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Summary. In this paper, we analyze the nonlinear dynamic behavior of a piezothermoelastic laminated
plate with anisotropic material properties. The analytical model is a rectangular laminate composed of
fiber-reinforced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply
laminate with all egdes simply-supported and to be subjected to mechanical, thermal and electrical loads as
intended control procedures or as disturbances. The von Karman strains are introduced to treat non-linear
deformation. The behavior of the laminate is analyzed by using the Galerkin Method. We discuss the
following quantities: (i) the buckling temperature due to in-plane thermal load; (ii) the large static
deflection due to combined in-plane and anti-plane loads; (iii) the natural frequency of infinitesimal
oscillation around the static equilibrium state; (iv) the natural frequency of the oscillation with finite
amplitude around the static equilibrium state. Moreover, numerical examples are shown to investigate the
methods to rise the buckling temperature, to linearize the thermal deflection and the natural frequencies by
applying the electrical voltage to the piezoelectric actuators.

1 Introduction

Recently, smart structures have attracted much attention in engineering, medicine and other
fields for the control of deformation. Smart structures consist of elements which serve as
sensors and/or actuators. Among various materials as sensors and/or actuators in smart
structures, piezoelectric materials have attracted much attention because of their superior
coupling effect between the elastic and electric fields. Piezoelectric materials are often attached
to structural laminates such as graphite/epoxy. The laminates composed of them, which are
called piezothermoelastic laminates, have been used as devices for the deformation-control
including shape-control, vibration-control and so forth in adaptive structures [1]. In aerospace
applications, these structures are generally light and deform flexibly, and its flexibility can
induce large deformation. Therefore, it is important to investigate large deformation of
piezothermoelastic laminates. For example, Tzou and Zhou [2], [3] treated static and dynamic
control of a nonlinear circular plate composed of two surface piezoelectric layers and one
isotropic elastic layer with geometrical nonlinearity by introducing the von Karman type non-
linear deformation.

Piezothermoelastic laminates are often required to be of high specific strength, and their
elastic layers are made of several layers composed of the matrices with low mass density and
the reinforcing fibers with high strength. As a result, they often exhibit anisotropy and
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lamination properties. Therefore, it is important to study piezothermoelastic laminated plates
with anisotropy.

In this paper, therefore, we analyze the nonlinear dynamic behavior of a piezothermoelastic
laminated plate with anisotropic material properties. The analytical model is a rectangular
laminate composed of fiber-reinforced laminae and piezoelectric layers which exhibit ortho-
tropy. The model is assumed to be a symmetric cross-ply laminate with all egdes simply-
supported and to be subjected to mechanical, thermal and electrical loads as intended control
procedures or as disturbances. The von Karman strains are introduced to treat non-linear
deformation. The equations of motion of the laminate are solved using the Galerkin Method.
Expressions of the following quantities are discussed: (i) the buckling temperature due to in-
plane thermal load; (ii) the large static deflection due to combined in-plane and anti-plane
loads; (iii) the natural frequency of infinitesimal oscillation around the static equilibrium state;
(iv) the natural frequency of the oscillation with finite amplitude around the static equilibrium
state. Moreover, numerical examples are shown to investigate the methods to rise the buckling
temperature, to linearize the thermal deflection and the natural frequencies by applying the
electrical voltage to the piezoelectric actuators.

2 Analysis
2.1 Problem

The analytical model is shown in Fig. 1. The model is a rectangular laminate with dimension
a x b x h composed of N layers: two of N layers (2x_1 <2 <2y, 21 < & < 2y) exhibit pie-
zoelectricity while other layers do not. The laminate is a cross-ply laminate: all the layers exhibit
orthotropy, and the principal axes of orthotropy coincide with the axes of the Cartesian
coordinate system (x,¥,2). The layers are laminated symmetrically with respect to the central
plane 2 = 0: the ¢-th and (N — 7 + 1)-th layers are composed of the same material and have the
same orthotropy with respect to the Cartesian coordinate system (x,y,2). All edges of the
laminate are simply-supported.

The laminate is subjected to the following loads: transverse load q; temperature 7 and Ty on
the upper (2 = —h/2) and the lower (2 = k/2) surfaces of the laminate, respectively; electric
potential V* and V¥ on the upper surface (2 = 2,—1) of the k-th piezoelectric layer and the
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Fig. 1. Analytical model
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lower surface (2 = 2y) of the k’-th piezoelectric layer, respectively. The lower surface (2 = 2y)
of the k-th layer and the upper surface (¢ = 2;_;) of the k’-th layer are both the level surfaces
of electric potential.

2.2 Governing equations

Based on the classical laminate theory, the displacement components in x-, - and z-directions
are taken to be, respectively,

ow’ ow’
uzuofz%7 7):?)072%, w=w", (1)

where the superscript 0 denotes the quantities at the central plane. In order to treat non-linear
deformation, the von Karman strains ¢; and y,; are introduced as

& — aiw)+l % ’ _2(927?/0 & — %0+1 87?/0 ’ _z@
T or 2\ 0w o2’ T oy 2\ 0y Oy?

(@)
Lo (O owow , Pw
Yoy = Oy Oxr  Ox Oy Oxdy’
Electric fields E; are expressed by an electric potential ®@ as
o0 oD o0
== =——, E,=——. 3
The constitutive equations of piezothermoelasticity for the symmetrical cross-ply laminate are
Oy Qll Q_lz 0 Exx 0 0 €31 E’l? jj1
Oy o= |Qiz Q2 0 gy 0 — |0 0 3| Ey dg T, (4)
Oy 0 0 QGG Voy 0 0 0 Ez 0

where o;; denotes the stresses; 7' denotes the temperature; Qw é;; and J; denote elastic stiffness
coefficients, piezoelectric coefficients and stress-temperature coefficients, all of which are re-
duced and transformed [4]. The resultant forces N, N, and N,,, the resultant moments M, M,
and M, and the coefficient of translation inertia P are defined as

/2 /2 /2
{NTNquy} = / {Gxx, Uyon—xy}dzy {Mﬁ:,My,Mry} = / {Gx.77,6yy,0.ry }Z dz, P= / pdz,
—n/2 —h/2 —h/2
()
where p denotes the mass density. Substitution of Eqgs. (2) and (4) into Egs. (5) gives
ou 4 L (ow)? .
Ny A A 0 o T 2 \0x N + N7
f N2
N, p=|An An 0 a1 (gu_y) ~ NT 4+ NE 3, (6)
ny 0 0 A66 o’ + N wow 0
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M, Dy D 0 — ot ML+ ME
My p=|Di Dp O |q =5 b3 M +ME S, (7)
Mry 0 0  Degs -9 Pw 0

Oxdy
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where the definitions of A;;, Dyj, NT NUT, MT Mg, NE Nf, ME and ME are given as

n/2
{4,Dy} = / Qi{1,2*}dz (i,j=1,2,6), (8)
~h/2

n/2 /2

(NI} = / (i iyrae {ml) = / (71,7} Tz, (9)

—h/2 —h/2

n/2 /2

{NﬂNf}: / {€s1, 32} Edz {Mf,Mf}: / {€31, 32} E.2dz . (10)

—h/2 —h/2

The equations of motion which integrate the effect of in-plane resultant forces into anti-plane
motion are given as follows:

ON, 0N,  ON, ON,
6x+8y_’ 8x+8y_0’

(11)
FM, zaM‘”’JraM +N. 82—w+2N Pw + 82—w+ _p2
o2 " owoy T or T N Womay T Vo 1T o

By substituting Egs. (6) and (7) into Egs. (11), the equations of motion are expressed by the
displacements as follows:
9 (1 E

(Ny +Ny),

Ly (w0, w) :2(N§+Nf), Ly (u0®w) =

ox 8_
62 82 2 (12)
w
Lg(u()’?)O’w):P—atz a Z(MT+MF) a 2(M5+M5),
where the operators L; are expressed as
&Pu0 Pl 520
0
Ly (u’ 0" w) =An—— Ere +As6— 5 e +<A12+A66)—8x8y
2w Pw\ ow Pw ow
A A —+ (A +A
+< g 668y2> 8x+( 12+ 66)8x6y8y7
82 0 8200 827]0
0,,.0, ‘
Lo (u"0"w)=(Ayz +A66)6x8 +Ags ErD +Asz B
2w Pw\ ow Pw ow (13)
A A —+ (A1 +A
+< 667 CE 228y2> c’)y+( 12+ 66)8xayax7
H*w Fw *w Pw Pw
0,0, _ T | \E T | ATE
L3 (u v w) =—Di1— o 2(D12+2D66)83€28y2 _D22—8y4 - [(Nx —l—Ny)—axz + (Nl/ —|—Ny )—8312}

Lo LNt e Pw e Lo\ e P
ox 2\ 0w Wowr a2 ) T oy 2\ oy 2 0n T gy

ol ' dwow\ d*w
+2A66 | 5+ 5T .
0xdy

oy Ox Oxdy



Dynamic behavior of a piezothermoelastic laminated plate 107

As the laminate is simply-supported at all edges, we have

2 2
=0 wW=0'=0 w=0 M ——(Dy2%+p, 2" — (M7 + M) =0,
O 1y

2.3 Galerkin method

We use the Galerkin method to solve the governing equations (12) under the boundary con-
ditions (14). We choose trigonometric functions as the trial functions and consider that the
displacements are expressed by series as

0,,,0,

{u’"w} = mzzl nz: LU, Vi W } SIN Gt 8i0 By 0y = o B, =— (15)
so that the boundary conditions (14) may be satisfied. Hereafter, we consider that g, T, T, V*
and V¥ are uniform with respect to the variables 2 and 7. Moreover, we consider that the
thickness of each layer is sufficiently small compared to its lengths @ and b. Then, the heat flux
in each layer is considered to occur only in the thickness direction and to be constant along the
thickness direction. Therefore, the distribution of the temperature in each layer is uniform with
respect to # and y and linear with respect to 2 and is obtained as

T=T7j,1+(Ti*T7j,1)z_Zi71 2152z (’&Zl,,N), (16)
Qi —Ri-1
where T;(¢ = 1,...,N — 1) denotes the temperature at 2 = z; and is determined so as to satisfy
the continuity conditions of the heat flux atz =2;(¢ =1,...,N — 1):
T, — T To—T Tno1 — Tn- Tn — Tn-
e 1 0212’2 2 1:"':/12N—1M:;LZNM7 (17)
<1 — 20 22 — &1 SN-1 — RN-2 ZN —RN-1
where Z.;(¢ = 1,...,N) denotes the thermal conductivity in the # -direction in the ¢-th layer.

Meanwhile, the electric field in each piezoelectric layer is considered to occur only in the
thickness direction and to be constant along the thickness direction. Therefore, referring to
Egs. (3), the distribution of the electric potential in each piezoelectric layer is uniform with
respect to x and y and linear with respect to ¢ and is obtained as

& — R
(I):Vki- ‘-1 <& < &,
<k — k-1 (18)
K < — Rk—1
O=V" ——— o1 <2< 2.
Rk — RK-1

Then, from Egs. (3), (9), (10), (16) and (18), it is found that the thermally-induced resultant
forces N and N and the electrically-induced resultant forces NZ and N7 become uniform with
respect to the varlables 2 and y. On the other hand, in order to satisfy the boundary conditions
(14), the thermally-induced resultant moments M and MyT and the electrically-induced resul-
tant moments M} and MY are evaluated as

o0 o0
T T E £ _ 2 :2 : E : .
{M77My7MTVMy} - { xmnd J'mw7Mrm77Ma/7m7}Slna?ﬂx&nﬁny7

m=1n=1

(19)
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4
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0
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where, from Egs. (3), (9), (10), (16), (18) and (19), the coefficients are calculated as

16 i(Ti_lzi—Tizi_lz? —2571 4 TL'—Tg_lz'? —223_1>

nzmn =1 i —Ri—1 2 i —Ri—1 3

M MT | = o

[ wimn ymn} {(11)7;,(12%} : m=odd and n=o0dd
[0,0]: otherwise

(Vk+Vk’) 6 Zk+zk 1 [egl 6‘32] m =odd and 7n = odd

Mfrrm vamn}
[0,0]: otherwise
(20)
Then, applying the Galerkin method to Egs. (12), we have
b a
//Ll(uo 0, w) sin o,y sin B,y de dy = 0,
0
b a
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0
b a

82 82 T E 82 T E
//{Lgu 00, w) Pw+q—@(Mx+Mx) @(M + M )}
0

fe=l
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Performing the integrations in Egs. (21), we have the simultaneous non-linear equations with
respect to Uy, Uy and Wy, as follows:
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where ay .y, s the coefficient representing the effect of the thermally-induced and the electri-
cally-induced resultant forces on anti-plane motion, defined as

A = = o, (N7 + NE) + B, (NT + NE) | (23)
and

dessmm = h? [Duied, +2(Dig + 2Dgg)o2, B2 + Das B ], (24)
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Pegon = Gmm + afﬂ (Mgm” + Mﬁm”) + ﬁi (MY/Tmn + Mfmw)? (25)
16 . _ _
Qmn = { dQ2mn: M= qu and 7 = odd (26)
: otherwise

141 mn N mn mn mmn mmn
and the definitions of @11, @22,mns A1 s> U1V iz D15 mrmrijs 055 mmmrigs 058 gy A0 O55"

are given in the Appendix. It should be noted that p ,,, contributes to the bending of the
laminate.

2.4 Buckling temperature

We consider the situation:

q=0, Ty=T, V'=-V¥=V). (27)
Referring to Egs. (17), we have

T,=Ty (i=1,...,N—1). (28)
Then, from Egs. (16), (20), (25) through (28), D¢, 1s absent, and Egs. (22) have a zero
solution,

Umn = Vmn = Wi =0 mym =1,2,3,...,00. (29)

Due to the non-linearity of Egs. (22) with respect to w,,,, Eqs. (22) for the quasi-static case
may have non-trivial solutions when

dc‘337m77,
2
From Egs. (3), (9), (10), (16), (18), (23), (24), (27) and (28), Eq. (30) gives the temperature as

dc.33,mn - 2Vh2 (chném + ,Biégg)
Ty = ¥
=1

+ A = 0. (30)

= Tcr,m’m (31)
123 (02, (), + B2 ()| (@i — i)

i=
which is referred to as the buckling temperature. From Eq. (31), it is found that 7, ,,, can be
controlled by the electrical voltage V' applied to the piezoelectric actuators.

2.5 Large deflection

On the other hand, when p. ., is present, the laminate undergoes combined in-plane and anti-
plane loads and deflects. By truncating infinite series in Eqgs. (15), therefore in Egs. (22), up to
two terms, Egs. (22) for (m,n) = (1,1), (m,n) = (1,2), (m,n) = (2,1) and (m,n) = (2,2)
give the simultaneous non-linear equations with respect tO Ump, Vpm and Wy, for
(m,n) = (1,1), (m,n) = (1,2), (m,n) = (2,1) and (m,n) = (2,2). These equations may have
solutions which satisfy one of three exclusive conditions:

u1 70, v12#0, wi #0, Ul = Uz = Uge = V11 = Va1 = Vg = Wiz = Wa1 = Wag = 0,

(32)

U #0, V12 #£0, wip #0, U =uUp = U = V11 = Va1 = Vg = W11 = Wa1 = Wa =0,
(33)
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Ul #0, V12 #0, wor 0, U =U2 = U = V11 = Va1 = Vag = W11 = Wiz = Wy = 0.
(34)

When p, 11 is present, only the condition by Egs. (32) is allowed among these conditions.

Therefore, we consider the solution of Egs. (22) which satisfies Egs. (32). Equations (22) which

satisfy Egs. (32) give the simultaneous non-linear equations with respect to g1, v12 and wy; as
follows:

21 21 2
a1121U21 + A75 19012 + b7 199 (W11)” = 0,

12 12 2
A15.91U21 + A2212012 + bgs 1111 (W11)” = 0, (35)

d*wyy de 33,11
33, 11 11 11 3
p e + 2 +an 11 Jwin + b3 19 wiiter + bag 1119W11012 + b33 111111 (W11)” = Do

Furthermore, by eliminating u9; and v12 in Egs. (35), we have the non-linear ordinary differ-
ential equation with respect to w;; as follows:

d% rwn w1y wir\?
where
d
kﬁn = C‘if'n + hay 11,
KN = i " [bééunn(an.mazz,m — a3} 5,07 12) (37)
Q112102212 — 1591079 19 ’ 7 .’

11 21 21 12 11 12 12 521
—b13 1121 (“22,12b11,1111 - a12,12b22,1111) = bas 1191 <a11,21b22,1111 - a12,21b11,1111)}-

For the quasi-static case, Eq. (36) becomes an algebraic cubic equation, and the solution is
obtained as follows:

3
Wi _ lpc<11+ (lpc,n)g_i_ lkﬁn
R\EE 2 kY ) T\,
3
1290‘114_ (lpc,n)z_l_ lkéu ) ke >0
2 kfl\’l 2 lcjlvl 3 kjlvl 1611\[1 =7

3
wu _ | 1pen n 1pen 2+ lklé,n
h 2 kY| 2 K| 3 kN

s

3
N 1peat 1pen\® (1K, s/ (1pen\2 _ ke De,11
e P smelt) g (SRe)t Tell g g Pell s
R\E (2]6]1\71 e SRy ) S Sy
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, 2 3

wu Pl 1pen | (1pen n 1kZ 1y
h 2 kN, 2 kY 3k,
? 12%11 (1pc11)2 1k511 3 <1pc<11>2 K1y Pe1

_Fe, + . _3 7% < —=—-<0and >0,
\l 2 kllvl 2 l{jlvl 3 kjlvl 2 k’lvl 1611\]1 kn

2
( u 1pen De1
: < < 34 (— - ) and —— >0,
\/ kY, 2 KN kY,

w1y 11‘9@11 0+2n kén 1p (’11 2 De1
T =2 3 kzlvl COS( 3 : kjlvl < —3 é and k‘]lvl < O7 (38)
where
1Pc11
ezmyl—lﬂil— 0<0<n). (39)

w11 0 k{?,n >0

h ' kjlvl = 10
. = » (40)
w11 — 4] c,11 . c,11 <0.

h kjlvl kflvl -

2.6 Free oscillation around static large deflection

We consider the free oscillation of the laminate around the static large deflection. Let wyi 4
denote the static large deflection due to static loads q, T, T, V* and V¥ and let w, 1,4(t) denote
the free oscillation of the laminate around w1 s. Then, from Eq. (36), the governing equations
of wyy 5 and wy 4(t) are represented, respectively, by

w w 3
kﬁ,11( ;Lls) + k) ( }1;’3) = Det, (41)

d? [wira wiis +wi1a(?) Wit +Wi1,a(?) ?
(o) [ s sy [rractena O] gy s

By subtracting Eq. (41) from Eq. (42), we have

£ ]t ] ]
where

4

—
—

)2 s
wco_\/k%“% T M :

Ph ’ (44)

=
wW
I
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Since neglection of the nonlinear terms in Eq. (43) leads to

% [wu};i(t)} ol [qud(t)} o, 5)

it is found that w. defined by Eqgs. (44) denotes the natural frequency of infinitesimal oscil-
lation around the static large deflection. When all terms in Eq. (43) are considered, the natural
frequency of the oscillation with finite amplitude around the static large deflection, w, is
obtained by the Lindstedt-Poincaré method [5] as

" 2 " 4] 9
o) () |
®c,0 ®e,0
2
2 8 4 4 ~6
+L 16120 s f1940(v2> %67(”3) 11 +O(W)7 (46)
6912 w2, W e

where W denotes the amplitude of wi; 4(¢)/h. From Eq. (46), it is found that the natural
frequency is dependent on the amplitude when the oscillation with finite amplitude is consid-
ered. Moreover, by considering Egs. (20), (25), (38) and (44), the natural frequency described
by Eq. (46) is found to depend on the electrical voltage applied to the piezoelectric actuators
and thus to be controlled by the voltage.

) _1+i
Weo 24

3 Numerical calculation

Some numerical calculation is carried out to investigate the methods to rise the buckling
temperature, to linearize the thermal deflection and the natural frequencies with respect to the
temperature by applying the electrical voltage to the piezoelectric actuators.

We assume that the piezoelectric layers are of BaTiOs and other layers are of graphite/epoxy
(GE). Reduced material constants are given as follows:

for GE layer [6], [7]:

Q:, = 182[GPa), @, =10.3[GPa], Q%, = 2.90[GPa],
Q;, =2.87(GPal, Q% =T.17[GPa], Q= 7.17[GPa),

25 =688 x 10°[PaK '], 15 =233 x 10°[PaK ], (40
p° = 1.580 x 10%[kgm?];

for BaTiOg (which exhibits 6mm symmetry) layer [8], [9]:

Q) = @b, = 120[GPa], @7, =36.2[GPa], @}, = Q- =44.0[GPa], Q% = 42.0[GPa],

ML =78 =1.33 x 10°[PaK™],

e = ey = —12.3[Cm™?], e5 = @4 = 11.4[Cm 2], (48)

= by = 9.87 x 10 7[C°N"'m ™2, nf, =132 x 107?[C*N'm ],
pP = 5.700 x 10°[kgm 7],

where 11‘2 denotes the permittivities of BaTiOsz. Reduced and transformed material properties
can be obtained according to [4]. We assume that the square layers (@ = b) are piled as
{[BaTiOs : 0°]/[GE : (90°/0°),] }Sym (N =10,k =1, k' = 10) and that each layer has the same
thickness. Then, the thickness of each layer, ¢;, is sufficiently small compared to its length
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(ti/a < 0.01 for a/h > 10, for instance), which justifies the assumption introduced to derive
Egs. (16) and (18).

3.1 Buckling due to in-plane thermal load

Under the condition described by Egs. (27), the laminate undergoes the buckling at the tem-
perature given by Eq. (31). Figure 2 shows the variation of the buckling temperature with the
length-to-thickness ratio a/k without the electric voltage applied. From Fig. 2, it is found that
the buckling temperatures decreases as the length-to-thickness ratio decreases and that the
buckling occurs for (m2,7) = (1, 1) because the buckling temperature for the case is the smallest
among those for other combinations of (m,7).

Figure 3 shows the variation of the buckling temperature 7, ;; normalized by (h/OL)2 with
the length-to-thickness ratio for various values of the electric voltage applied to the piezo-
electric actuators. From Fig. 3, it is found that the buckling temperature changes linearly with

(m,n) =

6000 2.2)
(1,2)

/
5000
/ @.n
4000 /
(11
TCV mn /
~—— 3000

o/ A
2000
1000 / /
/
OE)__‘éZO 0 P %0 100 Fig. 2. Variation of the buckling tem-
perature with the length-to-thickness
a ratio without the electric voltage
h applied
V —_—
1/Qfl / n{’] (h/a)* h

0.25 |

02 0.5

' 0

0.5

0.15 _

TL'r,]] 1

(OF/A)-(h/ay?
0.1
0.05

Fig. 3. Variation of the buckling tem-
0 perature with the length-to-thickness
0 20 40 60 80 100 ratio for various values of the electric

voltage applied to the piezoelectric
actuators

> 2
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respect to the voltage and that appropriate voltage to the actuators can increase the buckling
temperature.

3.2 Large deflection

We consider large deflection, which is described by Egs. (38), of the laminate subjected to
combined in-plane thermal load and anti-plane electrical load, letting

q=0, Ty=Ty, Vi=V‘=V. (49)

Figure 4 shows the variation of the deflection normalized by the thickness of the laminate with
the normalized electrical voltage applied to the piezoelectric actuators. From Fig. 4, it is found
that the deflection increases non-linearly with respect to the electrical voltage applied to the
piezoelectric actuators and that the deflection increases as the temperature increases. Moreover,
it is found that the deflection occurs even when the laminate is subjected only to the in-plane
thermal load for two cases To/[(Q5,/49) - (R/a)?] = 0.15 and To/[(Q5,/4) - (R/a)?] = 0.2,
which are larger than the buckling temperature Te.11/[(QF;/47) - (h/a)z] ~0.14 for V=0 as
shown in Fig. 3.

Figure 5 shows the variation of the deflection normalized by the thickness of the laminate
with normalized temperature. From Fig. 5, it is found that the deflection increases non-linearly
with respect to the temperature. For the case without the electrical voltage applied, the
deflection is found to exhibit bifurcational behavior. An important aspect obtained from Fig. 5
is that the deflection can be linearized with respect to the temperature by applying an appro-
priate electrical voltage to the piezoelectric actuators.

3.3 Free oscillation around static large deflection

Numerical calculations for the free oscillation of the laminate around the static large deflection,
which is treated in Sect. 2.6, are performed. Figure 6 shows the variation of the normalized
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natural frequency of infinitesimal oscillation with the normalized temperature for various
values of the electrical voltage applied to the piezoelectric actuators. From Fig. 6, it is found
that the natural frequency of infinitesimal oscillation is decreased by applying the temperature
around the buckling temperature T¢, 11/ [( $/29) - (h/a)z} 2 (.14 and that the natural fre-
quency can be increased by applying an appropriate electrical voltage to the piezoelectric
actuators. Moreover, it is found that the natural frequency of infinitesimal oscillation can be
linearized with respect to the temperature by applying an appropriate electrical voltage to the
piezoelectric actuators.

Figures 7 and 8 show the relation between the natural frequency and the amplitude of the
oscillation with finite amplitude for Ty < T¢,11 and Ty > Ty, 11, respectively. From Fig. 7, it is
found that, for the case Ty < T, 11, the natural frequency increases as the amplitude increases
for relatively small magnitude of the electrical voltage and that it decreases as the amplitude
increases for relatively large magnitude of the electrical voltage. By choosing an appropriate
magnitude of the electric voltage, the natural frequency is found to be linearized with respect to
the amplitude. From Fig. 8, it is found that, for the case Ty > T, 11, the natural frequency
decreases as the amplitude increases. Also for this case, the natural frequency is found to be
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linearized with respect to the amplitude by appropriate application of the electric voltage to the
piezoelectric actuators.

4 Concluding remarks

We analyze the non-linear dynamic behavior of a piezothermoelastic laminated plate with
anisotropic material properties. We consider that the laminate is a symmetric cross-ply
laminate with all egdes simply-supported and is subjected to mechanical, thermal and
electrical loads as intended control procedures or as disturbances. By using the von Karman
strains and the Galerkin Method, expressions of the following quantities are obtained: (i) the
buckling temperature for in-plane thermal load; (ii) the large static deflection due to com-
bined in-plane and anti-plane loads; (iii) the natural frequency of infinitesimal oscillations
around the static large deflection; (iv) the natural frequency of the oscillation with finite
amplitude around the static large deflection. Moreover, by performing numerical calcula-
tions, the non-linearity of the deflection with respect to thermal and electrical loads are
shown qualitatively, and it is found that the application of an appropriate electrical voltage
to the piezoelectric actuators can rise the buckling temperature and the natural frequency of
infinitesimal oscillations and linearize the large deflection with respect to temperature and
the natural frequencies with respect to the finite amplitude.
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Appendix
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