note

that such a coordinate system is useful for modelling shells (Başar and Krätzig [8]) as will be

also observed in Sect. 5. If the conditions (3.1) and (3.2) hold, the variables

ÊE ¼ EabGa�Gb; s ¼ Ea3Ga; E33 ¼ E33 ð3:3Þ

which represent the tangential components Eab and the transverse shear strains Ea3 of the

Green-Lagrange strain tensor E ¼ Eij Gi �Gj form surface tensors of second and first order

while E33 ¼ E33 is an invariant scalar-valued quantity. Note that surface tensors remain un-

changed under coordinate transformations of the form (3.2) and tensors of the form (3.3) can

actually be introduced on the basis of an arbitrary 3D second-order tensor.
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The third invariant IIIC of the right Cauchy-Green tensor C ¼ FTF plays a major role in

dealing with isochoric deformations characterized by the incompressibility condition: IIIC ¼ 1. In

terms of the Green-Lagrange strain tensor E ¼ 1
2
ðC�GÞ the incompressibility condition reads

(Green and Zerna [9], Başar and Weichert [10])

IIIC ¼ det C ¼ Ci
j

�
�
�

�
�
� ¼ detð2EþGÞ ¼ 2Ei

j þ di
j

�
�
�

�
�
� ¼ 1: ð3:4Þ

Written in full, the above relation can be solved for the transverse strains E33. If, under

consideration of (3.3), the invariant quantities

A ¼ 2Ea
a ¼ 2trÊE ¼ 2ÊE : Ga �Ga;

D ¼ 1

2
Ea

aE
b
b � Ea

bEb
a

� �

¼ 1

2
ðtrÊEÞ2 � trÊE2
h i

;

Q ¼ E3
aEa

3 ¼ s � s;

V ¼ 2 Ea
3Eb

aEb3 � E
b
bEa

3Ea3

� �

¼ 2 sÊEs� ðtrÊEÞs � s
h i

;

N ¼ Aþ 4D; S ¼ �4ðQ� VÞ; R ¼ Sþ N

1þ N
ð3:5Þ

are introduced as abbreviations, the corresponding result is expressible as

E3
3 ¼ �

1

2
R ¼ � 1

2

Sþ N

1þ N
: ð3:6Þ

For later use attention is now given to the first two invariants of the right Cauchy-Green tensor

IC and IIC, which are, using the definition C ¼ 2EþG, expressible in terms of the invariant

quantities given in (3.5) as

IC ¼ trC ¼ trð2EþGÞ

¼ 3þ Aþ 2E3
3; ð3:7Þ

IIC ¼
1

2
ðtrCÞ2 � trC2
h i

¼ 1

2
trð2EþGÞð Þ2�tr 2EþGð Þ2

h i

¼ 3þ 2Aþ 4Dþ 2E3
3ð2þ AÞ � 4Q; ð3:8Þ

in accordance with the results presented in Başar and Ding [3].

Our next goal is to construct on the basis of (3.6) the first variation dE3
3 as well as its

incremental form DdE3
3 to be used in the finite-element procedure. The first variation of

an arbitrary tensor function W ¼ WðxÞ with respect to the independent position vector x and

the corresponding incremental form are defined in terms of an arbitrary parameter e by the

following relations:

dW ¼ dWðx; dxÞ ¼ d

de
W xþ edxð Þje¼0 ¼

@W

@x
dx; ð3:9Þ

DdW ¼ DdWðx; dx;DxÞ ¼ d

de
dW xþ eDx; dxð Þje¼0 ¼ Dx

@2W

@x@x
dx ð3:10Þ

holding also if the notation d is changed into D and vice versa. The application of the rules (3.9),

(3.10) to (3.6) delivers, by considering (3.5), for the first variation dE3
3:
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dE3
3 ¼ �

1

2
dR ¼ � 1

2

ð1� SÞ
ð1þ NÞ2

dN � 1

2

dS

ð1þ NÞ ; ð3:11Þ

and for its incrementation DdE3
3:

DdE3
3 ¼ �

1

2
DdR ¼ 1

2

2ð1� SÞ
ð1þ NÞ3

dNDN þ 1

ð1þ NÞ2
ðdNDSþ DNdSÞ

"

� 1� S

ð1þ NÞ2
DdN � 1

ð1þ NÞDdS

#

;

ð3:12Þ

where the expressions holding for dN;DdN; . . . are summarized in Table 1 in index notation and

in Table 2 in absolute notation. By using the corresponding results the variational and incre-

mental terms occurring in (3.11) and (3.12) can be expressed as

Table 1. Abbreviations used for strain invariants and internal potential energy in index notation

A ¼ 2Ea
a :

dA ¼ 2dEa
a

DdA ¼ 2DdEa
a

D ¼ 1

2
ðEa

a E
b
b � Ea

b Eb
aÞ

dD ¼ dEa
a E

b
b � dEa

b Eb
a

DdD ¼ dEa
a DE

b
b � dEa

b DEb
a þ DdEa

a E
b
b � DdEa

b Eb
a

N ¼ Aþ 4D :

dN ¼ dAþ 4dD

DdN ¼ DdAþ 4DdD

Q ¼ Ea
3 E3

a :

dQ ¼ 2dEa
3 E3

a

DdQ ¼ 2ðdEa
3 DE3

a þ DdEa
3 E3

aÞ

V ¼ 2Ea
3ðE3

b Eb
a � E3

a E
b
bÞ :

dV ¼ 4dEa
3ðE3

b Eb
a � E3

a E
b
bÞ þ 2dEa

bðE3
a E

b
3 � db

aE3
c E

c
3Þ

DdV ¼ 4dEa
3ðEb

a � db
a Ec

cÞDE3
b þ 4dEa

3ðdc
a E3

b � dc
b E3

aÞDEb
c þ 4dEa

bðdb
c E3

a � db
aE3

c ÞDE
c
3

þ 4 DdEa
3ðE3

b Eb
a � E3

a E
b
bÞ þ 2DdEa

bðE3
a E

b
3 � db

aE3
c E

c
3Þ

S ¼ 4ðV � QÞ :

dS ¼ 4ðdV � dQÞ
DdS ¼ 4ðDdV � DdQÞ

R ¼ Sþ N

1þ N
:

dR ¼ dN
1� S

ð1þ NÞ2
þ dS

1

1þ N

DdR ¼ �2dNDN
1� S

ð1þ NÞ3
� ðdNDSþ dSDNÞ 1

ð1þ NÞ2
þ DdN

1� S

ð1þ NÞ2
þ DdS

1

1þ N
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dN ¼ dAþ 4dD ¼ ð2þ 4 trÊEÞG� 4ÊE

h i

: dÊE ¼ A : dÊE;

dS ¼ �4 ð2þ 4 trÊEÞs� 4ðsÊEÞ
h i

� dsþ 8 s� s� ðs � sÞG½ � : dÊE ¼ a � dsþ B : dÊE;

DNdN ¼ DÊE : A � A : dÊE ¼ DÊE : E1 : dÊE;

DSdN ¼ Dsða� AÞ : dÊEþ DÊE : B�A : dÊE ¼ Ds S : dÊEþ DÊE : E2 : dÊE; ð3:13Þ

where the last result holds also for dSDN if d is replaced by D and vice versa. The fourth-order

tensors E1 and E2 and the third-order tensor S defined in (3.13) are of significance to construct

the so-called tangent moduli needed for the finite-element procedure.

By setting x ¼ X ðE ¼ 0Þ the expressions summarized in Tables 1 and 2 can be specified for

an infinitesimal neighborhood of the reference configuration. Thus we find the relations

Table 2. Abbreviations used for strain invariants and internal potential energy in absolute notation

A ¼ 2 trÊE :

dA ¼ 2 trdÊE ¼ 2G : dÊE

DdA ¼ 2 trDdÊE ¼ 2G : DdÊE

D ¼ 1

2
ðtrÊEÞ2 � trÊE2
h i

:

dD ¼ trÊE trdÊE� trðÊEdÊEÞ ¼ ðtrÊEÞG� ÊE

h i

: dÊE

DdD ¼ trDÊE trdÊE� trðDÊEdÊEÞ þ trÊE trDdÊE� trðÊEDdÊEÞ
¼ DÊE : G�G�G (� G½ � : dÊEþ ðtrÊEÞG� ÊE

h i

: DdÊE

N ¼ Aþ 4D :

dN ¼ dAþ 4dD

DdN ¼ DdAþ 4DdD

Q ¼ s � s :

dQ ¼ 2s � ds

DdQ ¼ 2Ds � dsþ 2s � Dds

V ¼ 2 sÊEs� ðs � sÞtrÊE
h i

:

dV ¼ 2
h

s� s� ðs � sÞG
i

: dÊEþ 4
h

sÊE� ðtrÊEÞs
i

ds

DdV ¼ DÊE :
h

4
�

s�G�G� s
�i

dsþ Ds

h

4
�

G� s� s�G
�i

: dÊEþ Ds

h

4
�

ÊE� ðtrÊEÞG
�i

ds

þ 2
h

s� s� ðs � sÞG
i

: DdÊEþ 4
h

sÊE� ðtrÊEÞs
i

Dds

S ¼ 4ðV � QÞ :

dS ¼ 4ðdV � dQÞ
DdS ¼ 4ðDdV � DdQÞ

R ¼ Sþ N

1þ N
:

dR ¼ dN
1� S

ð1þ NÞ2
þ dS

1

1þ N

DdR ¼� 2dNDN
1� S

ð1þ NÞ3
� ðdNDSþ dSDNÞ 1

ð1þ NÞ2
þ DdN

1� S

ð1þ NÞ2
þ DdS

1

1þ N

80 Y. Başar and R. Grytz



dA ¼ 2G : dÊE; DdA ¼ 2G : DdÊE;

dD ¼ 0; DdD ¼ DÊE : G�G�G H G½ � : dÊE;

dN ¼ dA; dDN ¼ DdAþ 4DdD;

dQ ¼ 0; DdQ ¼ 2Ds � ds;

dV ¼ 0; DdV ¼ 0;

dS ¼ 0; DdS ¼ �4DdQ;

dR ¼ dN ¼ dA; DdR ¼ �2DAdAþ DdAþ 4DdD� 4DdQ ð3:14Þ

to be used later for the linearization of hyperelastic constitutive models at the point x ¼ X.

Consequently, the incompressibility condition (3.11) reduces trDE, in accordance with the well-

known result of the linear theory at the point x ¼ X, to

trDE ¼ DE1
1 þ DE2

2 þ DE3
3 ¼ 0; ð3:15Þ

where DEi
i denote infinitesimal strains.

4 Material models

In this section constitutive models in the form of a Mooney-Rivlin model and a St. Venant-

Kirchhoff model are introduced, which are considered in the finite-element implementation.

The first model is capable to model incompressible isotropic, rubber-like materials at large

strains, while the second one is applicable to compressible isotropic materials at the presence of

large rotations, but comparatively small strains.

The Mooney-Rivlin model is described by an energy density functionW (per unit undeformed

volume) depending on the first two invariants IC; IIC of C involving two experimentally

determined material constants. By considering (3.7) and (3.8) it can be expressed as (Green and

Zerna [9])

W ¼ c1 IC � 3ð Þ þ c2 IIC � 3ð Þ

¼ c1 Aþ 2E3
3

� �

þ c2 2Aþ 4ðD� QÞ þ 2ð2þ AÞE3
3

� �

; ð4:1Þ

where the incompressibility condition can be easily incorporated just replacing E3
3 by (3.6).

Note that, for c2 ¼ 0, this model reduces to a Neo-Hooke model involving a single material

constant. Starting from (4.1), expressions for dW and DdW can be derived again by application

of the operations (3.9) and (3.10), the results being, in view of the definitions (3.5), of the form:

dW ¼ c1 dAþ 2dE3
3

� �

þ c2 2 1þ E3
3

� �

dAþ 4ðdD� dQÞ þ 2ð2þ AÞ8E3
3

� �

; ð4:2Þ

DdW ¼ c1 DdAþ 2DdE3
3

� �

þ c2 2 dADE3
3 þ DAdE3

3

� ��

þ2 1þ E3
3

� �

DdAþ 4ðDdD� DdQÞ þ 2ð2þ AÞDdE3
3

�

: ð4:3Þ

The above relations hold for incompressibility if E3
3; dE3

3 and DdE3
3 are expressed according to

(3.6), (3.11) and (3.12).

Attention is now confined to the St. Venant-Kirchhoff model where the energy density W is,

by considering the terms given in (3.5), of the form:
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W ¼ k
2
ðtrEÞ2 þ l trE2

¼ k
2

1

4
A2 þ AE3

3 þ E3
3E3

3

� 	

þ l
1

4
A2 � 2ðD� QÞ þ E3

3E3
3

� 	

; ð4:4Þ

k and l denoting the Lamé constants. By the usual procedure, the following expressions are

then obtained for dW and DdW :

dW ¼ k
2

1

2
Aþ E3

3

� 	

dAþ Aþ 2E3
3

� �

dE3
3


 �

þ l
1

2
AdA� 2ðdD� dQÞ þ 2E3

3dE3
3


 �

; ð4:5Þ

DdW ¼ k
2



1

2
DAþ DE3

3

� 	

dAþ DAþ 2DE3
3

� �

dE3
3 þ

1

2
Aþ E3

3

� 	

DdA:þ Aþ 2E3
3

� �

DdE3
3

�

þ l
1

2
DAdAþ 2DE3

3dE3
3 þ

1

2
ADdA� 2ðDdD� DdQÞ þ 2E3

3DdE3
3


 �

; ð4:6Þ

holding for compressible materials at an arbitrary point x. Inserting the incompressibility

conditions (3.6) and (3.11) into (4.2) and considering (3.14) it can be observed that dW ¼ 0 at

the point x ¼ X. This is also true, according to (4.5), for the St. Venant-Kirchhoff model.

In order to establish a useful connection between the Mooney-Rivlin and the St. Venant-

Kirchhoff material model in case of incompressibility we first recall that the linearization of a

material model is defined by

LdW jx¼X ¼ dW jx¼X þ DdW jx¼X: ð4:7Þ

If a strain-free reference configuration is postulated the first term on the right-hand side van-

ishes as has been already confirmed for the present models (4.1) and (4.4). Consequently, the

final result is the value of DdW at x ¼ X. Now we insert the incompressibility conditions (3.6),

(3.11) and (3.12) into (4.3) and (4.6) in order to specify the corresponding results by using (3.14)

at the point x ¼ X. Thus we find for the Mooney-Rivlin model

DdWjx¼X ¼ 2 c1 þ c2ð ÞðDAdA� 2DdDþ 2DdQÞ; ð4:8Þ

and for the St. Venant-Kirchhoff model

DdWjx¼X ¼ lðDAdA� 2DdDþ 2DdQÞ ¼ 2l DEa
adE

b
b þ DEa

bdEb
a þ 2DEa

3dE3
a

� �

: ð4:9Þ

Since both models must be identical at x ¼ X, we find by comparison the condition

l ¼ 2ðc1 þ c2Þ; l ¼ 1

2

XN

p¼1

lpap ð4:10Þ

to be satisfied by the material constants. In case of a Neo-Hookean model, we find l ¼ 2c1. The

second equality in (4.10) can be derived, similarly, for the incompressible Ogden model (Başar

and Weichert [10])

W ¼
XN

p¼1

lp

ap

ðk1Þap þ ðk2Þap þ ðk3Þap � 3½ �; ð4:11Þ

where ki are the eigenvalues of the right stretch tensor U ¼ C1=2 and lp; ap are material con-

stants.
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For later comparative studies we, finally, consider a compressible material model of Neo-

Hookean type (Simo et al. [11], Ciarlet [12]):

W ¼ 1

2
jðln JÞ2 þ 1

2
l J�2=3trC� 3
� �

; J ¼
ffiffiffiffiffiffiffi

IIIC

p

ð4:12Þ

involving the bulk modulus j and the shear modulus l

j ¼ E

3ð1� 2mÞ ; l ¼ E

2ð1þ mÞ ð4:13Þ

as material constants, yielding the following constitutive law for the second-kind Piola-

Kirchhoff stress tensor (Başar and Weichert [10]):

S ¼ 2W;C¼ j ln J C�1 þ l J�2=3 G� 1

3
ðtrCÞC�1


 �

: ð4:14Þ

Since �CC ¼ ðJ�2=3CÞ is associated with the incompressible part of the deformation gradient the

second term on the right-hand side of (4.12) is concerned with the incompressible part of the

deformation so that the compressible deformations affect solely the first term with the material

constant j. If the Poisson’s ratio m tends to 0.5 the bulk modulus j will approach infinity, which

will assign for the compressible deformations associated with ln J an adequately large stiffness

factor. Thus it is expected that, by using this penalty-method, the incompressibility condition

can be indirectly enforced in the constitutive model. This model in the sequel denoted as com

Neo-Hooke will be used for comparative studies in Sect. 9. Note that for m ¼ 0:5 and under the

conditions (4.10), the material model (4.12) is, in the linear case, identical with the Mooney-

Rivlin model (4.1).

5 Shell kinematics

This section is concerned with the description of the reference and current configuration of the

shell continuum. The deformed configuration of the shell is described by a quadratic kinematic

hypothesis in the thickness coordinate H3 with seven unknown parameters. In this context, a

detailed discussion of the associated conditions, the inextensibility and incompressibility

conditions, are given, which are to be satisfied by the shell director d and the stretch parameters

k
n

ðn ¼ 0; 1Þ, respectively.

5.1 Reference configuration

We first consider the reference (undeformed) configuration of a shell continuum. Let X
0

be the

position vector of the midsurface F0 and let N be the unit normal vector of F0. Thus, the

position vector X of an arbitrary point P�0 of the shell continuum can be expressed as (Fig. 1):

X ¼ X
0

ðHaÞ þH3
X
1

ðHaÞ ¼ X
0

ðHaÞ þH3
NðHaÞ; H3 2

h

� H=2; þH=2
i

; ð5:1Þ

where H3 denotes the distance between P�0 and F0 measured in the N-direction and H is the

thickness of the shell. Starting from (5.1), the geometrical elements needed for the finite-element

procedure canbederivedby the standardprocedure (Başar andWeichert [10]). The results read as:

Base vectors:

Ga ¼ X;a¼ Aa þH3N;a ; G3 ¼ N;

Ga ¼ GabGb; G3 ¼ G3: ð5:2Þ
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Metric tensor components:

Gab ¼ Ga �Gb; Ga3 ¼ 0; G33 ¼ 1;

GaqGqb ¼ da
b; Ga3 ¼ 0; G33 ¼ 1: ð5:3Þ

Determinant G and volume element dV0:

ffiffiffiffi

G
p
¼ G1G2G3j j ¼

ffiffiffiffiffiffiffiffiffiffi

Gij

�
�

�
�

q

;

dV0 ¼
ffiffiffiffi

G
p

dH1dH2dH3: ð5:4Þ

In (5.2), Aa ¼ GajH3¼0 denotes the value of Ga at H3 ¼ 0 satisfying the usual relation

Aa �Ab ¼ db
a with the contravariant base vectors Aa. Note that, provided H3 is kept unchanged,

Eqs. (5.2) to (5.4) hold for arbitrary curvilinear coordinates Ha, particularly also for isopara-

metric ones na2 ½�1;þ1� to be used in the finite-element procedure. In the present development

the exact relations (5.2) to (5.4) will be used for the determination of the geometrical elements,

that is, the usual truncation of terms in H3 e.g. for Gab (Başar and Krätzig [8]) is omitted.

5.2 Current configuration

Let P� be the deformed position of the point P�0 in the current configuration. In contrast to the

geometrical elements of the reference state those ones associated with the deformed state will be

denoted by lower-case letters. In the present development the position vector x of the point P�

is approximated by a quadratic polynomial in the thickness coordinate H3 in the form (Fig. 1):

x ¼ x
0 þH3 x

1 þðH3Þ2 x
2 ¼ x

0 þH3
�

k
0

þH3 k
1�

d; ð5:5Þ

where d is supposed to be a unit vector subject therefore to the constraint

d � d ¼ 1 ! d;a �d ¼ 0: ð5:6Þ

Accordingly, the base vectors of the deformed state are given by

ga ¼ aa þH3 ðk
0

dÞ;aþH3ðk
1

dÞ;a

 �

; g3 ¼
�

k
0

þ2H3 k
1 �

d ð5:7Þ

as polynomials of second and first order in H3, with aa ¼x
0
;a being ga at H3 ¼ 0.

In (5.5), x
n ðn ¼ 0; 1; 2Þ or alternatively x

0
;d; k

n

ðn ¼ 0; 1Þ are 2D-kinematic quantities

corresponding, in view of the constraint (5.6), to seven scalar-valued unknown variables. As

g
3

θ3

λH0

0

1
F*

F
P

P*
a

3

θ3 (λ + θ
3  λ)

X
0 X

u
0

u

x
x0

A3 =N 

G3

F0

F*
0

P0

θ3

H/2

H/2 θ3

reference
 configuration
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i1 i2

i
3

X1
X2

X3

P*
0

Fig. 1. Deformed and undeformed

shell continuum, kinematic variables
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will be confirmed in Sect. 6, the parameters k
n

ðn ¼ 0; 1Þ describe through-the-thickness stret-

ches of the shell continuum. Due to the separation of the numerically sensitive stretches k
0

from

the extensible director x
1
, the multiplicative decomposition x

1¼k
0

d of the first-order term in (5.5)

is advantageously since the so-called curvature locking is practically eliminated. The inclusion

of the quadratic term k
1

is known (Başar and Ding [3]) as an efficient, kinematically consistent

remedy against the Poisson locking in case of compressible materials. In this sense, it is not

indispensable for incompressible materials since the incompressibility condition removes

automatically the Poisson locking. But in the last cited case, the inclusion of k
1

is in so far of

significance as it offers the possibility to satisfy the incompressibility condition in a very

effective manner only through the kinematic quantities k
n

ðn ¼ 0; 1Þ, that means, without

eliminating the transverse strains E33 by using relation (3.6). A main purpose of this work is to

show the effectivity or non-effectivity of the above mentioned approach.

Concerning incompressibility, the stretch variables k
n

ðn ¼ 0; 1Þ occurring in (5.5) can be

regarded as dependent kinematic quantities and can be evaluated through 2D-incompressibility

conditions in terms of x
0
and d. To this end, we replace the incompressibility condition IIIC ¼ 1,

according to (5.4), by the following equivalent formulation:

ffiffiffi
g
p ¼ g1 � g2ð Þ � g3 ¼

ffiffiffiffi

G
p
¼ G1 �G2ð Þ �G3 ð5:8Þ

in terms of the base vectors gi and Gi of the current and reference state, respectively. In (5.8) we

express the cited base vectors according to (5.2) and (5.7) and then equate in the resulting

polynomial in H3 the first two coefficients to zero to obtain the following two constraints

k
0

¼ ½A1A2A3�
½a1a2d� ¼

ffiffiffiffi

A
p

½a1a2d� ; ð5:9Þ

k
1

¼ 1

2

k
0

ffiffiffiffi

A
p eab AaN;b N

� �

� ðk
0

Þ2 aad;b d
� �


 �

; eab ¼ eab ¼
0 1

�1 0

2

4

3

5: ð5:10Þ

Note that eab is the 2D-permutation tensor associated with orthogonal Cartesian coordinates.

Table 3 summarizes expressions obtained from (5.9) and (5.10) for Dk
0

;Ddk
0

; . . . which will be

used for the elimination of these quantities within an iteration step at the element level for the

evaluation of the stretch parameters.

The nonlinear inextensibility condition does not ensure a unique determination of the

director d when dealing with finite rotation phenomena (Başar [13]). An effective remedy

against this deficiency is a suitable parametrization of the director d. In this work, an up-dated

rotation formulation is used for this purpose, where d is determined in each iteration step with

respect to its foregoing position. Our aim is now to summarize the essential concepts of this

procedure referring to Başar et al. [14], Başar and Kintzel [15] for a detailed description.

It can be easily confirmed that the conditions dðd � dÞ ¼ Dðd � dÞ ¼ Ddðd � dÞ ¼ dDðd � dÞ ¼ 0

obtainable from the constraint (5.6) are automatically satisfied for arbitrary values of the

vectors x
V
and x

L
, if we set

dd ¼ x
V �d; Dd ¼ x

L �d; ð5:11Þ

Ddd ¼ dDd ¼ 1

2
x
V �

�

x
L �d

�

þ x
L �

�

x
V �d

�h i

ð5:12Þ

permitting to express dd;Dd and Ddd in terms of x
V
;x

L
during an iteration step. The relations in

(5.11) can be regarded as ansatz while Eq. (5.12) is obtained from (5.11) under the condition
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that x
V

and x
L

behave like variation and linearization of an independent variable being not

accessible to a further variation: dx
V¼ Dx

L¼ 0.

Furthermore, it can be proved that after evaluation of an iteration step the new value of the

director d
iþ1

can be determined in an exact form if the incremental vector x
L
occurring in (5.11) is

identified with the Rodrigues rotation vector. The relation to be used for this purpose is of the

form:

d
iþ1

¼ Iþ sin x
x

x̂xþ 1� cos x
x2

x̂xx̂x

� 	

d
i

¼ R d
i

; x̂x ¼x
L �; x ¼ jjxL jj: ð5:13Þ

In the numerical implementation x
V
and x

L
are resolved with respect to a global reference frame

x ¼ xiii or with respect to a local coordinate system x ¼ ~xxaea þ ~xx3d, respectively. The first

decomposition is of significance to deal with compound shells, while the second one is suitable

for single shells.

6 Strains

As strain measure we use the Green-Lagrange strain tensor E ¼ 1
2
ðC�GÞ which is given in

terms of the reference base vectors Gi and current base vectors gi by

Table 3. Incompressibility conditions

k
0

¼
ffiffiffiffi

A
p

½a1a2d� :

dk
0

¼� k
0

½a1a2d�

(

eab½daaabd�þ½a1a2dd�
)

Ddk
0

¼� 1

½a1a2d�

(

Dk
0�

eab½daaabd�þ½a1a2dd�
�

þdk
0�

eab½Daaabd�þ½a1a2Dd�
�

þk
0
�

eab
�

½daaDabd�þ½daaabDd�þ½Daaabdd�
�

þ½a1a2Ddd�
	)

k
1

¼ 1

2

k
0

ffiffiffiffi

A
p eab

(

½AaN;bN� � ðk
0

Þ2½aad;bd�
)

:

dk
1

¼ 1

2
ffiffiffiffi

A
p eab

(

dk
0�

½AaN;bN� � 3ðk
0

Þ2½aad;bd�
�

� ðk
0

Þ3
�

½daad;bd� þ ½aadd;bd� þ ½aad;bdd�
�
)

Ddk
1

¼� 1

2
ffiffiffiffi

A
p eab

(

6 k
0

Dk
0

dk
0

½aad;bd� þ 3Dk
0

ðk
0

Þ2
�

½daad;bd� þ ½aadd;bd� þ ½aad;bdd�
�

þ 3dk
0

ðk
0

Þ2
�

½Daad;bd� þ ½aaDd;bd� þ ½aad;bDd�
�

þ ðk
0

Þ3
�

½Daadd;bd� þ ½Daad;bdd� þ ½daaDd;bd�

þ ½daad;bDd� þ ½aaDd;bdd� þ ½aadd;bDd� þ ½aaDdd;bd� þ ½aad;bDdd�
�

� Ddk
0�

½AaN;bN� � 3ðk
0

Þ2½aad;bd�
�
)
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E ¼ 1

2
ðC�GÞ ¼ 1

2
gi � gj �Gi �Gj

� �

Gi �Gj: ð6:1Þ

Inserting the series expansion (5.2) and (5.7) into (5.1) and neglecting cubic and higher-order

terms in H3 we finally obtain:

E ¼ E
0

þH3 E
1

þ H3
� �2

E
2

ð6:2Þ

with n-th order strain tensors E
n

ðn ¼ 0; 1; 2Þ defined by the following kinematic relations:

E
0

¼ Eij

0

Gi �Gj :

Eab

0

¼ 1

2

h

aa � ab �Aa �Ab

i

; ð6:3Þ

Ea3

0

¼ 1

2
k
0

aa � d; ð6:4Þ

E33

0

¼ 1

2

h

ðk
0

Þ2 � 1
i

; ð6:5Þ

E
1

¼ Eij

1

Gi �Gj

Eab

1

¼ 1

2

h

aa � ðk
0

dÞ;b þ ab � ðk
0

dÞ;a � Aa �N;b � Ab �N;a

i

; ð6:6Þ

Ea3

1

¼ 1

2
k
0

k;a
0

þ k
1

aa � d; ð6:7Þ

E33

1

¼ 2 k
0

k
1

; ð6:8Þ

E
2

¼ Eij

2

Gi �Gj

Eab

2

¼ 1

2

h

k;a
0

k;b
0

þðk
0

Þ2d;a � d;b þ aa � ðk
1

dÞ;b þ ab � ðk
1

dÞ;a �N;a �N;b

i

; ð6:9Þ

Ea3

2

¼ 1

2

h

k
0

k;a
1

þ2 k
1

k;a
0 i

; ð6:10Þ

E33

2

¼ 2ðk
1

Þ2: ð6:11Þ

It is observable that first- and second-order terms are only defined for the transverse strains E33

if the kinematic quantity k
1

is included in the hypothesis (5.5). In this context, we note that the

consideration of strain variables up to second-order is compatible with the quadratic kinematic

assumption (5.5). Numerical investigations performed for compressible materials (Başar et al.

[16]) have shown, that the truncation of terms in H3 for E even after the linear term has

practically no influence on the analysis accuracy. This fact is also well-known from classical

shell theory formulations (Başar and Krätzig [8]).

The variation and linearization of the above cited relations (6.3) to (6.11) can be obtained by

the standard procedure. Here, we solely give as example those holding for dEab

1

and DdEab

1

, thus
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dEab

1

¼ 1

2

h

aa � ðddk
0

Þ;b þ aa � ðk
0

ddÞ;b þ daa � ðk
0

dÞ;b

þ ab � ðddk
0

Þ;a þ ab � ðk
0

ddÞ;a þ dab � ðk
0

dÞ;a
i

; ð6:12Þ

DdEab

1

¼ 1

2

h

aa � ðDddk
0

Þ;b þ Daa � ðddk
0

Þ;b þ aa � ðddDk
0

Þ;b

þ aa � ðk
0

DddÞ;b þ Daa � ðk
0

ddÞ;b þ daa � ðdDk
0

Þ;b

þ daa � ðk
0

DdÞ;b þ ab � ðDddk
0

Þ;a þ Dab � ðddk
0

Þ;a

þ ab � ðddDk
0

Þ;a þ ab � ðk
0

DddÞ;a þ Dab � ðk
0

ddÞ;a

þ dab � ðdDk
0

Þ;a þ dab � ðk
0

DdÞ;a þ Ddaa � ðk
0

dÞ;b

þ Ddab � ðk
0

dÞ;a þ aa � ðdDdk
0

Þ;b þ ab � ðdDdk
0

Þ;a
i

: ð6:13Þ

After each iteration step the transverse strains E33

n

ðn ¼ 0; 1; 2Þ are given directly by

the incompressibility condition (3.6) or, alternatively, by considering the kinematic

relations (6.5), (6.8) and (6.11). However, if the kinematic quantity k
1

is omitted in (5.5)

higher-order terms E33

n

ðn ¼ 1; 2Þ are not defined by means of the corresponding kinematic

relations.

By means of Eqs. (6.3) to (6.11) and the definition of the stretches k<i> related to Hi-curves it

can be confirmed that the kinematic quantities k
n

ðn ¼ 0; 1Þ correspond to constant and linear

through-the-thickness stretches, thus (Malvern [17], Başar and Weichert [10]):

k<3> ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E33

G33
þ 1

s

! k<3> ¼k
0

þ2k
1

H3: ð6:14Þ

For a further important observation attention is now given to the potential energy of an

arbitrary structure. By using the Neo-Hookean material model (4.4) with c2 ¼ 0 the internal

potential of the considered structure is, in view of (6.3) to (6.11), given by

Pi ¼
Z

F0

Z H=2

�H=2

W dH3dF0 ¼
Z

F0

2c1 H
�

E
0

a
aþ E

0
3
3

�

þH3

12
ðE

2
a
aþ E

2
3
3Þ


 �

dF0: ð6:15Þ

Thus, we see that the first-order tangential strains Eab

1

responsible in classical shell theories for

the consideration of bending effects as well as transverse shear strains Ea3

n

ðn ¼ 0; 1; 2Þ are not
present in the potential energy in case of using the Neo-Hookean material model (4.4).

Bending strains Eab

1

together with transverse shear strains Ea3

n

ðn ¼ 0; 1; 2Þ are introduced in

the formulation (15), if E33 is replaced by relation (3.6) which can be confirmed by a series

expansion of E33

n

with respect to H3 (see, e.g., Başar and Ding [3]).

The incompressibility condition will be enforced in the sequel by three different procedures to

be summarized in the following.
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Procedure 1 presenting the most general and accurate approach is based on the satisfaction of

the incompressibility constraint through the stretch variables k
n

ðn ¼ 0; 1Þ as well as the

transverse strains E33 by means of (5.9), (5.10) and (3.6), respectively, proceeding in the

following steps:

(i) Application of the quadratic kinematic hypothesis (5.5) involving k
1

; consideration of the

strains Eij

n

ðn ¼ 0; 1; 2Þ up to second-order terms together with the corresponding kine-

matic relations (6.3) to (6.11).

(ii) Evaluation of the quantities dk
n

;Dk
n

;Ddk
n

ðn ¼ 0; 1Þ according to Table 3 in terms of x
0
;d

and the associated incremental quantities Dx
0
; . . . . Determination of the fundamental state

variables k
n

ðn ¼ 0; 1Þ by means of (5.9), (5.10) after each iteration step.

(iii) Elimination of DE33; dE33;DdE33 in dW (4.2) and DdW (4.3) by using (3.11), (3.12) within

an iteration step; determination of E33 by means of (3.6) after accomplishment of an

iteration step.

Procedure 2 presents a simplified version of Procedure 1. The simplification is due to the

neglect of the kinematic quantity k
1

in (5.5). Accordingly, the corresponding relation (5.10)

together with the second-order strains Eij

2

are not considered in this approach.

Procedure 3 is basically different from Procedure 1 and uses solely the relations (5.9), (5.10)

holding for k
n

ðn ¼ 0; 1Þ for the consideration of the incompressibility constraint. Accordingly,

the last cited step of Procedure 1 is not considered in this approach resulting in a decisively

simpler formulation. The fundamental state quantities E33

n

ðn ¼ 0; 1Þ are determined in this

approach by means of the kinematic relations (6.5), (6.8) and (6.11) indirectly coupled with the

incompressibility constraint through k
n

ðn ¼ 0; 1Þ.

Note that neglecting (5.10) in Procedure 2 provides a significant simplification of the

theoretical formulation coupled, correspondingly, with minor computational cost (see

Table 3.) However, Procedure 2 is kinematically not fully consistent, since higher-order

transverse strains E33

n

ðn ¼ 1; 2Þ are introduced in the formulation trough (3.6) while for k
1

¼ 0

the corresponding kinematic relations (6.8), (6.11) would prescribe vanishing values for them.

This deficiency automatically disappears in Procedure 1 due to inclusion of the variable k
1

.

We also note that Procedure 2 has been already considered in the numerical implementation

by Başar and Ding [3], where in contrast to the present development all 3D-equations had

been expanded in power series with respect to H3 in order to carry out the thickness in-

tegration analytically. The numerical thickness integration favored in this contribution pro-

vides simplicity and the consideration of arbitrary constitutive models within a unified

procedure.

7 Constitutive relation

The relation between stresses and strains will be established here for incompressible iso-

tropic material models. The stress tensor energy conjugated to C is the second Piola-Kirchhoff

tensor:
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S ¼ 2W;C ¼ 2
@W

@C
; ð7:1Þ

which is given for an arbitrary incompressible isotropic material W ¼ WðIC; IICÞ by

S ¼ 2 aI

@IC

@C
þ aII

@IIC

@C
þ p

@IIIC

@C


 �

¼ 2 ðaI þ aIIICÞG� aIICþ pC�1
� �

: ð7:2Þ

Herein aI ¼ @W=@IC and aII ¼ @W=@IIC are material constants, which depend on the invariants

of C, and p is a scalar function interpretable in the case of pure isochoric deformations IIIC ¼ 1

as hydrostatic pressure. The corresponding expression for the Cauchy stress tensor

r ¼ J�1FSFT ; J ¼
ffiffiffiffiffiffiffi

IIIC

p

¼ 1 ð7:3Þ

reads accordingly

r ¼ 2½ðaI þ aIIICÞb� aIIb
2 þ pg�; ð7:4Þ

where b ¼ FFT denotes the left Cauchy-Green tensor and F ¼ gi �Gi is the deformation

gradient of the shell continuum. The unknown parameter p can be determined for sufficiently

thin structures by the assumption that the component of the Cauchy stress vector t in direction

of the unit normal vector n ¼ g3=
ffiffiffiffiffiffiffi

g33
p

is of negligible magnitude in comparison to the

remaining components. Thus

t � n ¼ 0; ð7:5Þ

wich can be expressed by means of the Cauchy theorem t ¼ rn as

g3rg3 ¼ r33 ¼ 0 ð7:6Þ

and gives by virtue of (7.4) finally

p ¼ �aI þ aIIð2þ 2Ea
aÞ

g33
: ð7:7Þ

The stresses will be determined in the present FE-formulation directly from the 3D-relation

(7.4) eliminating p by the above condition (7.7). Note that in case of Procedures 1 and 2 the

relation (3.6) for the transversal strain components E3
3 is to be considered to compute the

deformed metric g and the strain invariants IC, IIC.

8 Finite-element formulation

The theoretical fundamentals presented above are introduced into a 4-node isoparametric finite

shell element. Geometrical and physical nonlinearities are treated by an incremental-iterative

procedure according to the Newton-Raphson method. In the following we summarize the basic

concepts of the development related to different aspects:

8.1 Material modelling

3D-constitutive laws as well as relation (3.6) in terms of the strain variables Eij are directly

introduced in the finite element formulation in combination with a numerical thickness

integration.
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8.2 Geometrical elements of the reference and current state

The geometrical elements X
0

and N determining according to (5.1) the reference configuration as

well as the independent kinematic quantity x
0
occurring in the assumption (5.5) are approxi-

mated by using the standard bilinear polynomials, e.g.,

x
0 ¼

X4

K¼1

NK x
0 K ð8:1Þ

which are defined by

N1 ¼
1

4
1� n1
� �

1� n2
� �

; N3 ¼
1

4
1þ n1
� �

1þ n2
� �

;

N2 ¼
1

4
1þ n1
� �

1� n2
� �

; N4 ¼
1

4
1� n1
� �

1þ n2
� �

; ð8:2Þ

where x
0

K denotes the nodal values of x
0
, and na 2 ½�1;þ1� are isoparametric coordinates.

Geometrical elements of the reference state are determined in an exact form by means of the

continuum-based relations given in (5.2) and (5.4).

8.3 Stretch variables

The variational quantities Dk
0

; dk
0

and Ddk
0

related to the dependent stretch variable k
0

are

interpolated similar to x
0
(8.1) by eliminating subsequently the nodal values DkK

0

; . . . occurring

in the corresponding expressions at the element level by considering the constraints given in

Table 3. After accomplishment of an iteration step the fundamental state quantity k
0

is again

interpolated according to (8.1) with the nodal values kK
0

evaluated by means of the exact

relation (5.9). The dependent first-order stretch k
1

is treated similarly. The direct interpolation of

k
n

ðn ¼ 0; 1Þ and of all related quantities occurring in Table 3 particularly by considering the

derivatives of the corresponding element in the form:

k;a
n

¼
X4

K¼1

NK ;a k
n

K ; dk;a
n

¼
X4

K¼1

NK ;adk
n

K ; Ddk;a
n

¼
X4

K¼1

NK ;aDdk
n

K ; ðn ¼ 0; 1Þ ð8:3Þ

is variationally not consistent. But this approach provides a simple numerical implementation

and is computationally efficient which will become evident in Sect. 9. The variationally con-

sistent counterpart of this approach requires first the lengthy differentiation of the constraints

from Table 3 which are then to be used for a point-wise determination of the shape functions of

the derivatives k;a
n

; dk;a
n

and Ddk;a
n

ðn ¼ 0; 1Þ.

8.4 Transverse strains

The transverse strains E33 and its variational quantities dE33, DE33, DdE33 occurring in the

incremental formulation (4.2), (4.3) are evaluated in Procedures 1 and 2 according to (3.6),

(3.11), (3.12) in terms of Eai; dEai; . . . and in Procedure 3 by using the corresponding kinematic

relations (6.5), (6.8), (6.11), respectively.
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8.5 Locking phenomena

The well-known shear locking is reduced by using the natural assumed strain concept (Bathe and

Dvorkin [18]). To reduce membrane and volume locking the membrane strains Eab

0

are enhanced

by incompatible modes according to the enhanced-strain formulation (Eckstein [19], Başar and

Kintzel [15]) originally proposed by Simo and Rifai [20]. In case of compressible materials,

Poisson locking is automatically omitted through the inclusion of linear stretches k
1

in the

kinematic assumption. For incompressible materials, k
1

is not needed in this sense as the

enforcement of the incompressibility condition is an efficient remedy against this deficiency.

9 Numerical examples

Extended numerical studies have been carried out to identify the computationally most effective

procedure for modelling hyperelastic materials characterized by incompressibility. The three

procedures introduced in Sect. 6 to be used for an explicit satisfaction of the incompressibility

constraint have been examined particularly by considering only Mooney-Rivlin and Neo-

Hookean material models. Some examples have also been analyzed by means of compressible

material models of Neo-Hookean and St. Venant-Kirchhoff type for the sake of comparison.

For this purpose the Poisson’s ratio m and Lame’s constant l have been selected to m! 0:5 and

l ¼ 2ðc1 þ c2Þ. For clear presentation of the results the following abbreviations and symbols

are used:

incom Neo-Hooke: incompressible Neo-Hooke model (c1; c2 ¼ 0)

� �! Procedure 1 (p1)

4 �! Procedure 2 (p2)

( �! Procedure 3 (p3)

Mooney-Rivlin: incompressible Mooney-Rivlin model (c1; c2)

d �! Procedure 1 (p1)

m �! Procedure 2 (p2)

j �! Procedure 3 (p3)

X3, q2

X2

X1 

L
H

v

v
q1 

R

Initial geometry
L = 10.0, R = 10.0, H = 0.10

Neo-Hooke material
c1 = 5.5, c2 = 0.0

Mooney-Rivlin material
c1 = 4.0, c2 = 1.5

Load condition
v = L/2 (l2 - 1)

Discretization
1 element for q1 = [0˚,2˚]

Deformed geometry
r = l1 R, h = l3 H

Fig. 2. Uniform extension of a circu-

lar cylindrical tube
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com Neo-Hooke: compressible Neo-Hooke model (l; j)

þ �! value of Poisson’s ratio m approaching 0.5

St. Venant-Kirchhoff: compressible St. Venant-Kirchhoff model (E; m)

� �! value of Poisson’s ratio m approaching 0.5.

9.1 Uniform extension of a cylindrical tube

We consider first a cylindrical tube subjected to uniform extension in the longitudinal direction

(Fig. 2). If the extension ratio k2 in this direction is given, the extension ratios in the other two

directions can be obtained by means of the incompressibility condition as

k1 ¼
r

R
¼ k3 ¼

h

H
¼ 1

ffiffiffiffiffi
k2

p : ð9:1Þ

The analytical solution for the stress component r<22> in the longitudinal direction according

to Green and Zerna [9] is given by

r<22> ¼ 2 ðk2Þ2 �
1

k2

� 	

c1 þ
c2

k2

� 	

: ð9:2Þ

Note that r<22> represents the physical component of the Cauchy stress tensor r. The

analysis has been performed for a 2� shell segment using a single element by considering the

material models given in Fig. 2. The numerical results of all three procedures p1, p2, p3 are

in full agreement with the analytical solution even for the most simple procedure p3 which

can be confirmed in Fig. 3. It can be observed that the stresses r<22> are, in contrast to the

extension ratios k1 ¼ k3, influenced by the material model. Numerical results obtained with

the St. Venant-Kirchhoff material (�) are also plotted in Fig. 3 for comparison demon-

strating clearly that the classical models (Başar et al. [21]) are not suitable for a large strain

analysis.

l1= l3

Load condition: extension ratio l2

0.80

0.60

0.40

0.20

0.00
1.0 1.2 1.4 1.6 1.8 2.0

Load condition: extension ratio l2

1.0 1.2 1.4 1.6 1.8 2.0

1.00
40.0

30.0

20.0

10.0

0.0

50.0

s<22>incom Neo-Hooke p3

Mooney-Rivlin p3

Analytical solution

St.Vernant-Kirchhoff

(E = 33.0, n     0.5)

Fig. 3. Uniform extension of a cylindrical tube – load response diagrams
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9.2 Rectangular plate under in plane and transversal load

This example is selected to examine the different procedures p1, p2, p3, first, for membrane

deformations and, subsequently, in a bending dominated situation. In this sense two load cases

are considered for the cantilever rectangular plate (Fig. 4).

9.2.1 Rectangular plate under in plane load

The first load case qI is suitable to analyse the different finite element formulations in case of

membrane deformations. For a systematic comparison a linear convergence study has been

performed concerning all three procedures in connection with the incompressible models incom

Neo-Hooke and Mooney-Rivlin as well as the compressible St. Venant-Kirchhoff model. Some

characteristic results for the deformation at point B are presented in Table 4. As expected the

results obtained for the incompressible and compressible material models are in good agree-

ment since the incom Neo-Hooke and Mooney-Rivlin models degenerate in the linear case to

the St. Venant-Kirchhoff model. All three procedures (p1, p2, p3) produce similar results in the

nonlinear case as can be seen in Table 5. However, the nonlinear deformation paths for the two

Geometry
L = 20.0, B = 10.0, H = 1.0

Neo-Hookean material
c1 = 1.0, c2 = 0.0

Mooney-Rivlin material
c1 = 0.6, c2 = 0.4

Load case I
qI = 1.0

Load case II
qII = 10-4

Boundary condition
X1 = 0: clamped edge, ∆x i = 0, w i = 0

B

fqII

fqI
A H

L

B/2

B/2 X1

X3

X2

Geometry
L = 20.0, B = 10.0, H = 1.0

Neo-Hookean material
c1 = 1.0, c2 = 0.0

Mooney-Rivlin material
c1 = 0.6, c2 = 0.4

Load case I
qI = 1.0

Load case II
qII = 10-4

Boundary condition
X1 = 0: clamped edge, ∆x i = 0, w i = 0

B

fqII

fqI
A H

L

B/2

B/2 X1

X3

X2

Fig. 4. Rectangular plate under in plane and transversal load

Table 4. Plate under in plane load – linear convergence study (f ¼ 1:0)

Discretization Dx1
B

� s d n m h n

10 � 4 3.2702 3.2660 3.2660 3.2660 3.2660 3.2593 3.2569

20 � 10 3.2756 3.2740 3.2740 3.2740 3.2740 3.2716 3.2707

40 � 20 3.2779 3.2768 3.2768 3.2768 3.2768 3.2759 3.2756

80 � 40 3.2788 3.2777 3.2777 3.2777 3.2777 3.2774 3.2773

Table 5. Plate under in plane load – nonlinear analysis for a 40� 20 mesh

Load factor f Dx1
B

s n h d m n

1.0 3.8805 3.8805 3.8801 4.2186 4.2186 4.2175

2.0 9.1700 9.1700 9.1696 11.2389 11.2389 11.2367

3.0 15.9430 15.9430 15.9426 22.0455 22.0455 22.0410

5.5 37.2615 37.2616 37.2615 59.0678 59.0678 59.0520
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cited models, plotted in Fig. 5 for Procedure 1, are significantly different in the deep nonlinear

range. Due to the fact that the stretch parameters k
n

ðn ¼ 0; 1Þ are eliminated at the element

level by means of the incompressibility condition our formulation does not provide an a-priori-

satisfaction of C0-continuity of k
n

ðn ¼ 0; 1Þ. The distribution of k
0

for the coordinate line

X2 ¼ 0 at several load levels is plotted in Fig. 6 where it can be easily observed that the

condition in question is fulfilled with a sufficient accuracy.

9.2.2 Rectangular plate under transversal load

The second load case qII , a transversal line load acting at the free edge, is selected to show

the capability of the procedures in dealing with bending dominated situations. A linear

Load factor f

Displacement Dx1
B

incom Neo-Hooke p1

(c1 = 1.0, c2 = 0.0)

Mooney-Rivlin p1

(c1 = 0.6, c2 = 0.4)

40 x 20 elements

0.0
0.0

1.0

2.0

3.0

4.0

5.0

20.0 40.0 60.0
Fig. 5. Plate under in plane load –

load-displacement diagram at point B

incom Neo-Hooke p1
(c1 = 1.0, c2 = 0.0)
Mooney-Rivlin p1
(c1 = 0.6, c2 = 0.4)
40 x 20 elements

0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25 0.75 0.10.5

f = 5.5

f = 2.0

f = 0.0

X1
 / L

l
0

Fig. 6. Plate under in plane load – distribution of constant stretch parameter k
0

for X2 ¼ 0

Incompressibility at large strains 95



convergence study had been performed at first, in which oscillating results could be ob-

served for Procedure 3 for different discretizations. Moreover, Procedure 3 fails completely

in the nonlinear analysis and is, therefore, not suitable for dealing with bending problems.

However, Procedures 1 and 2 work very well and are for the linear case in excellent

agreement with the compressible St. Venant-Kirchhoff model (Table 6). The numerical stress

results presented for this load case are evaluated at the Gaussian point near to point A for

X3 ¼ H=2
ffiffiffi

3
p

. From the load response diagrams in Fig. 7 and from Table 7 it can easily be

observed that the simplifications in p2 compared to p1 have no influence on the analysis

accuracy and provide additionally a minor reduction in computational cost. This example

was also analyzed by the com Neo-Hooke model considering the incompressibility condition

by selecting the value of Poisson’s ratio m to 0:4999999. The results in Fig. 7 and Table 7

Table 6. Plate under transversal load – numerical results for the linear case with 10� 4 elements

(f ¼ 1:0)

� s n d m

Dx3
B )0.4757 )0.4757 )0.4757 )0.4757 )0.4757

r11
A 7:9743 � 10�3 7:9627 � 10�3 7:9662 � 10�3 7:9627 � 10�3 7:9662 � 10�3

r22
A 3:9044 � 10�3 3:8962 � 10�3 3:8964 � 10�3 3:8962 � 10�3 3:8964 � 10�3

Physical stresses near point A

s<22>
A

s<11>
A

0.0

20.0

40.0

60.0

80.0

100.0

0.0
0.0 -0.10 -0.20 -0.30 -0.400.0 -5.0 -10.0 -15.0 -20.0

20.0

40.0

60.0

80.0

100.0

Dx3
B

Dx1
B

Displacements at point B

incom Neo-Hooke p1
incom Neo-Hooke p2
com Neo-Hooke
10 x 4 elements

Load factor f Load factor f

Fig. 7. Plate under transversal load – load-response diagrams

Table 7. Plate under transversal load – numerical results for the nonlinear case with 10� 4 elements

(f ¼ 100:0)

s n d m +

Dx3
B )15.0961 )15.0893 )15.1033 )15.0964 )15.1913

Dx1
B )9.0498 )9.0498 )9.0569 )9.0564 )9.1982

r<11>
A

0.3857 0.3854 0.3871 0.3867 0.3777

r<22>
A

0.1865 0.1862 0.1939 0.1935 0.1723

max Df 5.0 5.0 5.0 5.0 0.01

CPU-time [sec] 620 530 625 550 144 � 103
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demonstrate that in this way the incompressibility condition can be considered very accu-

rately even in the deep nonlinear range, but with a large number of load steps needed to

ensure that the Newton-Raphson iterative process reaches convergence. In the present case

R(X3) = RT

X1

X2q1

HT

HT

H

p
8

RT

fq

fq

q2 = X3

1 +

RO = 5.0, RT = 3.0
H = 0.5, HT = 6.0

Neo-Hooke material
c1 = 5.5, c2 = 0.0

Mooney-Rivlin material
c1 = 4.0, c2 = 1.5

Load condition
q = 1.0

Discretization
24 x 24 elements for one 
eight of the structure

Geometry

(RO

RO

)X3-HT
4.5

2

Fig. 8. Hyperbolic shell under four
pairs of locally distributed vertical

loads

Displacements

Dx3(q1 = 0˚,q2 = 12)

8.568

7.052

-0.821
-0.744

3.530

3.222

-0.336
-0.313

Dx1(q1 = 0˚, q2 = 6)

incom Neo-Hooke p1
Mooney-Rivlin p1

incom Neo-Hooke p1
Mooney-Rivlin p1

incom Neo-Hooke p1
Mooney-Rivlin p1

Stresses s<22>

s<22>(q1=0˚, q2 = 12, q3= 0)

s<22>(q1 = 0˚,q2 = 6, q3= 0)

35.1
38.1

11.4

30.5
33.2

116.4
121.8

l (q1 = 0˚, q2 = 6)
0

l
0

l (q1 = 0˚, q2 = 12)
0

0.836
0.832

0.702
0.682

0.570

0.608

0.386
0.489

-0.6
0.0 5.0 10.0 15.0 20.00.0 5.0 10.0 15.0 20.0

0.0 5.0 10.0 15.0 20.0
Load factor f Load factor f

Load factor f Load factor f

0.0 5.0 10.0 15.0 20.0

-0.4

-0.2

0.0

0.2

0.2

0.4

0.6

0.8

1.0

1.2

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

0.0

25.0

50.0

75.0

100.0

125.0

l (q1 = 0˚, q2 = 11)
1

l
1

0.182

0.166
0.177
0.158

-0.335
-0.340 -0.412

-0.422

l (q1 = 45˚, q2 = 11)
1

incom Neo-Hooke p1
Mooney-Rivlin p1

Fig. 9. Hyperbolic shell – load-response diagrams
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the incompressible models (s, n, d, m) have been computed by using a maximum load

increment of Df ¼ 5:0, while the compressible one (þ) needs 500 times more increments

(Df ¼ 0:01). Unfortunately, using large increments for compressible models leads to large

volume changes especially for those elements containing nodes with prescribed displace-

ments, which, because of the relatively large bulk modulus j, give extremely large internal

pressures at those elements. These unrealistic pressure values lead in turn to very large

residual forces such that the Newton-Raphson process fails.

9.3 Hyperbolic shell subjected to nearly concentrated loads

A hyperbolic shell made of hyperelastic material considered as next example is subjected to four

pairs of locally distributed vertical loads (Fig. 8). The deformation of this shell is characterized

by combined membrane and bending deformations. Due to the symmetry of the structure and

loads, only one eighth of the shell is analysed by using 24�24 elements. In this example solely

Procedure 1 has been applied. Some characteristic results are given in Fig. 9 in the form of

load-response diagrams. Due to the very good agreement of the numerical results with the

solution of Başar and Ding [3] it can be concluded that the interpolation of the dependent

stretch variables k
n

(n ¼ 0; 1) and the related variational quantities does not influence the

analysis accuracy. The undeformed and deformed configurations given in Fig. 10 show clearly

the large displacements and rotations of the structure during the deformation. The distribution

of the Cauchy stresses r<22> (H3 ¼ 0) and the stretch parameters k
n

(n ¼ 0; 1) at the load levels

f ¼ 10:0 and f ¼ 20:0 are plotted in Fig. 11. For the part of the structure far away from the

locally distributed loads, the stresses r<22> and the thickness stretching k
0

¼ h=H show an almost

uniform distribution along the circumferential direction. On the contrary, stress concentrations

due to the locally distributed loads can be observed along the coordinate line H2 ¼ 0 while the

zero stress boundary condition is approximately satisfied along the unloaded free end. The

distribution of the constant stretch parameter k
0

plotted in Fig. 11 exhibits strong thickness

changes of the shell near the loaded boundary especially for higher load levels. The distribution

of the linear stretch parameter k
1

identifies the parts of the structure wich are affected by bending

effects.

Reference configuration
(f = 0.0)

Deformed configuration
(f = 10.0)

Deformed configuration
(f = 20.0)

Fig. 10. Hyperbolic shell – unde-

formed and deformed configuration
(Mooney-Rivlin material)
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meridional Cauchy stresses s<22>
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( f = 10.0)
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Fig. 11. Hyperbolic shell – distribution of the stresses r<22>ðH3 ¼ 0Þ and the stretch parameters k
0

, k
1

(Mooney-Rivlin material)
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10 Conclusions

For the modelling of hyperelastic materials characterized by incompressibility three different

procedures have been proposed for the enforcement of the corresponding condition in shell

kinematics. Furthermore extensive numerical studies have been performed to find out the

computationally most effective procedure. Procedure 1 is based on the consideration of the

incompressibility condition both by means of displacement quantities appearing in the kine-

matic hypothesis and strain variables. Procedure 3 uses for this purpose only the displacement

variables and is, therefore, by nature simpler in its formulation than Procedure 1. Procedure 2

presents a simplified, kinematically not fully consistent variant of Procedure 1 where the first-

order stretch k
1

is neglected. Concerning the effectivity of the above mentioned procedures the

following conclusions are drawn:

Procedure 1 works very well for all types of deformations governed particularly by bending

effects and presents, in this sense, a reliable procedure. Procedure 2 is also generally applicable

and provides additionally a minor reduction of computational cost connected with neglecting

the stretch variable k
1
. Disregarding k

1

has no influence on the accuracy of the numerical analysis

of sufficiently thin structures. Procedure 3 is only effective when dealing with membrane de-

formations but fails completely if bending dominated problems are considered and the material

behaviour is described by a Mooney-Rivlin material model involving linear strains as sig-

nificant terms. Consequently, the applicability of this procedure, despite the simplicity of its

formulation, is restricted to large strain analysis of membrane shells only. This deficiency seems

to be caused primarily by the considered material model whose significant strain terms are

linear, since the tangential strains of first-order Eab

1

, which are known as responsible for

bending effects, disappear in the variational principle.

In contrast to material models of Mooney-Rivlin type which require an explicit enforcement

of the incompressibility condition, this condition can be achieved in the compressible material

model of Neo-Hookean type (Simo et al. [11]) implicitly by selecting the value of Poisson’s ratio

m near to 0.5 which in turn yields large values for the bulk modulus j!1. Numerical studies

have demonstrated that this allows for an accurate consideration of the incompressibility

condition even for highly nonlinear problems. However, in this case the computations show a

poor convergence behavior.
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[21] Başar, Y., Ding, Y., Schultz, R.: Refined shear-deformation models of composite laminates with

finite rotations. Int. J. Solids Struct. 30, 2611–2638 (1993).

Corresponding author’s address: R. Grytz, Institute for Structural Mechanics, Ruhr-University Bochum,
D-44801 Bochum, Germany (E-mail: statik@grytz.de)

Incompressibility at large strains 101


