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Summary. A stress is considered conjugate to a strain if the product of the stress and an objective rate of
the strain has a trace which is equal to the rate of work per unit volume. Using Kronecker product
relations, apparently new expressions for stresses conjugate to the Finger strain B, the Euler strain 3, the
Eulerian (right) stretch tensor V, and log(V) are determined. In addition, a nonclassical strain 3 is intro-
duced which permits a constitutive equation expressing its Truesdell rate in terms of B and the Truesdell
rate of the Cauchy stress.

1 Introduction

The stress arising in the current or deformed configuration is, of course, the Cauchy stress
denoted by 7 [1]. The rate of work done per unit deformed volume and referred to deformed
coordinates is given by

w = trace(tD) (1)

in which D is the deformation rate tensor
1 . .
D=2 (FF !+ FTFT),

while F is the deformation gradient tensor. For the moment, let us consider

z:/Ddt

to be a strain, referred to the deformed configuration®. By virtue of Eq. (1) we also say that 7 is
conjugate to e. F satisfies the Polar decomposition theorem by virtue of which F = UQ; = Q.V,
where Q; and Q, are orthogonal tensors, U is the positive definite Lagrangian stretch tensor,
and V is the positive definite Eulerian stretch tensor.

The rate of work per unit reference or undeformed volume is found by standard arguments to
be given alternatively by

w, = trace(6F), 1, = trace(o$) 2)

'We regard a tensor as a strain if (a) it is not affected by rigid body motion and (b) its current value, given
suitable compatibility conditions, determines the current displacement field to within a rigid body
translation and rotation. By these criteria e is not strictly a strain and instead we later refer to it as a
pseudostrain.
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in which ¢ denotes the Ist Piola-Kirchhoff stress tensor, while ¢ denotes the 2nd Piola-Kir-
chhoff stress tensor. Also

1 o

E=g5 (FFF-1I)
is recognized as the Lagrangian or Green strain. Accordingly, & is said to be conjugate to F2,
while ¢ is conjugate to €. The Right Cauchy-Green strain satisfies C = 2¢ + I, for which ¢/2 is
the corresponding conjugate stress. Also U? = C.

We consider the objectivity of the rates of C and €. Consider two deformations differing only
by a rigid body motion
X9 = @(t)xl + b(t). (3)
A tensor T ““observed” from x; is denoted as T; and from xs as Ts. It is elementary to show
that F2 = @(t)Fl

A tensor T will be called objective if either (a) T2 =T or (b) Te = @(t)Tl@T(t). Now
Co = Cq, &2 = g1, and hence the rates of C and € are objective. Likewise U and U are objective.
Case (a) is characteristic of tensors referred to the undeformed configuration, while case (b) is
relevant to tensors referred to the deformed configuration. Here, strains satisfying (b) are called
Eulerian.

There are other strain measures which are sometimes used, in particular the Left Cauchy-
Green or Finger strain B = FF! in hyperelasticity [2], the Euler or Almansi strain

1
I3=-(I-B7!
2( )7

the Eulerian (spatial) stretch tensor V (which satisfies V> = B), and its logarithmic form

log(V) = élog(B).

These strains refer to the deformed configuration (i.e., are Eulerian) since they satisfy
B; = 0B,Q0", 3, =03,0", V,=0v,Q", log(Vy) = Qlog(V,)Q". (4)

Note that the rates of these strains are not objective. Now By = Q(¢)B;Q"(t) and
3» = Q(t)3,Q” (t). However, the rates satisfy ¢

B; = 0B, Q7 + OB, — B,Q,
5[2 = @jl@T + Q35 — 329, (5)
Q= 0o’

Of course, to circumvent non-objectivity a common practice is the replace the time rate with an
objective rate such as the Jaumann rate

. 1
B=B_ WB +BW, W= (L-L7).

This prompts us to extend the notion of conjugacy as follows:

A stress X is conjugate to a strain E referred to the deformeod configuration if, for an objective
rate E, the work per unit deformed volume is w = trace(ZE).

In the sections below a derivation is presented of the stresses conjugate to B, 3, V and log(V).
The derivation makes use of operations associated with Kronecker products of tensors, which

20f course F is not a strain since it is affected by rigid body motion. We later refer to it as a pseudostrain.
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are sketched in the next section. In later sections we consider a strain based on the Truesdell
rate [3], and derive a corresponding (subordinate) objective rate for the stress conjugate to this
strain.

2 Kronecker products on tensors

In the following sections all quantities are real. Let A be an 7 x 7 (second-order) tensor.
Kronecker product notation [4] reduces A to a first-order %2 x 1 tensor (vector) as follows:
VEC(A) = {all az1 aAz1 . . . Aun-1 Qun }T- (6)

The inverse VEC operator, IVEC, is introduced by the obvious relation IVEC(VEC(A)) = A.
The Kronecker product of an 7 x m matrix A and an 7 x s matrix B generates an nr x ms
matrix as follows:

CLHB (llgB . CllmB
ang . .

ARB=| . N (7)
anlB . E a’nt

Five basic relations are introduced, followed by several subsidiary relations [4].
(I) Let A denote an 7 x m matrix, with entry a; in the i-th row and j-th column. Let
I=(j—1m+7and J = (¢ — 1)m +J. Let %y, denote the nm x nm matrix, independent of
A, satisfying

f1, K=1 f1, K=J ®)
WE=Y0, K£I YETV0, K£J°
Then
VEC(AT) = %,,,VEC(A). (9)

(IT) If A and B are second-order 7 x % tensors, then

trace(AB) = VECT (AT)VEC(B). (10)
(IIT) If I, denotes the 7 x 7 identity matrix and if B denotes an 7 X % tensor, then

I, ®B" = (I, ®B)". (11)
(IV) Let A, B, C, and D respectively denote m x 1, » X s, n X p and s x q matrices, then
(A®B)(C®D) = AC @ BD. (12)
(V) If A, B and C are 7 x m, m X v and » x s matrices, then

VEC(ACB) = B @ AVEC(C). (13)

Symmetry of %, was established in Relation (1).
Letting I,,» denote the identity tensor in 722-dimensional space,

L,®L, =L (14)
Note that VEC(A) = #,,, VEC(AT) = %% VEC(A) if A is n x 7, and hence the matrix %,,,,

“nn
satisfies
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U2, =Ny Uy =AU, =U,} (15)

nn*

Uny is seen to be a permutation tensor for 7 x % matrices. If A is symmetric,
(Uypn, — L2 )VEC(A) = 0. If A is antisymmetric, (%, + L,2)VEC(A) = 0.
If A and B are second-order 7 x n tensors, then

trace(AB) = trace(BA). (16)
If A, B and C denote n x n tensors,
VEC(ACB") = I, ® AVEC(CB”)
= (B®I,)VEC(AC)
=B ® AVEC(C). (17
Another useful relation is
BROA=U2AQBU,2, Uy = U (18)
If A and B are nonsingular 7 X 7 tensors,

(A®B)A'®@B ') =AA ! @BB"!

=I,xI1,
=1,. (19)
The Kronecker sum and difference are defined as follows:
AeB=AxI,+1,3B; AcB=A®I,-1,®B. (20)

Let o; and f;, denote the eigenvalues of A and B, and let y; and z; denote the corresponding
eigenvectors. The Kronecker product, sum and difference have the following eigenstructures.

expression jk-th eigenvalue jk-th eigenvector
A®B % B Y @ Z
AoB % + Py Y © Z
AcB o — P Y @z

@1

Of particular importance to the following sections, if A and B are n x % tensors, and if
A’ = QAQ".B’' = QBQ7, then
A'®B = (QAQ") ® (QBQ")
= (Q®Q)(AQ" ©BQ")
=(Q®Q)(A®B)Q" ©Q’, (22)

from which
AaB =(QoQ)(A+B)Q Q7
AcB =(QeQ)(AcB)Q 2 Q.

Note that (Q ® Q)T =Q'2Q"=Q'eQ'=Q® Q) . In fact, Q ® Q represents a
rotation in an 72-dimensional vector space. Equation (23) is reminiscent of properties of ten-
SOTS.

We now recapitulate recent extensions of Kronecker Product relations to fourth order ten-
sors [5]. Let A and B be second-order 7 x 7 tensors and let 4 be a fourth-order n x 7 X n X n
tensor with suitable symmetries. Suppose that A = ¥B, which is equivalent to a; = cyjiby in
which the range of 4, j, k and [ is (1,7%). The TEN22 operator is introduced implicitly using

(23)
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VEC(A) = TEN22(%)VEC(B). (24)

Several useful properties are:

TEN22(A%B) = I,, @ ATEN22(%)1,, ® B. (25)
TEN22(%~!) = TEN2271(%). (26)

The inverse of the TEN22 operator is introduced using the obvious relation
ITEN22(TEN22(%)) = .

Suppose A and B are second order 7 x 7 tensors and % is a fourth order 7 x n xn X n
tensor such that A = @B. All are referred to a coordinate system denoted as Y. Let the
orthogonal tensor Q represent a rotation which gives rise to a coordinate system Y’, and let A’,
B’ and %’ denote the counterparts of A, B and %, referred to Y’. Now, since A’ = QAQ,

VEC(A') = Q ® QVEC(A). 27)
Now write A’ = ¢'B’ from which
Q ® QVEC(A) — TEN22(%)Q ® QVEC(B). 28)

The transformation properties of TEN22 follow as
TEN22(%") = Q ® QTEN22(%)(Q ® Q)" . (29)

Recall that Q ® Q represents a rotation in %2-dimensional space, for which reason Eq. (29)
establishes tensor-like properties for TEN22.

2 Stress conjugate to the left Cauchy-Green strain B

Elementary manipulations serve to derive that
B = FF' + FF’

— FF 'FF’ + FF'F "F’

=LB +BL"

=DB + BD + WB — BW, W:%(L—LT) (30)
and hence

DB +BD =B — WB + BW.

0
The right-hand side is recognized as the objective Jaumann rate B of B.
Let Y denote the stress conjugate to B. Using Kronecker product notation, we find that, by
virtue of the symmetry of D,

w = VECT(Y)B®I+1®B|VEC(D)

= VECT(Y)B ® I + %yB @ I%g)VEC(D)

= VEC"(Y)[(Ty + %9)B ® I]VEC(D) (31)
Uy =Us3, Tg=1@L

Since t is conjugate to D,
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VECT (1) = VECT(X')(Ig + %9)B ® I
VECT (t)B™! @ I = VECT (Y)(Iy + %)
B! ® IVEC(t) = (Iy + %s)VEC(Y)
VEC(tB™!) = (Ig + %y)VEC(Y).

Note that
(Yo + Ug)* =Yg + 29 + U2 = 2(Tg + Uy)
from which we find
(Ig + U9)VEC(tB™) = 2(Ig + %9)VEC(Y).
Exploiting the symmetry of Y, we find the desired conjugate stress as
4VEC(Y) = VEC(tB™! + B !1)

B +B !t

Y =
4

3 The Euler strain 3
The Euler strain refers to the deformed configuration. Its rate satisfies

I-B!)

1
— _ Bfl.
5(B7)
1 -
=-B 'BB
2

It likewise is not an objective strain rate. We introduce

1 0
~B'BB!
2

which is objective since

o
9=

[ 1 0
Jo = éBilBngl

L oB;'a")@B,a")(@B;'a")

O(B;'B,B;!)Q"

DO — Nl

= @31@?

D. W. Nicholson

(38)

Let ¥ denote the stress conjugate to 3. The rate of work per unit deformed volume satisfies

(39)
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and hence the desired conjugate stress is

Y =2BYB

= %(‘cB +Br). (40)

4 The Lagrangian and Eulerian stretch tensors

For the previously defined Lagrangian stretch tensor, the work per unit undeformed volume is
given by

w, = trace (% GC)
1 . .
= trace (§ o(UU + UU)>

= trace (% chJ) + trace (% cﬁU)

= trace <% (oU + UG)IJ) . (41)

Consequently
1
2

is the stress conjugate to U.
The Eulerian stretch tensor satisfies V> = B. The Jaumann rate of B has been previously

(6U + Uo)

introduced as

[ .
B=B - WB +BW. (42)
%
We now prove that B is objective. Now D and B are objective. Using Eq. (22) gives

B — DB, + B.D»
= (@D;0")(0B;Q") + (0B, Q")(0D;Q")
= Q(D,B; +B,D))Q”
- 0B,@". (43)
Note that VV + VV = B. We introduce the Jaumann rate {)7 for V and note that
VV+ VV = V(V — WV + VW) + (V — WV + VW)V
= VV +VV — WV2 VW32

—B. (44)
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Let /I denote the stress conjugate to V. Now

w = trace(Ylo?u)
9 [
= trace(Y(VV + VV))

(4]

= trace((YV + VY)V) (45)
so that the desired conjugate stress is

Jd=YV4+VY. (46)

5 Logarithmic strain

The strain

log(¥) = _ lox(B)

is thought to have interesting properties and has been the object of a number of recent research
studies [6]. Here, to find a stress conjugate to an objective rate of this strain we invoke a relation
for the differential of an isotropic tensor valued function of a tensor. But first we introduce
severalouseful relgtions in terms of OKronecker Product notation.

Let b = VEC(B). Objectivity of B is equivalent to

[

b; = VEC(Q(t)B,Q(t)")

— Q) ® ()b, (47)

o %
Now suppose that there is another rate given by A = 4B where ¥ is a fourth-order tensor
with suitable symmetry properties. We now will see that if & satisfies

TEN22(%;) = Q(t) ® Q(t)TEN22(%1)Q7 (1) ® Q7 (1) (48)

m}
then A is objective. As proof, observe that

VEC(As) = TEN22(%5)VEC(Bs)

[Q(t) x O(t) TEN22(%1)Q7 () x Q7 (1)]Q(t) x Q(t)VEC(B,)
= Q(t) x O(t) TEN22(%,)[[Q7(¢) x Q7 (1)]Q(t) x Q(t)]VEC(B,)
— Q) x O(t) TEN22(%,)VEC(B) (49)

= Q(t) x Q(t)VEC(Ay).
We say that the flux (D) is subordinate to the flux (O)

Another useful relation is a general expression for the differential of an isotropic tensor-
valued function of a tensor presented in Nicholson and Lin [5] under the assumption that the
eigenvalues of B are distinct. It is applied here to the derivative of log(B) with respect to B. Let
¢ = VEC(log(B)) and b = VEC(B). Then, from Nicholson and Lin [5]
at 1

at _1np -1 _ I
5 =3B @B —[BoBY (50)
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in which [B@B]I denotes the Morse-Penrose inverse (Dahlqvist and Bjork [7]) of B & B,
and

W = [log(B) — él} o [log(B) — %I} (61)
Equations (22), (23) serve to prove that

B,' & B, = Q() & Q()B;' & B;'Q"() © Q") (52)
Wo = Q) @ Q)7 1Q7 (1) @ QT ().

We now consider the transformation properties of the Morse-Penrose inverse of B & B. This
may be written using the singular value decomposition in the form:

BoeB=uxvi 1,V x9 orthogonal matrices,
X 0

Y= , X = diag(sy;), (53)
0 0

s; the i-th non-vanishing singular value of B & B.

The Morse-Penrose inverse is

!t oo
BeB) =vzu’, x'= (1) 0} : (54)
Now
B; ©B, = Q1) ® Q(t)B; 6 B1Q" (1) ® Q" (1)
= Q@) @ ouuEv'a’ () @ QT(1). (55)
But
@) ® QU@ ® QMW" = [@() ® QuUTA" (1) @ Q"(1)]
=1
(56)
v'a'() e @"@)][v'a"() @ @"0)]")" = [V'Q" () @ @"0)][Q() © Q)]"V]
=1Io.

It follows that Q(t) ® Q(¢) and VTQ” (1) ® @7 (1) are orthogonal matrices. Consequently,
B: & By = [Q(1) ® Q()uUEV Q" (1) @ Q" (1))
= Q@) @ )[vEUTQ (1) @ Q" (1)

= Q@) ®Q@1)[B; eB]Q" () ® QT @1). (57)
It follows that
(j—ﬁ>= () ® a() (%) Q) 9070, (58)

We conclude that lgg(B) is objective.
We now seek the stress I which is conjugate to log(B) (and log(V)). Now

trace(l/llggB) = trace (I/HTENZZ (%) ]%) . (59)
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The desired stress is obtained as

al 0

VECT (Y)VEC(B) = VECT (M) S VEC(B),

VEQY%:G%)iECML

an\T
Y = ITEN22 ((E) )1/1,
-7
U = ITEN22 ( {dj} >r.
db

6 Application of the Truesdell rate

In the previous sections, Kronecker-product relations were used in formulating transforma-
tions furnishing the stresses conjugate to the classical strains C, ¢ U, B, 3, V, and
log(B) (log(V)), and to the pseudostrains F and 3. Here, motivated by attractive properties of
the Truesdell rate, we introduce a nonclassical Eulerian strain with a Truesdell rate, as well as
its conjugate stress and an objective stress rate. Further the objective stress rate is subordinate
to the Truesdell rate in a manner to be explained.

The Truesdell stress flux 7 of the Cauchy stress has the interesting corotational property
that

a,_2
dt dt
= JFUF T, J = det(F) = det'/2(B), (61)

(JF 1zFT)

T=1+ trace(D)t — Lt — zL”.

It may be seen that, in nonlinear formulations, the Truesdell stress increment is proportional
to the increment of the 2nd Piola-Kirchhoff stress, without any additional terms due to co-
rotation. This is in contrast to the Jaumann rate and all other objective rates which are not
subordinate to the Truesdell rate.

Now

FZ = QF17

F] =F[Q’,

(62)

Fg_l _ Fl_lQT7
F,” = QF".

Consider a nonclassical Eulerian strain defined implicitly by
ge=JF LF T, (63.1)

from which we conclude that

¢=JF UF 7, 3 Truesdellrateof 3. (63.2)
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The work per unit undeformed volume satisfies
w, = trace(o¢€)
V.
= trace(eJF 13F7)

= trace(JFToF'3)

. FoF’
— trace (JZF*TF*1 "TF*TF*%)

= trace(/*B~1tB13)
= trace(rJZB’lgB’l).

Note that, since trace(z/D) is the work per unit undeformed volume

JB 3B =D
1
3= ﬁ(B2 —B).

Since w, = Jw, the work per unit deformed volume is given by
w = trace(JrB’lgB’l)
= trace(JB’ltB’lg).
The desired conjugate stress, per unit deformed volume, is
N=F'eF'=JB 4B
We may easily define an objective rate for the conjugate stress as
\Y
In=JB 1B
As proof of objectivity, we note that
\Y
I, = J,B; '7,B;"
_ v _
= [@MB; Q" ()] Q1T Q" (1)][Q(1)B,' Q" (1)]
= Q()l/:B; B Q7 ()
o Al
- @(t)l'h@ (t)

As an application, a hypoelastic constitutive relation may be written as

v 1 v

= (=BNB

180y

B

1 1 v
=-BZ(—(B*-B) |:B

J 9(21( ))3
Y i(BZ—B) [BDBB
- J 2J

97

(63.3)

(64.1)

(64.2)

(68)
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in which Z is the fourth-order tangent modulus tensor. In Eq. (69) B can be eliminated in favor
of 3 using

B:%(I+\/I+8J3).

Equation (69) expresses the Truesdell flux of the Cauchy stress 7 in terms of Truesdell flux of
a nonclassical Eulerian strain. Further, 7 is expressed in terms of the conjugate stress through
the simple relation IT = JB~1tB~1.

7 Conclusion

Since the time rates of Eulerian strains are not objective, it is common practice to use objective
rates such as the Jaumann rate. The same objective rate, of the conjugate stress, should be used,
if possible, in the rate constitutive model, for example in hypoelasticity. A stress is considered
conjugate to a strain if the product of the stress and an objective rate of the strain has a trace
which is equal to the rate of work per unit (deformed) volume. In the current investigation,
Kronecker-product relations are used to derive the stresses conjugate to the Finger strain B, the
Euler strain 3, the Eulerian (right) stretch tensor V, and log(V). In addition, using an attractive
property of the Truesdell rate, a nonclassical strain 3 is introduced which permits a constitutive
equation expressing its Truesdell rate in terms of B and the Truesdell rate of the Cauchy stress.
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