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Summary. A stress is considered conjugate to a strain if the product of the stress and an objective rate of

the strain has a trace which is equal to the rate of work per unit volume. Using Kronecker product

relations, apparently new expressions for stresses conjugate to the Finger strain B, the Euler strain 9, the
Eulerian (right) stretch tensor V, and logðVÞ are determined. In addition, a nonclassical strain p is intro-
duced which permits a constitutive equation expressing its Truesdell rate in terms of B and the Truesdell

rate of the Cauchy stress.

1 Introduction

The stress arising in the current or deformed configuration is, of course, the Cauchy stress

denoted by s [1]. The rate of work done per unit deformed volume and referred to deformed

coordinates is given by

_ww ¼ traceðsDÞ ð1Þ

in which D is the deformation rate tensor

D ¼ 1

2
ð _FFF�1 þ F�T _FFTÞ;

while F is the deformation gradient tensor. For the moment, let us consider

e ¼
Z

Ddt

to be a strain, referred to the deformed configuration1. By virtue of Eq. (1) we also say that s is
conjugate to e. F satisfies the Polar decomposition theorem by virtue of which F ¼ UQ1 ¼ Q2V,

where Q1 and Q2 are orthogonal tensors, U is the positive definite Lagrangian stretch tensor,

and V is the positive definite Eulerian stretch tensor.

The rate of work per unit reference or undeformed volume is found by standard arguments to

be given alternatively by

_wwo ¼ traceð�rr _FFÞ; _wwo ¼ traceðr _eeÞ ð2Þ
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1We regard a tensor as a strain if (a) it is not affected by rigid body motion and (b) its current value, given

suitable compatibility conditions, determines the current displacement field to within a rigid body

translation and rotation. By these criteria e is not strictly a strain and instead we later refer to it as a

pseudostrain.



in which �rr denotes the 1st Piola-Kirchhoff stress tensor, while r denotes the 2nd Piola-Kir-

chhoff stress tensor. Also

e ¼ 1

2
ðFTF� IÞ

is recognized as the Lagrangian or Green strain. Accordingly, �rr is said to be conjugate to F2,

while r is conjugate to e. The Right Cauchy-Green strain satisfies C ¼ 2eþ I, for which r=2 is

the corresponding conjugate stress. Also U2 ¼ C.

We consider the objectivity of the rates of C and e. Consider two deformations differing only

by a rigid body motion

x2 ¼ QðtÞx1 þ bðtÞ: ð3Þ

A tensor T ‘‘observed’’ from x1 is denoted as T1 and from x2 as T2. It is elementary to show

that F2 ¼ QðtÞF1.

A tensor T will be called objective if either (a) T2 ¼ T1 or (b) T2 ¼ QðtÞT1Q
TðtÞ. Now

C2 ¼ C1, e2 ¼ e1, and hence the rates of C and e are objective. Likewise U and _UU are objective.

Case (a) is characteristic of tensors referred to the undeformed configuration, while case (b) is

relevant to tensors referred to the deformed configuration. Here, strains satisfying (b) are called

Eulerian.

There are other strain measures which are sometimes used, in particular the Left Cauchy-

Green or Finger strain B ¼ FFT in hyperelasticity [2], the Euler or Almansi strain

9 ¼ 1

2
ðI� B�1Þ;

the Eulerian (spatial) stretch tensor V (which satisfies V2 ¼ B), and its logarithmic form

logðVÞ ¼ 1

2
logðBÞ:

These strains refer to the deformed configuration (i.e., are Eulerian) since they satisfy

B2 ¼ QB1Q
T ; 92 ¼ Q91Q

T ; V2 ¼ QV1Q
T ; logðV2Þ ¼ Q logðV1ÞQT : ð4Þ

Note that the rates of these strains are not objective. Now B2 ¼ QðtÞB1Q
TðtÞ and

92 ¼ QðtÞ91QTðtÞ. However, the rates satisfy e

_BB2 ¼ Q _BB1Q
T þXB2 � B2X;

_992 ¼ Q _991Q
T þX92 � 92X;

X ¼ _QQQT :

ð5Þ

Of course, to circumvent non-objectivity a common practice is the replace the time rate with an

objective rate such as the Jaumann rate

B
o

¼ _BB�WBþ BW; W ¼ 1

2
ðL� LTÞ:

This prompts us to extend the notion of conjugacy as follows:

A stress R is conjugate to a strain E referred to the deformed configuration if, for an objective

rate E
o

, the work per unit deformed volume is _ww ¼ trace(RE
o

Þ.
In the sections below a derivation is presented of the stresses conjugate to B, 9, V and logðVÞ.

The derivation makes use of operations associated with Kronecker products of tensors, which

2Of course F is not a strain since it is affected by rigid body motion. We later refer to it as a pseudostrain.
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are sketched in the next section. In later sections we consider a strain based on the Truesdell

rate [3], and derive a corresponding (subordinate) objective rate for the stress conjugate to this

strain.

2 Kronecker products on tensors

In the following sections all quantities are real. Let A be an n� n (second-order) tensor.

Kronecker product notation [4] reduces A to a first-order n2 � 1 tensor (vector) as follows:

VECðAÞ ¼ fa11 a21 a31 : : : an;n�1 ann gT : ð6Þ

The inverse VEC operator, IVEC, is introduced by the obvious relation IVECðVECðAÞÞ ¼ A.

The Kronecker product of an n�m matrix A and an r � s matrix B generates an nr �ms

matrix as follows:

A � B ¼

a11B a12B : : a1mB

a21B : : : :

: : : : :

: : : : :

an1B : : : anmB

2
6666664

3
7777775
: ð7Þ

Five basic relations are introduced, followed by several subsidiary relations [4].

(I) Let A denote an n�m matrix, with entry aij in the i-th row and j-th column. Let

I ¼ ð j� 1Þnþ i and J ¼ ði� 1Þmþ j. Let Unm denote the nm� nm matrix, independent of

A, satisfying

uJK ¼
1; K ¼ I

0; K 6¼ I

�
uIK ¼

1; K ¼ J

0; K 6¼ J

�
: ð8Þ

Then

VECðATÞ ¼ UnmVECðAÞ: ð9Þ

(II) If A and B are second-order n� n tensors, then

traceðABÞ ¼ VECTðATÞVECðBÞ: ð10Þ

(III) If In denotes the n� n identity matrix and if B denotes an n� n tensor, then

In � BT ¼ ðIn � BÞT : ð11Þ

(IV) Let A, B, C, and D respectively denote m� n, r � s, n� p and s� q matrices, then

ðA � BÞðC�DÞ ¼ AC� BD: ð12Þ

(V) If A, B and C are n�m, m� r and r � s matrices, then

VECðACBÞ ¼ BT � AVECðCÞ: ð13Þ

Symmetry of Unn was established in Relation (1).

Letting In2 denote the identity tensor in n2-dimensional space,

In � In ¼ In2 : ð14Þ

Note that VECðAÞ ¼ UnnVECðATÞ ¼ U2
nnVECðAÞ if A is n� n, and hence the matrix Unn

satisfies
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U2
nn ¼ In2 Unn ¼ UT

nn ¼ U�1
nn: ð15Þ

Unn is seen to be a permutation tensor for n� n matrices. If A is symmetric,

ðUnn � In2ÞVECðAÞ ¼ 0. If A is antisymmetric, ðUnn þ In2ÞVECðAÞ ¼ 0.

If A and B are second-order n� n tensors, then

traceðABÞ ¼ traceðBAÞ: ð16Þ

If A, B and C denote n� n tensors,

VECðACBTÞ ¼ In �AVECðCBTÞ

¼ ðB� InÞVECðACÞ

¼ B� AVECðCÞ: ð17Þ

Another useful relation is

B� A ¼ Un2 A � BUn2 ;Un2 ¼ Unn ð18Þ

If A and B are nonsingular n� n tensors,

ðA � BÞðA�1 � B�1Þ ¼ AA
�1 � BB�1

¼ In � In

¼ In2 : ð19Þ

The Kronecker sum and difference are defined as follows:

A � B ¼ A � In þ In � B; A � B ¼ A � In � In � B: ð20Þ

Let aj and bk denote the eigenvalues of A and B, and let yj and zk denote the corresponding

eigenvectors. The Kronecker product, sum and difference have the following eigenstructures.

expression jk-th eigenvalue jk-th eigenvector
A � B ajbk yj � zk

A � B aj þ bk yj � zk

A � B aj � bk yj � zk

: ð21Þ

Of particular importance to the following sections, if A and B are n� n tensors, and if

A0 ¼ QAQT ;B0 ¼ QBQT , then

A0 � B0 ¼ ðQAQTÞ � ðQBQTÞ

¼ ðQ�QÞðAQT � BQTÞ

¼ ðQ�QÞðA � BÞQT �QT ; ð22Þ

from which

A0 � B0 ¼ ðQ�QÞðA þ BÞQT �QT ;

A0 � B0 ¼ ðQ�QÞðA � BÞQT �QT :
ð23Þ

Note that ðQ�QÞT ¼ QT �QT ¼ Q�1 �Q�1 ¼ ðQ�QÞ�1. In fact, Q�Q represents a

rotation in an n2-dimensional vector space. Equation (23) is reminiscent of properties of ten-

sors.

We now recapitulate recent extensions of Kronecker Product relations to fourth order ten-

sors [5]. Let A and B be second-order n� n tensors and let C be a fourth-order n� n� n� n

tensor with suitable symmetries. Suppose that A ¼ CB, which is equivalent to aij ¼ cijklbkl in

which the range of i, j, k and l is ð1;nÞ. The TEN22 operator is introduced implicitly using
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VECðAÞ ¼ TEN22ðCÞVECðBÞ: ð24Þ

Several useful properties are:

TEN22ðACBÞ ¼ In � ATEN22ðCÞIn � B: ð25Þ

TEN22ðC�1Þ ¼ TEN22�1ðCÞ: ð26Þ

The inverse of the TEN22 operator is introduced using the obvious relation

ITEN22ðTEN22ðCÞÞ ¼ C.

Suppose A and B are second order n� n tensors and C is a fourth order n� n� n� n

tensor such that A ¼ CB. All are referred to a coordinate system denoted as Y . Let the

orthogonal tensor Q represent a rotation which gives rise to a coordinate system Y 0, and let A0,

B0 and C0 denote the counterparts of A, B and C, referred to Y 0. Now, since A0 ¼ QAQT ,

VECðA0Þ ¼ Q�QVECðAÞ: ð27Þ

Now write A0 ¼ C0B0 from which

Q�QVECðAÞ ¼ TEN22ðC0ÞQ�QVECðBÞ: ð28Þ

The transformation properties of TEN22 follow as

TEN22ðC0Þ ¼ Q�QTEN22ðCÞðQ�QÞT : ð29Þ

Recall that Q�Q represents a rotation in n2-dimensional space, for which reason Eq. (29)

establishes tensor-like properties for TEN22.

2 Stress conjugate to the left Cauchy-Green strain B

Elementary manipulations serve to derive that

_BB ¼ _FFFT þ F _FFT

¼ _FFF
�1

FFT þ FFTF�T _FFT

¼ LBþ BLT

¼ DBþ BDþWB� BW; W ¼ 1

2
ðL� LTÞ ð30Þ

and hence

DBþ BD ¼ _BB�WBþ BW:

The right-hand side is recognized as the objective Jaumann rate B
o

of B.

Let ! denote the stress conjugate to B. Using Kronecker product notation, we find that, by

virtue of the symmetry of D,

_ww ¼ VECTð!Þ½B� Iþ I� B�VECðDÞ

¼ VECTð!Þ½B� IþU9B� IU9�VECðDÞ

¼ VECTð!Þ½ðI9 þU9ÞB� I�VECðDÞ

U9 ¼ U33; I9 ¼ I� I:

ð31Þ

Since s is conjugate to D,
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VECTðsÞ ¼ VECTð!ÞðI9 þU9ÞB� I

VECTðsÞB�1 � I ¼ VECTð!ÞðI9 þU9Þ

B�1 � IVECðsÞ ¼ ðI9 þU9ÞVECð!Þ

VECðsB�1Þ ¼ ðI9 þU9ÞVECð!Þ:

ð32Þ

Note that

ðI9 þU9Þ2 ¼ I9 þ 2U9 þU2
9 ¼ 2ðI9 þU9Þ ð33Þ

from which we find

ðI9 þU9ÞVECðsB�1Þ ¼ 2ðI9 þU9ÞVECð!Þ: ð34Þ

Exploiting the symmetry of !, we find the desired conjugate stress as

4VECð!Þ ¼ VECðsB�1 þ B�1sÞ

! ¼ sB�1 þ B�1s
4

: ð35Þ

3 The Euler strain 9

The Euler strain refers to the deformed configuration. Its rate satisfies

_99 ¼ 1

2
ðI� B�1Þ:

¼ � 1

2
ðB�1Þ:

¼ 1

2
B�1 _BBB

�1
: ð36Þ

It likewise is not an objective strain rate. We introduce

9
o

¼ 1

2
B�1B

o

B�1 ð37Þ

which is objective since

92

o

¼ 1

2
B�1

2 B
o

2B�1
2

¼ 1

2
ðQB�1

1 QTÞðQB
o

1Q
TÞðQB�1

1 QTÞ

¼ 1

2
QðB�1

1 B
o

1B�1
1 ÞQ

T

¼ Q91

o

QT : ð38Þ

Let W denote the stress conjugate to 9. The rate of work per unit deformed volume satisfies

_ww ¼ traceðW9
o

Þ

¼ trace W
1

2
B�1B

o

B�1

� �

¼ trace
1

2
B�1WB�1

� �
B
o

� �
ð39Þ
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and hence the desired conjugate stress is

W ¼ 2B!B

¼ 1

2
ðsBþ BsÞ: ð40Þ

4 The Lagrangian and Eulerian stretch tensors

For the previously defined Lagrangian stretch tensor, the work per unit undeformed volume is

given by

_wwo ¼ trace
1

2
r _CC

� �

¼ trace
1

2
rðU _UUþ _UUUÞ

� �

¼ trace
1

2
rU _UU

� �
þ trace

1

2
r _UUU

� �

¼ trace
1

2
ðrUþ UrÞ _UU

� �
: ð41Þ

Consequently

1

2
ðrUþ UrÞ

is the stress conjugate to U.

The Eulerian stretch tensor satisfies V2 ¼ B. The Jaumann rate of B has been previously

introduced as

B
o

¼ _BB�WBþ BW: ð42Þ

We now prove that B
o

is objective. Now D and B are objective. Using Eq. (22) gives

B
o

2 ¼ D2B2 þ B2D2

¼ ðQD1Q
TÞðQB1Q

TÞ þ ðQB1Q
TÞðQD1Q

TÞ

¼ QðD1B1 þ B1D1ÞQT

¼ QB
o

1Q
T : ð43Þ

Note that V _VV þ _VVV ¼ _BB. We introduce the Jaumann rate V
o

for V and note that

VV
o

þ V
o

V ¼ Vð _VV �WV þ VWÞ þ ð _VV �WV þ VWÞV

¼ V _VV þ _VVV �WV2þVW2

¼ B
o

: ð44Þ
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Let L denote the stress conjugate to V. Now

_ww ¼ traceð!B
o

Þ

¼ traceð!ðVV
o

þ V
o

VÞÞ

¼ traceðð!V þ V!ÞV
o

Þ ð45Þ

so that the desired conjugate stress is

L ¼ !V þ V!: ð46Þ

5 Logarithmic strain

The strain

logðVÞ ¼ 1

2
logðBÞ

is thought to have interesting properties and has been the object of a number of recent research

studies [6]. Here, to find a stress conjugate to an objective rate of this strain we invoke a relation

for the differential of an isotropic tensor valued function of a tensor. But first we introduce

several useful relations in terms of Kronecker Product notation.

Let b
o

¼ VECðB
o

Þ. Objectivity of B
o

is equivalent to

b
o

2 ¼ VECðQðtÞB1QðtÞTÞ

¼ QðtÞ � ðtÞb
o

1: ð47Þ

Now suppose that there is another rate given by A
(

¼ GB
o

where G is a fourth-order tensor

with suitable symmetry properties. We now will see that if G satisfies

TEN22ðG2Þ ¼ QðtÞ �QðtÞTEN22ðG1ÞQTðtÞ �QTðtÞ ð48Þ

then A
(

is objective. As proof, observe that

VECðA
(

2Þ ¼ TEN22ðG2ÞVECðB
(

2Þ

¼ ½QðtÞ �QðtÞ TEN22ðG1ÞQTðtÞ �QTðtÞ�QðtÞ �QðtÞVECðB
(

1Þ

¼ QðtÞ �QðtÞ TEN22ðG1Þ½½QTðtÞ �QTðtÞ�QðtÞ �QðtÞ�VECðB
(

1Þ

¼ QðtÞ �QðtÞ TEN22ðG1ÞVECðB
(

1Þ

¼ QðtÞ �QðtÞVECðA
(

1Þ:

ð49Þ

We say that the flux ð:Þ
(

is subordinate to the flux ð:Þ
o

.

Another useful relation is a general expression for the differential of an isotropic tensor-

valued function of a tensor presented in Nicholson and Lin [5] under the assumption that the

eigenvalues of B are distinct. It is applied here to the derivative of logðBÞ with respect to B. Let

‘ ¼ VECðlogðBÞÞ and b ¼ VECðBÞ. Then, from Nicholson and Lin [5]

d‘

db
¼ 1

2
B�1 � B�1 � ½B� B�IW ð50Þ
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in which ½B� B�I denotes the Morse-Penrose inverse (Dahlqvist and Bjork [7]) of B� B,

and

W ¼ logðBÞ � 1

2
I

� �
� logðBÞ � 1

2
I

� �
: ð51Þ

Equations (22), (23) serve to prove that

B�1
2 � B�1

2 ¼ QðtÞ �QðtÞB�1
1 � B�1

1 QTðtÞ �QTðtÞ;

W2 ¼ QðtÞ �QðtÞW1Q
TðtÞ �QTðtÞ:

ð52Þ

We now consider the transformation properties of the Morse-Penrose inverse of B� B. This

may be written using the singular value decomposition in the form:

B� B ¼ URVT ;U;V 9� 9 orthogonal matrices;

R ¼
R1 0

0 0

2
4

3
5; R1 ¼ diagðsiÞ;

si the i-th non-vanishing singular value of B� B:

ð53Þ

The Morse-Penrose inverse is

ðB� BÞI ¼ VRIUT ; RI ¼
R�1

1 0

0 0

" #
: ð54Þ

Now

B2 � B2 ¼ QðtÞ �QðtÞB1 � B1Q
TðtÞ �QTðtÞ

¼ QðtÞ �QðtÞURVTQTðtÞ �QTðtÞ: ð55Þ

But

½QðtÞ �QðtÞU�½QðtÞ �QðtÞU�T ¼ ½QðtÞ �QðtÞU�½UTQTðtÞ �QTðtÞ�

¼ I9

½VTQTðtÞ �QTðtÞ�½½VTQTðtÞ �QTðtÞ�T �T ¼ ½½VTQTðtÞ �QTðtÞ�½QðtÞ �QðtÞ�TV�

¼ I9:

ð56Þ

It follows that QðtÞ �QðtÞU and VTQTðtÞ �QTðtÞ are orthogonal matrices. Consequently,

½B2 � B2�I ¼ ½QðtÞ �QðtÞURVTQTðtÞ �QTðtÞ�I

¼ QðtÞ � ðtÞ½VRIUT �QTðtÞ �QTðtÞ

¼ QðtÞ �QðtÞ½½B1 � B1�I�QTðtÞ �QTðtÞ: ð57Þ

It follows that

d‘

db

� �
2

¼ QðtÞ �QðtÞ d‘

db

� �
1

QTðtÞ �QTðtÞ: ð58Þ

We conclude that log
(

ðBÞ is objective.
We now seek the stress B which is conjugate to logðBÞ (and logðVÞÞ. Now

traceðBlog
(

BÞ ¼ trace BITEN22
d‘

db

� �
B
o

� �
: ð59Þ
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The desired stress is obtained as

VECTð!ÞVECðB
o

Þ ¼ VECTðBÞ d‘

db
VECðB

o

Þ;

VECð!Þ ¼ d‘

db

� �T

VECðBÞ;

! ¼ ITEN22
d‘

db

� �T
 !

B;

B ¼ ITEN22
d‘

db

� ��T
 !

!:

ð60Þ

6 Application of the Truesdell rate

In the previous sections, Kronecker-product relations were used in formulating transforma-

tions furnishing the stresses conjugate to the classical strains C, e, U, B, 9, V, and

logðBÞ ðlogðVÞÞ, and to the pseudostrains F and p. Here, motivated by attractive properties of

the Truesdell rate, we introduce a nonclassical Eulerian strain with a Truesdell rate, as well as

its conjugate stress and an objective stress rate. Further the objective stress rate is subordinate

to the Truesdell rate in a manner to be explained.

The Truesdell stress flux s
_
of the Cauchy stress has the interesting corotational property

that

d

dt
r ¼ d

dt
ðJF�1sF�TÞ

¼ JF�1s
_
F�T ; J ¼ detðFÞ ¼ det1=2ðBÞ; ð61Þ

s
_ ¼ _ssþ traceðDÞs� Ls� sLT :

It may be seen that, in nonlinear formulations, the Truesdell stress increment is proportional

to the increment of the 2nd Piola-Kirchhoff stress, without any additional terms due to co-

rotation. This is in contrast to the Jaumann rate and all other objective rates which are not

subordinate to the Truesdell rate.

Now

F2 ¼ QF1;

FT
2 ¼ FT

1 Q
T ;

F�1
2 ¼ F�1

1 QT ;

F�T
2 ¼ QF�T

1 :

ð62Þ

Consider a nonclassical Eulerian strain defined implicitly by

e ¼ JF�1pF�T ; ð63:1Þ

from which we conclude that

_ee ¼ JF�1p
_
F�T ; p

_
Truesdellrateof p: ð63:2Þ
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The work per unit undeformed volume satisfies

_wwo ¼ traceðr _eeÞ

¼ traceðrJF�1p
_
F�TÞ

¼ traceðJF�TrF�1p
_Þ

¼ trace J2F�TF�1 FrFT

J
F�TF�1 p

_
� �

¼ traceðJ2B�1sB�1p
_Þ

¼ traceðsJ2B�1 p
_
B�1Þ: ð63:3Þ

Note that, since traceðsJDÞ is the work per unit undeformed volume

JB�1 p
_
B�1 ¼ D ð64:1Þ

p ¼ 1

2J
ðB2 � BÞ: ð64:2Þ

Since _wwo ¼ J _ww, the work per unit deformed volume is given by

_ww ¼ traceðJsB�1p
_
B�1Þ

¼ traceðJB�1sB�1p
_Þ: ð65Þ

The desired conjugate stress, per unit deformed volume, is

P ¼ F�TrF�1 ¼ JB�1sB�1: ð66Þ

We may easily define an objective rate for the conjugate stress as

P
r
¼ JB�1s

_
B�1: ð67Þ

As proof of objectivity, we note that

P
r

2 ¼ J2B�1
2 s
_

2B�1
2

¼ ½QðtÞB�1
1 QTðtÞ�½J1QðtÞs

_
1Q

TðtÞ�½QðtÞB�1
2 QTðtÞ�

¼ QðtÞ½J1B�1
1 s
_

1B�1
1 �Q

TðtÞ

¼ QðtÞP
r

1Q
TðtÞ: ð68Þ

As an application, a hypoelastic constitutive relation may be written as

P
r
¼ DðpÞp_; or

s
_ ¼ 1

J
BPB

� �_

¼ 1

J
BDðpÞp_B

¼ 1

J
BD

1

2J
ðB2 � BÞ

� �
p
_
B

¼ 1

J
BD

1

2J
ðB2 � BÞ

� �
½BDB�B: ð69Þ
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in which D is the fourth-order tangent modulus tensor. In Eq. (69) B can be eliminated in favor

of p using

B ¼ 1

2
ðIþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iþ 8J p
p

Þ:

Equation (69) expresses the Truesdell flux of the Cauchy stress s in terms of Truesdell flux of

a nonclassical Eulerian strain. Further, s is expressed in terms of the conjugate stress through

the simple relation P ¼ JB�1sB�1.

7 Conclusion

Since the time rates of Eulerian strains are not objective, it is common practice to use objective

rates such as the Jaumann rate. The same objective rate, of the conjugate stress, should be used,

if possible, in the rate constitutive model, for example in hypoelasticity. A stress is considered

conjugate to a strain if the product of the stress and an objective rate of the strain has a trace

which is equal to the rate of work per unit (deformed) volume. In the current investigation,

Kronecker-product relations are used to derive the stresses conjugate to the Finger strain B, the

Euler strain 9, the Eulerian (right) stretch tensor V, and logðVÞ. In addition, using an attractive

property of the Truesdell rate, a nonclassical strain p is introduced which permits a constitutive

equation expressing its Truesdell rate in terms of B and the Truesdell rate of the Cauchy stress.
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