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Summary. Nonlinear curvature and nonlinear inertia are taken into account in the beam model. The
constant part of the parametric force is proposed to be greater than the buckling one, therefore the beam
has three equilibria. One-mode approximation of the beam oscillations is used. Bifurcations of the beam
oscillations are analyzed by Melnikov’s method. Moreover, beam oscillations close to the stable equilib-
riums are studied by the multiple scales method.

1 Introduction

Oscillations of continuous systems with several equilibria are encountered frequently in engi-
neering sciences [1]. The theory of such systems has been advanced significantly due to the
Melnikov method [2]-[7]. In these publications one-mode approximations of continuous sys-
tems were considered. Using these approximations, one-degree-of-freedom nonlinear oscilla-
tors were derived. These oscillators were considered by many authors. Duffing oscillator
trajectories close to the resonance energy levels were studied by A. D. Morozov [8]. He derived
the system of two autonomous differential equations, which governed these motions. P. Holmes
[3] studied beam dynamics by the Melnikov method. The Duffing-van der Pol oscillator was
considered in the paper [9], where the repeated bifurcations of the periodic motions close to the
resonance energy levels were studied. As follows from [10], the numerical results of the Duffing
equation coincide qualitatively with the analytical analysis of the motions close to the reso-
nance energy levels. The mathematical theory of the motions close to the resonance energies
levels was considered by A. D. Morozov and L. P. Shil’'nikov [11]. This theory was used to
analyze invariant tori and their synchronization [12]. The system with the nonlinear parametric
term was considered in [13]. Chaotic oscillations of a beam in a magnetic field were analyzed
experimentally by F. Moon [14]. As follows from this paper, the beam has three or five equi-
libria. R. Chason and J. D. Bejarano [15] used Melnikov homoclinic functions to study an
oscillator with five equilibria. Oscillations close to the equilibria were considered in [16], [17]. As
follows from these papers, such oscillations undergo period-doubling bifurcations. An effect of
the different excitations on the dynamics of the Duffing system was studied in [18]. The
homoclinic Melnikov function of the Duffing oscillator with the parametric excitation was
derived in [19].

The systematic treatment of the parametric oscillations theory was presented in the mono-
graph [20]. H. A. Evensen and R. M. Ivan-Iwanowsky [21] considered column parametric
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oscillations taking account of the nonlinear inertia. K. Eisinger and H. C. Merchaut [22] took
into account the rotatory inertia and longitudinal motions of beams. H. Saito and N. Koizumi
[23] analyzed parametric oscillations of hinged beams. K. Sato, H. Saito and K. Otomi [24]
analyzed parametric oscillations of a beam with a concentrated disc. R. F. Fung [25] studied
parametric vibrations taking into account the nonlinear inertia.

Dynamics of the beam with three equilibria under the action of a parametric periodic
excitation is considered in this paper. Nonlinear inertia and nonlinear curvature are taken into
account in the beam model. Using Galerkin’s method, the nonlinear partial differential equa-
tion is transformed into a second order ordinary differential equation. Using the subharmonic
Melnikov function, the saddle-node bifurcations are investigated. The topology of the flow
close to the resonance energy levels is considered. Periodic oscillations and bifurcations of the
beams close to equilibrium are analyzed.

2 Problem formulation

Figure 1 shows the beam under consideration. Mass M is attached to the end of the beam.
Transverse beam motions W (s, t) induce displacements #(¢) of the mass M. Therefore, the linear
viscous damping force R;, = ¢, 7 acts on mass M. The nonlinear curvature and nonlinear inertia
are taken into account in the beam model [20]. The parametric oscillation equation has the form:

l l
EJ M
B!+ (w'"w w?)"+{ Py + P, cos(t) 5/ 2\ ds — CL/ ), ds pa”
0 0

+cw + b — (Nw') = 0, (1)

/d51 / zz dsz,

where w = wg, w' = wl, p is the mass per unit of length, cu is the material damping, and the

term w"’ + £ (w"w™)" describes the beam curvature.
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Q Fig. 1. Transverse beam parametric oscillations are considered. The non-

\ linear curvature and nonlinear inertia are taken into account
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The nonlinear inertia is presented by the term (Nw')" in Eq. (1). The derivation of Eq. (1) is
presented in [20]. Let us introduce the dimensionless parameters:

&0 = ol &0, = chE el —@ —Ple g _zﬁ m—%
T VER T ayEm Y TR T B T T T
) (2)
EJ Q2 2v2 [P
u:£7 T= _t7 é:ﬁ’ Q: \/ﬁy Wy = \/— _O_la
. i l VEJ n VP,

where ¢ < 1, P, is the buckling force, and w, is the static deflection at s = é Equation (1) is
rewritten in the dimensionless form:

/
1 1

1 ]
w" + Lo + 00 + a(uu)" + ¢ | —myu” /(u'z)'dé —y| / dn/ (wW?)dh
0 0

¢

1
+0u + Ty cos(Qr)u” — 5Lu"/ (u’z)dé =0,
0

where o = w?/(20%), u' =, and 1 = u,.

The dimensionless fundamental frequencies of the linear system (1) have the following values:
e = k?7. As follows from the analysis presented in this paper, the frequency Q is varied in the
following range: 0.5 < Q < 4. Therefore, the one mode approximation » = q(t) sin(n&) accu-
rately describes the beam dynamics. The following differential equation is derived by the
Galerkin method:

G+ Mq* —q) + e[ypr*a(@® + qg) + 6G — Tymq cos(Q) + Sn'Gq”] + O(e*) = 0, (4)
where
1 3
o2 4

Let us rewrite Eq. (4) in the form:
G+ U@® — q) + e[—ypin*(@° — @°) + yprtad® + 8¢ — TymPq cos(Qr) + 8.n*Gq?] = 0. (6)

Note that the system (6) is invariant against the variable change ¢ — —g. We stress that, for
¢ =0, (6) is a nonlinear conservative system.
We made calculations with the following parameters [23]:

N

E:2.013~10“m2, p:7.80-103%, | =558mm, b=11.95mm, h = 1mm,

K K
M =0.162Kg, = 9.3 - 1072 %g, P. = 6.39N, Py — 642N, ¢ = 7.8 1072 ?g,

EJ =0.201Nm?, w, = 3.4 x 102 m.
The dimensionless parameters (2) have the following values:

e=0.01, &5 =0.18, Ty =10, ey =1.84-10"%, m =3.11, p = 3.4.
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3 Saddle-node bifurcations

In this section, the Melnikov method [5]H7] is used to obtain saddle-node bifurcations of limit
cycles. It is known that, for ¢ = 0, the system (6) has periodic solutions of the form:

, [ 2 k*v/27 [
(QCHQO) = { o _ k2 dnt; — o _ k2 Sn’fC?’Z‘C}; T=1 m7 (7)

where k is the elliptic integral modulus, and dn, sn and cn are elliptic functions [26], [27]. The
equation: H = A(k? — 1)(2 — kz)_z connects the Hamiltonian H of the system (6) for ¢ = 0 to
the modulus of the elliptic integral. Let us consider motions of the system (6) meeting the
resonance conditions:

T(k)=mT; T=2r/Q T(k)=2K\/2—k2/), (8)

where K is the complete elliptic integral of the first kind; 7'(k) is the period of ¢ = 0 system
orbits. The subharmonic Melnikov method permits to determine the subharmonic oscillations
of a single DOF system with essential nonlinear unperturbed part. The simple roots of a
subharmonic Melnikov function define these subharmonic oscillations. If subharmonic Mel-
nikov function roots meet the equation [sin(Qi)| = 1, the saddle-node bifurcation set is

derived. The subharmonic Melnikov method is explained in [5].
The subharmonic Melnikov function of the system (6) is derived in the form:

M = —5V7d (k) + TinJs (k) sin(Qto) — 5,7* Vs (k), (9)
where
mT
Ji(k) = %/ Gidt = g (2 — KE — 2k2K](2 — k)72,
0
mT
Ta(k) = %/ P dt = % 20 +KP)E + (K — 2)kK] (@ — k)2, (10)
0
mT 5
J3 sin(Qtp) = / Qodo cos(Qt + Qty)dt = Wsm(%).

0

Note that E is the complete elliptic integral of the second kind.
From Eq. (9) we obtain the saddle-node bifurcations set:

VI s s

T, = im[ém Jo(k) + 8J1(k)]. (11)
This bifurcation set on the plane (Q,I7;) are the parameter functions (Q(k), I';(k)):
N L

K(k)V2 — Kk?

4K2/) K’

Ty(k) = Vi, (m” > (12)

3V2 — k2nPm? K

45L7I4 9 125L7I4]C/2 5LTE4 ”
— S Sy H N} <k<l.
x[( = +5)(2 k)E 5(2_k2)E 2( =g +0)k"K|, 0<k<1
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Using the asymptotic formulae [27], we obtain the following limits:

0; m=1,

lm T, = { S (opnt +6); m=2,

- 13
0; m=3,4,... (13)

imQ =0, lim[, =00, lLmQ=mV21.
k—1 k—1 k—0
Figure 2 shows the saddle-node bifurcation curves with the system parameters from Sect. 1.
The bifurcation curves of the subharmonic oscillations of orders 1, 2, 3, 4 are denoted by the
same numbers (Fig. 2).

The periodic motions of the system (6) for ¢ = 0 outside the homoclinic orbit have the form:

oK? k27 } Vit
y 1= —F—
B)

. A
(q0,G0) = { ez 0T Tgpe 1St =

(14)

In this case, the equation H = k%k"2/(2k% — 1)~* connects the Hamiltonian H to the elliptic
integral modulus k. The periods of the motion (14) are

T(k) = %\/2;@2 — 1. (15)

Let us study periodic motions outside the homoclinic orbit in the system (6). The subhar-
monic Melnikov functions of these motions are the following:

M"Y =~V (k) + Tynds (k) sin(Qto) — 6,7V s (k), (16)
where m = 21; 1 =1,2,... . The functions J;(k) have the form:

Jl(k) = %{k’zl(— (1 . Zkz)E}(Z]CZ B 1)73/2’

A 16 -5
Jo(k) = 12 (KK (K — 2) + 2E(K? + k") } (2k* — 1), (17)
. 20°%7
sh (L)

T T T T T
homoclinic
bifurcation
6l i
&~ i
Fig. 2. The saddle-node bifurcation
curves of the subharmonic oscillations
2k 4 of orders 1,2,34. The curves are
denoted by the same numbers. The
calculations were produced with
the following parameters: ¢ = 0.01,
0o 4 ed=ed, = 0.18, ey = 1841073,

p=34
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If J;(¢ = 1,3) is replaced with J; in formula (9), the saddle-node bifurcation equation of the
motions is obtained. These bifurcation sets can be presented by the parameter functions
(Q(k), I'(k)):

8VIK? (nK’
+I(k) = h
(k) e (2 — 1)F ( K )
5, 4 2
X {Kk/z ng);& —zh- 5} +E[gﬂ+5+2<g+5> (k* — 1)1{2} } (18)
I/ 1
Qk) = ——L— 1<k<—.
(k) KvV2k? -1 V2
The functions (18) have the limits:
lIimQ =0, lImIl;, =00, lmQ=o00, limI;=oc0. (19)
k—1 k—1 kz;,% kz;,%

Figure 3 shows the saddle-node bifurcation curves (18) of the subharmonic oscillations of
orders m = 2, m = 4 and m = 6 for the system parameters from Sect. 1.

Let us consider the saddle-node bifurcations on the plane (Jz, ;). We study the limit cycles
from the right homoclinic orbit. Equation (11) is rewritten in the form:

2\ 2T (k)
IN=+———>10, - 9] 20
4 J3 (k) [ L L (m)] ) ( )
where 0] (m) = — f;f}z(gg). Following [9], the values d; (m) are called the resonance numbers.

Figure 4 shows qualitatively the bifurcation curves. Note that the values I'; (m) = I';|; _, have
the form:

14 T T T T T T T T T
homoclinic
121 bifurcation 7
10F .
sl 4
S
Fig. 3. The saddle-node bifurcation
6+ E . [N
I curves of the subharmonic oscillations
ne i of orders m=2, m=4, m=26.
| The parameter function (18) defines
5 these curves. The calculations are
., ., . . ] produced with the following parame-
0 1 2 3 4 5 ters: e =0.01, &0 = &7, = 0.18,
Q ey=184-103, p=34
FT
I“*t(m) Fig. 4. The qualitative form of the saddle-node
6, bifurcation curve on plane (dr,17%). Equation (20)

&, (m) defines these curves
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SV, (k)
r: =7 21
As the elliptic integral modulus & satisfies the resonance condition (8), the following inequalities
are true:

k(1) <k(2) < <k(c0)=1. (22)
Note that the resonance numbers J; (m) satisfy the following relations:

* _ e 0
51(00) = — oy, lim i} (m) = — . (23)

Using the results of [9], we derive the formula:
d 0

%5;( )= IEE ) [80(2 — k*)E? (k) — 160k™K (k)E(k) — 32(k* + k™)K (k)E(k)

(24)
+16k"(2 — K*)K*(k)].
We obtain the following inequality from Eq. (24):
d .,
%(&(k) <0, k€ ky;1].
Therefore, we can select an integer number 7, so that
55 * * *
74—7[4:@(00) < - <0 (my + 1) < 05 (m). (25)

Let us study the intersections of the invariant manifolds of the saddle point. It is known, that
these intersections are the necessary condition for the existence of chaos [7]. The homoclinic
Melnikov function is derived in the form:

Wi T 16
M(ty) = —ﬁ—FLSin(Qto) — — otV (26)
3 ash (%) 15
Then invariant manifolds intersections take place if
168, 7" + 2008) 77/ Q
r, > (160 +200)4 (”—) 27)
1573Q 2V7.
The homoclinic tangency of manifolds is observed if
4 13/2 0
r— (165, 7* + 225)A (n ) (28)
1573Q 2V/7.
Equation (28) meets the following limits:
lim I, =00, lim I'; =o0. (29)
Q—+0 Q—o0

Figures 2 and 3 show the manifolds homoclinic tangency curve together with the saddle-node
bifurcations curves. Note that on the Fig. 2 scale the manifolds homoclinic tangency curve
coincides with the 4th-order subharmonic motions bifurcation curve.

The subharmonic Melnikov function MI”/ ! and the homoclinic Melnikov function M are
connected in the following way:
lim M}"' =M.

m—o0
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4 The bifurcations of motions close to resonance energetic levels

In the previous section, the saddle-node bifurcations were obtained. However, the limit cycles,

which undergo these bifurcations, were not studied. It is clear that these cycles may undergo

other bifurcations. In this section, we use the Melnikov method, which is considered in the

publications [2], [5], [8] to study the other bifurcations of parametric oscillations of beams.
The system (6) with respect to the action-angle coordinates (/, ) has the form [5]:

I=¢F(I1,0,1); 6=Qs()+eG(,0,1), (30)
where Qs (7) is the frequency of the system (6) for ¢ = 0. Let us consider the following motions:

I=T"" 1 en(t); 0=Qs(I"™Nt+ ¢,

where the values /"> are obtained from the resonance conditions (8). Following [8], the system
oscillations I = I"™! 4 \/eh(t) are called the motions close to the resonance energy level. The
aim of the present study is the analysis of the topology of Poincaré sections close to the
resonance energy levels. Then the equations of the motion have the following form [5]:

},'z \/‘;'Mm/l( ¢ ) -l-?ﬂﬁ,
Qs

o1 ([m,l)
(31)
oQ Y Q" (! -
b=1e ( )h—i—a{ (2 )62+G(¢)].
The functions from Eq. (31) meet the relation:
mTQs(k)F, =M™ _¢ (32)
1 1 QE ([m‘l)
Using the formulae from the Appendix, the system (31) is written in the following form:
h= zf [ OV (k) + Tynds (k) sin(me) — 5Ln4fu2(/f)}
. 9(2 k ) ! 4
—+ &h{m |: 5\/_J =+ r[T[ J3 Sln(m(b) — 5LTL’ \/_J2i|
k
+% (75\/—/1&]1 N sin(me) — 5Ln4\/—M2) }, (33)

Qe -k, | k)

Az 3T 0

Q// r 2
$ = ViQuh + g{ghz - L costmg)

— ypin’K, (k) },

_mdQs

where w(k) = —£5*. The system (33) can be represented in the following way:

h= g (—6\/7J1 + T2y sinmg — 5LTE4\/_M2> +eh (—Kléﬂ + T2Ky sinmep — 5Ln4\/—/1K2),

. QY I 2K
¢ = VeQsh + ¢ { 22 p2 - 3 ———=cosmep — ypin Kl(k)}

(34)
where K, = (ffszkg J+ w(k Jv, v =1,2,3. In this paper, we use the equations of the motion in
the form:

1
=g (—Aln‘*\/ifz e sinm¢) +eh[3(Ay) + Tyn2Ks sinme];
T
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(914 72K
¢ =Qh + \f{ xRt %cosmd)} (35)
where A = &, — 6}; 7 = SVARELIAN A 1/,

a(k) = 80(2 — k*)E? (k) — 160Kk"K (k)E(k) — 32(k* + K*)K (k)E(k) + 16k™ (2 — k*)K?(k),

Qn 2 —k2)’Q%n mnK'
Ky = : h k)|,
T Jsh (mE [ IRk g ) oW
2EQ a)(k) T ol Vort(2 — K2)[(2 — K*)E — 2k/2K]
TamvEom @ F tET KKkt
5/2
o Vir (2 - k%) [2E(k’6+8k’2+k4) k' (W? i _33(2 ).
2 41c8)4 K4 K3 K5

The fixed points of the system (35) are the following ones:

(1) = ((jjjv

where a =

arcsin(a) + 0> +O(e), veZ, (36)

ran (8J1 + 8,m*J3). If @ > 0 (a < 0), then v is changed according to the formula:
v=0,....2m—1 (v=1,...,2m), respectively.

Let us study the stability of these fixed points. The system (35) is linearized and the eigen-
values / of the constant matrix [fi] of the linear system are derived. The values of A of the
saddle fixed points are the following ones:

W) = i\/g || TiJsm V1 — a2 + O(e). (37)

Other groups of fixed points are denoted by B. The values A of these fixed points are the
following ones:

1 ~
i = 5r(A) £ z\/g || T m3mv/1 — a2, (38)

where (7(A) is the trace of matrix [A]. Note that the following limit is true:

. - NSt + )
fim ir(A) = Jim e R )

(39)

Motions close to the resonance energy levels have values k£ near 1. Using formula (39) we
conclude that if 6, < d; (m) (d, > 0; (m)), the fixed points B are stable (unstable), respectively.
System (35) is rewritten with respect to ¥ = ¢ — a (see (36)) to analyze this stability change.
Considering the motions close to the fixed point y = 0 (|| << 1), the following second-order
nonlinear equation is derived:

U+ oY = Ve (a4 rp) + O(e), (40)
where
2 1.J
= 1(Ay) + 2T, KA1 B, B = nl:L/J_g 2

o 0
w? = ’;‘an:]grm/l A2B2 7 = 30 = yndgma/1 — A2B2 + 2T Kam /1 — A2 B2

Let us use the method of averaging [28] to obtain approximate solutions of Eq. (40). Using the
change of variables (, ) = (a cos 0, —af sin 0), the following modulation equations are derived:
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d:s?JrO(sz); 6=+ 0(), (41)

where
Q2 — k) o (k) e Jo
= = "/ WA ZoK ).
a(k) = 6VA Sommieds T 7V 2K3J3 K,

As follows from Eq. (41), if o < 0 (« > 0), the fixed point Yy = 0 is asymptotically stable (unstable),
respectively. Therefore, the bifurcation set satisfies equation o« = 0. This equation describes the
bifurcation curve H on the parameter plane (J.,,1) € R?, which can be written in the form:

A=A (k),
(42)

156 [Q Q -
lim A (k) = {—” cth <—”> + 1} lim kK2,
k—1 St \/7 ) Zﬂ k—1

The qualitative location of the bifurcation curve H is shown in Fig. 5. The results of the
numerical calculations of this curve are shown in Fig. 6. We stress that as follows from

HA
9 S
E
B |B, € B
D
A Z R S| F

\4

PZ \\//\ N m¢

P h
B m
A Y~ = m
MM
th
Bu m m¢
B S e S e
N Fig. 5. The curves of the saddle-node

bifurcations and the heteroclinic bifur-

C \\M m¢  cations (QZ) and (RS) are shown. The
W letters denote the regions of different

dynamical behavior
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B, ]M% o
NN N T N

A

AN

. V. Vi

Ah

/\_A Fig. 5. (Continued)

Egs. (41), a limit cycle does not arise on the bifurcation curve H. Figure 6 shows the qualitative
phase portraits of the system (35) close to the bifurcation curve H.

Let us study homoclinic and heteroclinic orbits of the dynamical system (35). The
invariant manifolds of the system (35) for ¢ =0 are shown qualitatively on Fig. 7. If
oy, # 67 and d;, = J7, homoclinic and heteroclinic orbits occur, respectively. The Melnikov
function analysis shows, that trajectories topologically equivalent to homoclinic orbits are
not observed. Let us consider heteroclinic orbits of the system (35), which are topologi-
cally equivalent to the trajectories at J;, = J; (see Fig. 7). We choose the following values
of 6,:

o, = 05 (m) + VeA. (43)
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H oA
3L J
B, |
1+ b . .
Fig. 6. The bifurcation curves H and

By, which are presented in Fig. 5, are
ol v o shown quantitatively for the following
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 parameters: & = 0.01, &d = £d;, = 0.18,
1 ey =184-10"3, p=34

FT
(3]
T

h
mo
Fig. 7. The qualitative behavior of the
homoclinic and heteroclinic orbits of
the system (35) for ¢ = 0 with different
parameter oy,

Then, the system (35) is rewritten in the form:

\J

. u I, 2K
¢ = VeQsh + 8<—Zh2 — &cosmqb);
2 m
(44)
: oIy 1. .
h= %smmqs + 8{—§An3\/v/1J2 + h[x(0) + T,7*K;3 sinme] }

The system (44) without terms O(¢) has the Hamiltonian K:

Vs, Vel
K= 5 he + 5 cosme. (45)
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This system has saddle fixed points (¢,,h,) = (2m;0); v=0; +1; ... and centers
(¢,, 1) = (22;0). Note that the heteroclinic orbits join these saddles. Following [5], we derive

m

the Melnikov function to study the heteroclinic bifurcations:

M= _%5 QL ATV 23 / hdt + /eQ7(0) / R?dt. (46)

Then the heteroclinic bifurcations set is described by the equations:

47(0) [ 2rJs

A= il A 47
AT )

. 7(0) 15

lim = 48

k=1 J5 0V 32y (48)

Equation (47) with minus and plus signs describes the heteroclinic bifurcations of the orbits (O
EOy) and (O; FOy) (see Fig. 7), respectively. These bifurcation sets are denoted by B, and B.
Figure 5 shows qualitatively the phase portraits close to the bifurcation curves B,, and By.
Let us study the periodic motions of the system (44) meeting the following relations:
¢(0) =0; —p(t) = d(—t); h(t) = h(—t); —m < m¢(t) < n. Using these relations, the subhar-
monic Melnikov function is derived in the form:
T/2
- 1 -
Mi(K) = /eQ / (7 iAnS\/_AJg + x(O)h)hdt, (49)
~T/2

where T is the period motion. Function M;(K) has the form:

. An*NIdy 4y (0)E(k 2 Iy .

M(K) = 71\/_2¢ 2(0)E(k) : (\/Z L7T37K)’ (50)
m m Vel Q| 2m

where k2 = % Formula (50) describes two types of periodic motions.

Equation (50) with the upper (lower) sign determines the motions at 2 > 0 (= < 0), respec-
tively. The periodic orbits of the system (44) satisfy the equation M;(K) = 0. Therefore, peri-
odic motions meeting the inequalities 72 > 0 and /& < 0 occur at:

47(0) | 2I'WJ3 47(0) | 2I'WJ3
A<D [ 2 g A 2D [ SR 51
NI m’Q’z‘ﬂ NI m‘Q'Z]ﬂ (51)

respectively. If k — 1, the periodic motions are joined to one of the heteroclinic orbits (see
Fig. 5).

The dynamical system (35) was studied numerically to confirm the behavior obtained ana-
lytically. Changing the parameter Jy: 527) = 520) +jhy; j=0,18; &, € [~0.55;0.08], we calcu-
lated the phase plane trajectories of system (35) by the Runge-Kutta method at I'; = 2.

Now let us fix the parameter J;, to explain the calculations. 100 points were set as the initial
conditions in the phase plane domain (0 < ¢ < 27; —40 < 2 < 40). We integrated the system
(35) from every initial condition. The calculations were finished if the phase plane point was
close to a steady state.

The calculations confirmed the system behavior obtained analytically. For example, Fig. 8a
shows the periodic motion at ;, = —0.22. This trajectory corresponds to periodic orbits in region
B (see Fig. 5). Figure 8b shows the system’s motion to the fixed point at ;, = —0.22. Figure 8c
shows the periodic orbit which corresponds to periodic motions in region D (see Fig. 5).
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5 The qualitative behavior of the beam

It is proved in the books [7], [5], that the flow of system (35) is topologically equivalent to the
Poincaré sections of system (30). That is, the saddle separatrices of the system (35) are topo-
logically equivalent to the stable and unstable manifolds of the Poincaré map of the system (30).
The hyperbolic fixed points of the system (30) correspond to the period m hyperbolic points of
the Poincaré sections.

39 T T T T T T

3‘3 " 1 " 1 " 1 "
-17260 -17250 -17240 -17230 -17220
a 0

0.10 T T T T
0.05
0.00
-0.05
=
-0.10
-0.15
-0.20

-0.25

-0.30

0

-11.0

-11.2

-11.4
Fig. 8. The system (35) trajectories,

which are obtained numerically, are
presented; (a) shows the periodic
motion at o, = —0.22; (b) demon-
strates the system’s motion to the
L fixed point at o, = —0.22; (¢) presents
_12.0 N T S S the periodic orbit, which corresponds
1460 1462 1464 1466 1468 1470 1472 to periodic motions in region D (see

c ¢ Fig. 5)

<

-11.6

-11.8
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=
T«
\&

Fig. 9. The qualitative Poincaré sections of the

@ system (35) close to the subharmonic oscillations of
order 3. The system parameters correspond to region

E (see Fig. 5)

\/’/K—<\/ mo

Wf< .
% — Fig. 10. The qualitative behavior of the
invariant manifolds, when the bifurca-

tion curve By, is intersected

Figure 9 shows qualitatively the Poincaré sections close to the subharmonic oscillations of
the order 3. This behavior corresponds to the flow of the system (35) from region E (see
Fig. 5).

Let us consider the dynamics of system (6) close to the bifurcation curves B, and By, (see
Fig. 5). A similar case is considered in [9]. Using results of this paper, we conclude the fol-
lowing. Intersections of the invariant manifolds of the Poincaré sections take place in the
vicinity of the bifurcations curves By and Bj. These intersections are observed in the small
region of the parametric plane (dz,I;). The manifolds are touched quadratically at the
boundary of this region. Figure 10 shows the qualitative behavior of the invariant manifolds
when the bifurcation curve By, is intersected.

The beam model has 6;, > 0. However, the bifurcation behavior is impossible to study
without the analysis of the region d;, < 0. We stress that the bifurcations behavior has repeated
properties. This means that the bifurcations are qualitatively the same for any m. Repeated
bifurcations are observed numerically for the frequency modulated COs laser [29].



130 K. V. Avramov
6 Beam oscillations close to equilibrium

Beam oscillations close to equilibrium g = 1 have the form:

q(t) =1+ Vex(t). (52)
Then, Eq. (6) is written as

&4 247 + Ve(3)a® — Tcos Q) + e(Ja® — g + 054 — Tx cos Qt) = 0, (53)

where I' = I;n?; 05 = 6 + 8, 1%; g = 2ypAn*. Main resonance (Q = v/21 + eo; I’ = T'y/e) of the
system (53) is considered in [17]. Therefore, in this paper we consider only the subharmonic
resonance.

6.1 Subharmonic resonance Q =~ 2+/21

The system (53) is analyzed by the multiple scales method [30]. Therefore, we present solutions
in the form:

X :xo(TmTl,Tg,. . ) + \/—&%‘1(T0,T1, .. ) +&%2(T0, .. ) + -y
where Ty =, Ty = /¢t and Ty = &t. The following equations are derived:

Py . &P, 5 &x F .
8—’]’(2) + 220 = 0, W + 221 = —3x; — aT 8T (eXp(ZQTo) + exp(—iQT))),
Py . P 82950 Py 3 Oy
902y gy = ) Yy Nl
aTe T = R T, T aTE 2 arar, | et T Mo et — dx g
r
+ % (exp(iQT) + exp(—iQTh)). (54)

Solutions of Egs. (54) are as follows:

%o A(Tl,Tg)exp(szo) +A(T), Ts) exp( \/%TO)

2 (65)

A 3 =
X = exp(1QTy) + ?exp(Z\/.Z—iiTo) - §AA +c.ci,

r
2(24 — Q%)
where c.c.t. denotes the complex conjugate terms. The modulation equations are determined
from the formula:

Oy + 2020 = exp(\/z%'To) —26—‘4@\/21 + 12JA%A + gA — 65iV/2)A
aTE oTs

+ PAexp (iTy(@ - V27) ) + unt. (56)

where un.t. denotes summands, which are not source of the secular terms. The subharmonic
resonance condition is @ = 2v/22 + ¢2¢. Using the change of variables A = Zexp(if), we derive
the modulation equations:

0 3V A T
ad+2a CLsinn//:(), T \/_2

T
2" ova NGV

where 6; = g + \/%; Y = aTs — 2f3. System (57) has the fixed point ay = 0 and two other fixed
points:

cosyy =0, (67)
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\/g ]2
2 _ Vel _ S s2
Q1o = 3\/7 o1 £ o 52 . (58)

Let us use the response surface to analyze the bifurcations of the system. This approach was
used by Mira and his coworkers [31] to study the Duffing-Rayleigh system. The response
surface shows qualitatively the dependence of fixed points ag;2 on two parameters o1 and I'
(Fig. 11). We stress that the frequency responses are the cross-sections of this surface at
I' = const. As one can see from Fig. 11, a response surface represents joining sheets. The sheets
of the fixed points a; 2 are denoted by the same letters.

The eigenvalues /; 2 of the linearized system (57) are derived to study the stability of the fixed
points. The values 1; 3 for the fixed points @; are the following:

20 =—0s £ \/5% — 6a2\/T? —225%. (59)

The fixed points @; are stable. The values 4,9 for the fixed points ag have the form:

219 = —0s & 1/ 0% + 6024/ T2 — 2252 60
B > 2 )

The fixed points ag are unstable. The eigenvalues of the linearized flow close to the fixed point
ap = 0 are the following ones:

1—*2
202 = —0s & \/—5§+7—20‘%. (61)

The bifurcations of the fixed points ag are determined by the equation 4; = 0, which can be
written in the form:

l—*2 2
s —oi=1. (62)
216% &%

Equation (62) presents a hyperbola, which is denoted by pdl and pd2 (see Fig. 11). The
unstable and stable fixed points are arranged above and below this curve, respectively. The
saddle-node bifurcation curve snl connects the fixed points a; to az. As follows from Eq. (55),
the fixed point a( corresponds to the motion of the system (53):

Fig. 11. The response surface of sub-
harmonic resonance Q ~ 2v/2/. The
stable and unstable fixed points are
denoted by s and u, respectively. The
saddle-node bifurcation of the fixed
points is denoted by snl, and the
periodic doubling bifurcations of
oscillations of Eq. (6) are denoted by
pdl and pd2

v-



132 K. V. Avramov

r
T = —&p7C08 Q1 + O(). (63)
The fixed points a9 describe the following motions:
B Q v r a* 3, 5
x—acos(gtf§> +8{acozaﬂt+zcos(ﬂtfl//)fza +0(¢&*). (64)

As follows from Egs. (63), (64), the period doubling bifurcations take place in the dynamical
system (53). Curves pdl, pd2 show these bifurcations (see Fig. 11). Figure 12 shows bifurcation
diagrams, which are the sections of the response surface. Let us consider the frequency
response, which is shown in Fig. 12a. Note that unstable oscillations are denoted by dotted
lines. The frequency response part (AD) describes period 7' = 2—5’{ oscillations. The oscillations
(BC) are unstable due to the period doubling bifurcations B and C. Parts (BC) and (CE)
describe the unstable and stable oscillations of doubled order, respectively. Figure 12b shows
qualitatively the bifurcation diagram (the dependence of the oscillation’s amplitudes S on I') at
a1 < 0. Part (FH) shows the period T oscillations. As the result of period doubling bifurcation
G, doubled period unstable oscillations (GI) arise. The doubled period stable oscillations arise
due to the saddle-node bifurcation I. Figure 12c shows the bifurcation diagram at o; < 0. Part
(KM) shows the period T oscillations. The period doubling bifurcation takes place at point L.
As the result of this bifurcation, stable period 2T oscillations (LP) arise.

6.2 The subharmonic resonance Q =~ 3v/2/.

Assuming that I' = %, subharmonic resonance Q ~ 3v/2/ is considered. Let us present solu-
tions of Eq. (53) in the form:

x = x0(To, T1, Te, . ..) + /2% (T, T1, To, . ..) + ex3(To, T1, Toy .. .) 4 - -

F G H
r
b >
P
S
Fig. 12. The bifurcation diagram,
which is the section of the response
K surface (Fig. 11); (a) shows the system
L M behavior when o is varied, and (b)
and (¢) show the behavior when I is
r changed. Points B,C,G,L are the
c

period doubling bifurcation points
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Using the multiple scales method [30], we derive the equations:

&0 & G

P T . A _ 72 T
6_7"8 + ZMO = rCOS(Qt), aTg + 2/@%‘1 = —S/L,%'O =+ rx() COSs Qt — Zm, (65)
Py . Pxy P Py _ Ay
4 s = —2 - -2 -6 I Qt — 62 — Oy .
orz M T TURmar,  ore  Comar, i T

The subharmonic resonance condition is

Q= 3V21 + %0y, (66)

where o7 is the detuning parameter. Motions of the oscillator (53) are the following:

x=Aexp (i\/ﬂTo) + Aexp(iQTy) + c.c.t. + O(e), (67)

where A = Sexp(iff), A = ﬁ, c.c.t. denotes the complex conjugate part of the solutions.
Annihilating the secular terms of the third equation of system (65), the following modulation
system is derived:

O @2“/2
o =——a+
2 422

s _3\/1(12 P
2V2. 2v2  4V2)
where y, = %F; Y3 =9+ g4—1:/1. We rewrite the system (68) with respect to variables a, ¥ = o1 To—
3p:
o 9l'a?
o =—Zqy 24 sin i,

2 32V2)
2112 92 27al
gt —— 4+ i ¢
Vi=a 1280/v27  2v/2 322/

where 6] = 01 + % The dynamical system (69) has the fixed point ag =0 and the other fixed
points a;:

o 107T% 4o N 9r* (79T 4V207\ 253 70
a1,2 - PP ) 2 ) ( )
7680/% 922 51242 \ 76804 N

sin(a1T2 — 3f),
(68)

p = cos(a1T2 — 3f),

(69)
osy,

91"

The saddle-node bifurcation curve joins fixed points a1 to ag. This bifurcation satisfies the
equation:

237I*? -\ 256
r2(10240f \/ﬂal> :72253 (71)

By assumption, the magnitude I" is not too large. Therefore, the value 12032752 from Eq. (71)
can be neglected. Then, the approximate equation of the saddle-node bifurcation is the
following:

256
—V26iT? = 712522. (72)

Figure 13a shows qualitatively the frequency response of the system (53). The response
surface (Fig. 13b) presents the values a; 5 in the three-dimensional space (a1,T%,a) € R®. This
surface represents two sheets connected along the saddle-node bifurcation curve L;. This curve
is a hyperbola (see Fig. 13c¢).
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Aal,z

FZ

A\

Cc

Fig. 13. Bifurcation behavior of the dynamical system; (a) the frequency response, (b) the response
surface, (c¢) the bifurcation curve. The fixed points a; and as are stable and unstable, respectively. The
curve L is the saddle-node bifurcation curve, which is shown in (c)

The eigenvalues 4; 5 of the linearized flow (69) are derived to study the fixed points stability.
These values for the fixed point a; are the following:

2/12 = 05 + 1/ 0% — 4Ra?, (73)

where

9 [9r® /237r*
= e (22 V2le ) - 2%
2v2 \/ 2564 (102401 ﬁ“) Oz

The fixed points ay have the following values of 7 2:

2012 = —0x + /0% + 4a3R. (74)

Therefore, the fixed point a; is asymptotically stable and the fixed point as is a saddle, which is
shown on the response surface (see Fig. 13).
Note that the fixed points correspond to the following motions of the system (53):

x:acos(%t—%) + 2A cosQt + O(e). (75)

7 Numerical simulations of beam oscillations

The objective of these calculations is the bifurcation analysis of the system (6) for a variation of
the parameter I'; and keeping the parameter Q constant at Q = 2v/21. We integrate the system
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Fig. 14. The system (6)
motions obtained by numerical
integration
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Fig. 15. The Poincaré sections of the chaotic attractor

(6) by the Runge-Kutta method. The numerical values of the system (6) parameters are pre-
sented in the second section.
Let us consider the approach for the calculations with constant I';. The rectangle

D =1{(q,4) € R*/0 < q <3.14;,-0.6 <4 < 0.6}

was filled by 450 points. Every point was used as initial condition to integrate the system (6).
After defining all steady states, the value I'; was changed, and all calculations were carried out
once more.

As result of the calculations, the following system behavior was obtained. The motions with
the excitation period take place at I'; € [1;19.5]. For example, Fig. 14 shows the limit cycle at
I, = 1 in the plane (g,q) € R?. The doubled order cycle is observed at I', = 20.5. This cycle is
shown on Fig. 14, too. We conclude that a period doubling bifurcation takes place. Such cycles
exist at I'; € [20.5;24.5]. The motions of the four times the excitation period take place at T}
=25.5 (see Fig. 14). Such oscillations occur at the region I'; € [25.5;26.0]. A chaotic attractor
appears at I'; = 26.27. Figure 15 shows the Poincaré sections of this attractor.

The period doubling bifurcations considered in this section are studied analytically in
Sect. 6.1. As follows from the analytical analysis, the first period doubling bifurcation takes
place at I'; = 17. Numerical simulation shows that this bifurcation takes place at I'; &~ 19.9.

Numerical simulations show that besides the considered above steady states, trajectories,
which escape to infinity, occur.

8 Conclusions

Nonlinear parametric oscillations of beams with regard to the nonlinear inertia and nonlinear
curvature are considered in this paper. The beam has three equilibria as the compressive force
is larger than the statical buckling force. The single-mode approximation is used to present the
beam motions. The second-order differential equation is derived by Galerkin’s method.
Melnikov’s method is used to study this equation. The bifurcations of the parametric
oscillations of the beam are analyzed by Melnikov’s method. It is shown in this paper, that the
bifurcation behavior is repeated qualitatively for any order of the subharmonic motions.
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The bifurcations of the nonlinear oscillations of the beam close to equilibrium are studied by
the multiple scales method. The analytical results are compared with numerical simulation
data.

Appendix

G:G1+@2;

mT

; L P .

Gi= _m / - [Vp;un‘l(qg - Qg) - VPTC4CIOQ(2) - 5q0 — 5L7'C4q0q(2)} dt = —'J)p)m;“Kl (k)’
0

T ol
) 2 i
_9 D 2o\, 9
TR =5 / < ) 0 | diae
0 0
k* -1
ho(k) = ———=;
0( ) (2 _ k2)2
5 FtT[ 5q0 r[TE 19}
Gy = — T / Al cos(Qr +me)dr T ( ) cos(ma);
0
G_Z = aF’z dd)a
_ mT
8F2 _ 0 l—}nz

“e2_ 9 ; Q
5~ ol szT/ qo0do cos(Qt + me)dz
0
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