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Summary. In this paper, the Analog Equation Method (AEM), a BEM-based method, is employed to the

nonlinear analysis of a Bernoulli-Euler beam with variable stiffness undergoing large deflections, under

general boundary conditions which maybe nonlinear. As the cross-sectional properties of the beam vary

along its axis, the coefficients of the differential equations governing the equilibrium of the beam are

variable. The formulation is in terms of the displacements. The governing equations are derived in both

deformed and undeformed configuration and the deviations of the two approaches are studied. Using the

concept of the analog equation, the two coupled nonlinear differential equations with variable coefficients

are replaced by two uncoupled linear ones pertaining to the axial and transverse deformation of a sub-

stitute beam with unit axial and bending stiffness, respectively, under fictitious load distributions. Besides

the effectiveness and accuracy of the developed method, a significant advantage is that the displacements as

well as the stress resultants are computed at any cross-section of the beam using the respective integral

representations as mathematical formulae. Several beams are analyzed under various boundary conditions

and loadings to illustrate the merits of the method as well as its applicability, efficiency and accuracy.

1 Introduction

In recent years a need has been raised in engineering practice to predict accurately the nonlinear

response of beams, especially when the properties of their cross section are variable. The

nonlinearity results from retaining the square of the slope in the strain-displacement relations.

In this case the transverse deflection influence the axial force and the resulting equations,

governing the response of the beam, are coupled nonlinear with variable coefficients. Moreover,

the pertinent boundary conditions of the problem are in general nonlinear. Closed form

solutions cannot be obtained when general boundary conditions are considered unless these are

simplified on the basis of certain mathematical adjustments. Therefore recourse to numerical

solutions is inevitable. Among, them the FEM has been widely used for nonlinear analysis of

beams with constant cross-section having both geometric and material nonlinearities [1], [2].

Nevertheless, in FEM, beams with nonuniform cross-section must be approximated by a large

number of small uniform elements replacing the continuous variation with a step law. In this

way it is always possible to obtain acceptable results and the error can be reduced as much as

desired by refining the mesh, at the expense of computational cost. On the other hand the

application of the BEM to the analysis of beams is restricted only to linear problems. Its first

application date back to the work of Banerjee and Butterfield [3], who developed the BEM for

the one-dimensional problem and applied it to the analysis of the Bernoulli-Euler beam under

Acta Mechanica 164, 1–13 (2003)

DOI 10.1007/s00707-003-0015-8

Acta Mechanica
Printed in Austria



static loads. Providakis and Beskos [4] applied the BEM to the dynamic problem of Bernoulli-

Euler beams. Recently, the BEM was employed for the linear static analysis of Timoshenko’s

beams [5].

In this paper, an accurate direct solution to the governing coupled nonlinear differential

equations is developed, which permits the treatment also of nonlinear boundary conditions.

The governing equations are derived in both the deformed and the undeformed configuration.

The solution method is based on the concept of the analog equation [6] as it was developed

for the solution of nonlinear problems [7]. According to this concept, the two coupled

nonlinear differential equations are replaced by two equivalent uncoupled linear ones per-

taining to the axial and transverse deformation of a substitute beam with unit axial and

bending stiffness subjected to fictitious load distributions under the same boundary condi-

tions. Subsequently, the fictitious loads are established using the BEM for linear one-

dimensional differential equations and, thus, the displacements and their derivatives are

established from the respective integral representation. Several beams are analyzed under

various boundary conditions and load distributions, which illustrate the method and dem-

onstrate its efficiency and accuracy. Moreover, useful conclusions are drawn from the com-

parison of the two sets of equations derived on basis of the deformed and undeformed

configuration. The latter one is usually adopted in the literature to reduce the nonlinearity of

the problem.

2 Governing equations

Consider an initially straight beam of length l having variable axial stiffness EA and bending

stiffness EI , which may result from variable cross-section, A ¼ AðxÞ, and/or from inhomoge-

neous linearly elastic material, E ¼ EðxÞ; I ¼ IðxÞ is the moment of inertia of the cross-section.

The x-axis coincides with the neutral axis of the beam, which is bent in its plane of symmetry xz

under the combined action of the distributed loads px ¼ pxðxÞ and pz ¼ pzðxÞ in the x- and z-

direction, respectively. The large deflection theory result from the nonlinear kinematic relation,

which retains the square of the slope of the deflection, while the strain component remains still

small compared with the unity. Thus, taking into account that u;2x� u;x we have

exðx; zÞ ¼ u;xþ1
2
w;2xþzj; ð1Þ

where u ¼ uðxÞ and w ¼ wðxÞ are displacements along the x- and z-axis, respectively, and j is

the curvature of the deflected axis.

Referring to the equilibrium of the deformed element (see Fig. 1) the following relations are

derived:

p�x ¼ pxdx=ds; p�z ¼ pzdx=ds; m� ¼ mdx=ds; ð2Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u;x Þ2 þw;2x

q

dx; ð3Þ

cos h ¼ 1þ u;x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u;x Þ2 þw;2x

q ; sin h ¼ w;x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u;x Þ2 þw;2x

q ð4Þ

which for the case of moderate large deflections (u;x ;w;
2
x� 1) become

p�x ¼ px; p�z ¼ pz; m� ¼ m; ð5Þ

ds ¼ dx; ð6Þ
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cos h ’ 1; sin h ’ w;x’ h: ð7Þ

Moreover, the strain e0 ¼ exðx; 0Þ at the x-axis and the curvature j ¼ jðxÞ are given as

e0 ¼ u;xþ
1

2
w;2x ; ð8Þ

j ¼ dh
ds
’ h;x’ w;xx : ð9Þ

Therefore, the stress resultants, that is the axial force and the bending moment are given as

N ¼ EA u;xþ
1

2
w;2x

� �

; ð10Þ

M ¼ �EIw;xx : ð11Þ

From Fig. 1, we have

Nx ¼ N cos h� Q sin h ’ N � Qw;x ; ð12Þ

Nz ¼ N sin hþ Q cos h ’ Nw;xþQ: ð13Þ

The governing equations are derived by considering the equilibrium of the deformed element.

Thus, referring to Fig. 1 we obtain:

Nx;x ¼ �px; ð14Þ

Nz;x ¼ �pz; ð15Þ

M;x¼ Qþm: ð16Þ

Substituting Eqs. (12) and (13) into Eqs. (14) and (15) and using Eq. (16) to eliminate Q, we

obtain:

N;x� M;x w;xð Þ;xþ mw;xð Þ;x¼ �px; ð17Þ

M;xxþ Nw;xð Þ;x¼ �pz þm;x ð18Þ

which by virtue of Eqs. (10) and (11) become

EA u;xþ1
2w;

2
x

� �� �

;xþ EIw;xxx w;xð Þ;xþ mw;xð Þ;x¼ �px; ð19Þ

EIw;xxð Þ;xx� EA u;x þ 1
2
w;2x

� �

w;x
� �

;x¼ pz þm;x : ð20Þ

m*

p*
z

p*
x

Nx

θ Q

Nz x

z

N

Q + dQ

M

M + dM

(1+u,x)dx

w,x dx

Nx + dNx

Nz + dNz
N + dN

dθ θ+

Fig. 1. Forces and moments acting on

the deformed element
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The pertinent boundary conditions are:

a1uð0Þ þ a2Nxð0Þ ¼ a3; ð21Þ

�aa1uðlÞ þ �aa2NxðlÞ ¼ �aa3; ð22Þ

b1w 0ð Þ þ b2Nzð0Þ ¼ b3; ð23Þ

�bb1w lð Þ þ �bb2Nz lð Þ ¼ �bb3; ð24Þ

c1w;x 0ð Þ þ c2M 0ð Þ ¼ c3; ð25Þ

�cc1w;x lð Þ þ �cc2M lð Þ ¼ �cc3; ð26Þ

where ak; �aak, bk;
�bbk, ck, �cckðk ¼ 1; 2; 3Þ are given constants. Equations (21)–(26) describe the

most general boundary conditions associated with the problem and can include elastic support

or restrain. They are linear except in the case of non vanishing end forces Nx;Nz, e.g., if at

x ¼ 0 it is a2 6¼ 0, a1j j þ a3j j 6¼ 0 and/or b2 6¼ 0, b1j j þ b3j j 6¼ 0.

The term Qw;x¼ EIw;xxx w;x, which appears in Eq. (19), expresses the influence of the shear

force Q on Nx. The presence of this term increases highly the difficulty of the solution. The

existing solutions circumvent this difficulty by neglecting this nonlinear term. This assumption

yields Nx ’ N and it is true if the equilibrium is considered in the undeformed configuration.

Thus the governing equations are simplified as

EA u;xþ1
2w;

2
x

� �� �

;xþ mw;xð Þ;x¼ �px; ð27Þ

EIw;xxð Þ;xx� EA u;xþ1
2
w;2x

� �

w;x
� �

;x¼ pz þm;x ; ð28Þ

while the boundary conditions become:

a1uð0Þ þ a2Nð0Þ ¼ a3; ð29Þ

�aa1u lð Þ þ �aa2N lð Þ ¼ �aa3; ð30Þ

b1w 0ð Þ þ b2Nz 0ð Þ ¼ b3; ð31Þ

�bb1w lð Þ þ �bb2Nz lð Þ ¼ �bb3; ð32Þ

c1w;x ð0Þ þ c2Mð0Þ ¼ c3; ð33Þ

�cc1w;x ðlÞ þ �cc2MðlÞ ¼ �cc3: ð34Þ

In this paper, this simplifying assumption is investigated by solving both sets of governing

equations and useful conclusions are drawn regarding its validity.

3 The AEM solution

Equations (19) and (20) are solved using the AEM, which for the problem at hand is applied as

follows. Let u ¼ u xð Þ and w ¼ w xð Þ be the sought solutions, which are two and four times

differentiable, respectively, in ð0; lÞ. Noting that Eqs. (19) and (20) are of the second order with

respect to u and of fourth order with respect to w, we obtain by differentiating the following

analog equations:
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u;xx¼ b1ðxÞ; ð35Þ

w;xxxx¼ b2ðxÞ; ð36Þ

where b1, b2 are fictitious loads. Equations (35) and (36) indicate that the solution of Eqs. (19)

and (20) can be established by solving Eqs. (35) and (36) under the boundary conditions (21)–

(26), provided that the fictitious load distributions b1, b2 are first determined.

The fictitious loads are determined by developing a procedure based on the boundary inte-

gral equation method for one-dimensional problems. Thus, the integral representations of the

solutions of Eqs. (35) and (36) are written as

u xð Þ ¼ c1xþ c2 þ
Z

l

a

G1 x; nð Þb1 nð Þdn; ð37Þ

w xð Þ ¼ c3x3 þ c4x2 þ c5xþ c6 þ
Z

l

a

G2 x; nð Þb2 nð Þdn; ð38Þ

where ciði ¼ 1; 2; . . . 6Þ are arbitrary integration constants to be determined from the boundary

conditions and Gi x; nð Þði ¼ 1; 2Þ are the fundamental solutions of Eqs. (35) and (36), that is

particular singular solutions of the following equations:

G1;xx¼ dðx� nÞ; ð39Þ

G2;xxxx¼ d x� nð Þ ð40Þ

with dðx� nÞ being the Dirac function.

Integration of Eqs. (39) and (40) yields [3]

G1 ¼ 1
2

x� nj j; ð41Þ

G2 ¼ 1
12 x� nj j x� nð Þ2: ð42Þ

The derivatives of u and w are obtained by direct differentiation of Eqs. (37) and (38). Thus, we

have

u;x xð Þ ¼ c1 þ
Z

l

0

G1;x x; nð Þb1 nð Þdn; ð43Þ

u;xx xð Þ ¼ b1 xð Þ; ð44Þ

w;x xð Þ ¼ 3c3x2 þ 2c4xþ c5 þ
Z

l

0

G2;x x; nð Þb2 nð Þdn; ð45Þ

w;xx xð Þ ¼ 6c3xþ 2c4 þ
Z

l

0

G2;xx x; nð Þb2 nð Þdn; ð46Þ

w;xxx xð Þ ¼ 6c3 þ
Z

l

0

G2;xxx x; nð Þb2 nð Þdn; ð47Þ

w;xxxx xð Þ ¼ b2ðxÞ: ð48Þ
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Substituting the derivatives in Eqs. (19) and (20) yields the equations, from which the fictitious

sources b1 and b2 can be determined. This process can be implemented only numerically as

follows.

The interval 0; lð Þ is divided into N equal elements, having length l=N. Thus, the integral

equations (37) and (38) are written as

u xð Þ ¼ c1xþ c2 þ
X

N

j¼1

Z

j

G1 x; nð Þb1 nð Þdn; ð49Þ

wðxÞ ¼ c3x3 þ c4x2 þ c5xþ c6 þ
X

N

j¼1

Z

j

G2 x; nð Þb2ðnÞdn; ð50Þ

where the symbol
R

j
indicates the integral on the j-element. Subsequently, the fictitious sources

are approximated on each integration interval using constant, linear or quadratic variation. In

this investigation, the constant element is employed. That is, the fictitious source is assumed

constant on the element and its nodal value is placed at the midpoint of the element. The

integration of the kernels is performed analytically.

Using this discretization and applying Eqs. (43)–(50) to the N nodal points, we obtain:

u ¼ c1x1 þ c2x0 þG1b1; ð51Þ

u;x ¼ c1x0 þG1;xb1; ð52Þ

u;xx ¼ b1; ð53Þ

w ¼ c3x3 þ c4x2 þ c5x1 þ c6x0 þG2b2; ð54Þ

w;x ¼ 3c3x2 þ 2c4x1 þ c5x0 þG2;xb2; ð55Þ

w;xx ¼ 6c3x1 þ 2c4x0 þG2;xxb2; ð56Þ

w;xxx ¼ 6c3x0 þG2;xxxb2; ð57Þ

w;xxxx ¼ b2; ð58Þ

where G1, G1;x, . . . G2;xxx are N � N known matrices, originating from the integration of the

kernels G1 x; nð Þ , G2 x; nð Þ and their derivatives on the elements; u, u;x,. . . w;xxxx are N � 1

vectors including the values of u , w and their derivatives at the nodal points; b1, b2 are also

N � 1 vectors containing the values of the fictitious loads at the nodal points and

xk ¼ xk
1;x

k
2; . . . xk

N

� 	T
are vectors containing the k-th power of the abscissas of the nodal points.

Finally, collocating Eqs. (19) and (20) at the N nodal points and substituting the derivatives

from Eqs. (51)–(58) yields the following equations:

F1 b1;b2; cð Þ ¼ px; ð59Þ

F2 b1;b2; cð Þ ¼ pz; ð60Þ

where Fiðb1;b2; cÞ are generalized stiffness vectors and c ¼ c1; c2; . . . c6f gT . Equations (59) and

(60) constitute a system of 2N nonlinear algebraic equations with 2N þ 6 unknowns. The

required six additional equations result from the boundary conditions. Thus, after substituting

the relevant derivatives into Eqs. (21)–(26), we obtain:

f i b1;b2; cð Þ ¼ 0 ði ¼ 1; 2; . . . 6Þ: ð61Þ
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The nonlinear equations (59)–(61) have been solved numerically to yield b1;b2 and c by

minimizing the function

S b1;b2; cð Þ ¼
X

N

i¼1

Fi
1 b1;b2; cð Þ � pi

x

� �2þ Fi
2 b1;b2; cð Þ � pi

z

� �2
n o

þ
X

6

j¼1

fi b1;b2; cð Þ2: ð62Þ

3.1 Treatment of discontinuities

(a) If the loading is discontinuous at a nodal point, the mean value can be employed to restore

the continuity. The results are highly improved by adjusting the smoothing curve, e.g.,

pðxÞ ¼ p1 þ p2

2
þ p2 � p1

2
sin

p x� x0ð Þ
2e

; x0 � e � x � eþ x0: ð63Þ

(b) The concentrated force P at a point x ¼ x0 can be represented by a bell shaped continuous

function extended on a small region of length 2e, e.g.,

pðxÞ ¼ P

2e
1þ cos

p x� x0ð Þ
2e


 �

; x0 � e � x � eþ x0; ð64Þ

where

Z

x0þe

x0�e

pðxÞdx ¼ P: ð65Þ

4 Numerical examples

On the base of the procedure described in previous section a FORTRAN program has been

written for the nonlinear analysis of beams with arbitrarily varying stiffness. In all examples the

results have been obtained using N ¼ 21 elements, which are enough to ensure the convergence

of the solution procedure (see Table 1). Finer elements have been used in the neighborhood of

the concentrated load.

4.1 Uniform cross-section. Concentrated load

For the comparison with existing results, a fixed-fixed beam with uniform rectangular cross

section b� h and length l ¼ 0:508 m has been analyzed under a concentrated force acting at

Table 1. Numerical results at the centre of the beam, in example 4.3, for various values of N. Thickness

variation case (b)

Hinged-hinged Fixed-hinged

N ¼ 21 N ¼ 31 N ¼ 41 N ¼ 21 N ¼ 31 N ¼ 41

u (m) )0.00245 )0.00241 )0.00239 0.00218 0.00218 0.00219

w (m) 0.56088 0.56022 0.55998 0.47019 0.46874 0.46824

Nx (kN) 40409 40414 40416 26405 26401 26398

Nz (kN) 19.967 31.327 35.454 1903.5 1916.0 1920.5

M (kNm) 14544 14535 14531 15449 15418 15408
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the midspan of the beam. The employed data are: E ¼ 2:07� 108 kN=m2, b ¼ 0:0254 m and

h ¼ 0:003175 m. Mondkar and Powell [1] have also studied this problem using five eight-node

plane stress elements to model one-half of the beam, with 2� 2 Gauss quadrature integration.

The central deflection w0 versus the concentrated load Pz is shown in Fig. 2, as compared with

the existing solution. The results are in excellent agreement.

4.2 Uniform cross-section. Distributed load

A steel I-section beam with length l ¼ 10:0 m has been studied using both sets of equations

referred to deformed and undeformed configuration. The cross-section is constructed from a

pair of identical flange plates b ¼ 300 mm wide by tf ¼ 30 mm thick and a web plate

tw ¼ 12 mm thick with height hw ¼ 500 mm. The employed data are: E ¼ 2:1� 108 kN/m2,

px ¼ 0, m ¼ 0. The examined boundary conditions are depicted in Fig. 3. The distributed load

0 500 1000 1500 2000 2500 3000
Pz(kN)

0

0.004

0.008

0.012

0.016

w
0(

m
)

AEM
Ref. [1]
Linear

Fig. 2. Central deflection versus load

in example 4.1

u(0) = 0 u(0) = 0

u(0) = 0

u(0) = 0u(0) = 0

u(0) = 0

w(0) = w,x (0) = 0 w(0) = w,x (0) = 0w(l) = w,x (l) = 0

w(l) = w,x (l) = 0w(0) = w,x (0) = 0 w(0) = w,x (0) = 0

w(0) = w,x (0) = 0

w(l) = M (l) = 0

w(l) = M (l) = 0

w(l) = M (l) = 0

w(l) = M (l) = 0

Nz (l) = M (l) = 0

w(0) = M (0) = 0 w(0) = M (0) = 0

u(l) = 0

u(0) = 0 u(l) = 0

u(l) = 0

Nx(l) = 0

Nx(l) = 0Nx(l) = 0

Nx(l) = 0

(a) (b)

(d)

(f)(e)

(g)

(c)

Fig. 3. Boundary conditions in example 4.2
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pz ¼ 3000 kN/m was used except from the last case where it was taken pz0 ¼ 300 kN/m. The

profiles of the displacement w are shown in Figs. 4 and 5. From these figures, we conclude that

for axially immovable ends the deviation between the two sets of governing equations is neg-

ligible. However, for axially movable ends the deviation may be appreciable. The same

conclusion can be drawn from the profile of the ratio Qw;x =N. That is, the ratio Qw;x =N for

fixed-fixed ends is small (see Fig. 6), while for pinned-roller ends this ratio approaches the value

of 1 as it was anticipated. Figure 7 shows the profiles of the stress resultants in the case of

pinned-roller ends, from which we conclude that the axial force N may be appreciable, while it

is ignored in the simplified theory, N ’ Nx ¼ 0.

4.3 Variable cross-section. Distributed loads

The steel I-section beam of example 4.2 has been studied under varying web height hwðxÞ. Two
cases are considered: (a) constant web height, hw ¼ hwð0Þ, and (b) linearly varying web height,

hw ¼ hwð0Þð0:5þ x=lÞ. In both cases the volume of the material, i.e., V ¼ twhwð0Þ þ 2tf b½ �l, was
kept constant. The employed data are: pz ¼ 3000 kN/m, px ¼ 100 kN/m and m ¼ 0. Two types

of boundary conditions are considered: (i) hinged-hinged, and (ii) fixed-hinged. The results for

both cases of material distribution are presented in Figs. 8–10.Moreover, numerical results at the

centre of the beam are presented in Table 1, for various values of N, from which the convergence

and stability of the AEM is concluded. It is apparent that 21 elements give good results.

0 2 4 6 8 10
x(m)

1.6

1.2

0.8

0.4

0

–0.4
w

(m
)

deformed
undeformed

BCs: Case (d)

BCs: Case (c)

BCs: Case (b) BCs: Case (a)

Fig. 4. Profile of the displacement w

in example 4.2

0 2 4 6 8 10
x(m)

1.6

1.2

0.8

0.4

0

–0.4

w
(m

)

deformed
undeformed

BCs: Case (g)

BCs: Case (e)

BCs: Case (f)

Fig. 5. Profile of the displacement w

in example 4.2
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4.4 Variable cross-section. Distributed loads and moments

A fixed-fixed beam with length l ¼ 1:0 m, has been analyzed. The employed data are:

E ¼ 2:1� 108 kN=m2 , b ¼ 0:01 m, h0 ¼ 0:03 m. Two cases of thickness variation and load

distributions have been studied (a) h ¼ h0 with px ¼ 0, pz ¼ 2500 kN/m, m ¼ 0 and (b)

h ¼ h0ð1=2þ x=lÞ with px ¼ 1000 kN/m, pz ¼ 2500 kN/m and the linearly varying distributed

0 2 4 6 8 10
x(m)

–0.02

0

0.02

0.04

0.06

0.08

0.1

Q
w

, x
/N

Fig. 6. Profile of the ratio Qw;x =N in
example 4.2. Boundary conditions:

Case (a)

0 2 4 6 8 10
x(m)

–20000

–10000

0

10000

20000

N (kN)
Q (kN)
Nx (kN)
Nz (kN)

Fig. 7. Profile of the stress resultants

in example 4.2. Boundary conditions:
Case (d)

0               2             4               6               8 10
x  (m)

0.02

0.01

0

–0.01

–0.02

case (a)
case (b)

BCs: hinged-hinged

BCs: fixed-hinged

u 
(m

)

Fig. 8. Profile of the displacement u

in example 4.3
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moment m ¼ 100x (kNm)/m. In both cases of material distribution the volume V of the

material has been kept unchanged, that is V ¼ bh0l . The results are shown in Figs. 11 and 12

for both cases. Comparison of the results with a FEM solution was possible only in case (a)

using the NASTRAN code.

0.6

0.4

0.2

0
BCs: fixed-hinged

0               2             4                 6               8 10

x (m)

w
 (m

)

BCs: hinged-hinged

case (a)
case (b)

Fig. 9. Profile of the displacement w

in example 4.3

20000

10000

0

–10000

–20000

–30000

0               2             4              6               8 10

x  (m)

BCs: fixed-hinged

BCs: hinged-hinged

M
  (

kN
m

) case (a)
case (b)

Fig. 10. Profile of the bending moment

M in example 4.3

0 500 1000 1500 2000 2500

pz (kN/m)

0

0.04

0.08

0.12

AEM case (a)
FEM case (a)
Linear

w
0 

(m
)

Fig. 11. Central deflection versus load

in example 4.4
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5 Conclusions

In this paper, a direct solution to static problem of beams with variable stiffness undergoing

large deflections has been presented. The governing equations have been derived considering

the equilibrium in the deformed configuration. The presented solution is based on the concept

of the analog equation, which converts the two coupled nonlinear equations with variable

coefficients into two uncoupled linear ones with fictitious loads. These equations are subse-

quently solved using the one-dimensional integral equation method. From the presented

analysis and the numerical examples the following main conclusions can be drawn: (a) simple

fundamental solutions are employed to derive the integral representation of the solution; (b) the

displacements and the stress resultants are computed at any point using the respective integral

representation as a mathematical formula; (c) the numerical solution exhibits stability and a

small number of constant elements are adequate to obtain accurate results for the displace-

ments and the stress resultants; (d) the influence of the shear force on the axial force may be

appreciable in the case of axially movable ends. Therefore inaccuracies may result, if the

response of the system is obtained using the simplified equations resulting from the equilibrium

of the undeformed element.
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